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The prediction of a new branch in the surface-plasrnon dispersion of an inhomogeneous conductor is verified

by use of a new series solution to the field equations. The new solution avoids the divergence which limits the

accuracy of the earlier one.

We have recently studied the surface-plasmon
dispersion relation for a simple model of a con-
ductor with inhomogeneous charge distribution
near the surface. " The novel feature of our re-
sults is the prediction of a new branch in the dis-
persion relation. This result has been criticized
by Conwell' on the grounds that we employed a
series solution to the differential equation for the
fields which, while well behaved for the "ordinary
branch" of the dispersion relation, diverges for the
"new branch. " It is concluded, then, that the pre-
dicted new branch is spurious.

In this comment we respond to Conwell's crit-
icism. To be specific, we verify the prediction
of an extra branch in the dispersion relation using
a different series expansion of the fundamental
differential equation and we add some (hopefully)
clarifying remarks on the physical basis for the
existence of this branch.

There are two issues to be discussed. First,
should one expect to find a qualitative change in
the surface-plasmon dispersion when a homogen-
eous conductor is changed to an inhomogeneous
conductor? Second, if the answer to the previous
question is yes, are the published results quali-
tatively valid?

We have argued elsewhere' that on intuitive
grounds alone the answer to the first question is
yes. The point is that an inhomogeneity in the
charge distribution near the surface with a scale
small compared to the typical plasmon wavelength
looks like a discontinuous boundary between two
conductors. The plasmon dispersion relation for
a layered structure can be computed exactly, and
does have the extra branch also present in the
Guidotti-Rice-Lemberg model. ' Of course, we
also expect that when the inhomogeneity changes
on a scale longer than or comparable to a typical
plasmon wavelength, the properties of the system
are but slightly different from those of a homo-
geneous system.

The physical basis for a second branch in the
surface-plasmon dispersion may be further argued
as follows. At one stage in our earlier work' we

considered the plasmon modes at the interface be-
tween two dissimilar semi-infinite metals. Halevi'
has recently published a similar calculation. Both
calculations show that collective charge oscillations
can exist at the bimetallic interface. We have
argued' that as one of the "distant back surfaces"
is brought from infinity to the proximity of the
interface, the bimetallic mode is not destroyed.
Indeed, the interaction between the charge oscil-
lations at the bimetallic surface and those at the
free surface near the interface give rise to a sec-
ond dispersion branch, and the behavior of this
dispersion branch is similar to that predicted for
an exponentially inhomogeneous charge distribution
near the surface.

Finally, we remark that we are now preparing
for publication' a report of experimental studies
of surface-plasmon dispersion which display the
predicted second branch dispersion. The system
studied is a liquid Hg-Cs alloy, chosen because
surface tension considerations indicate that Cs
concentrates at the surface, thereby creating a
zone of charge inhomogeneity of microscopic
thickness and with conductivity much smaller than
that of the bulk.

The preceding remarks are in agreement with
the results of solving the fundamental differential
equation for the fields as we now show. For de-
tails of the model we refer the reader to Ref. 2.

The differential equation from which we obtain
the surface-plasmon fields is

cf Q - du
y(y —1),+ [2o.y —(2o. + 1)]-

cfY dy
2

— o. +ha —,(y —1) u=0
C

which we transform to read

cf Q CLQ

q(ri+ 1),+ (2dq —1)——(o. + qq) a=0 (2)6'g 67)

where q = y —1 and q = ba'~'/c'. Equation (2) has
two regular singular points, 0 and —1, about
which series solutions can be constructed. In our
previous publication" we used an expansion about
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q = —1, but for frequencies and wave vectors char-
acteristic of the neer branch y= j., 2, @=0.2, hence
an expansion about q = 0 is the appropriate pro-
cedure to use. (An expansion about q = —1 leads to
the "usual" branch of the dispersion relation. )
Since q = 0 is a regular singular point there is at
leRst one so1utlon Gf the form

which may or may not be regula»t &=0 Sub-
stitution of (3) into (2) leads to the indical equation

P(P-1)-P=o
and the recux'sion relations

a.[p(p —1)+2~P-~]+(p'-1)a, =0

a, [P(P+ 1)+ 2a(P+ 1)—o]+a, fP(P+ 2)] —qac= 0

a„,[(n+ P - 1)(n+ P - 2) + 2o (n+ P - 1)- |r]
+a„[(n+p) (n+ p 1) ——(n+ p)] —qa„,=0;

The x'oots of the lnitiR1 equation ax'e p, =2, p2=O
hence the first solution is

with the coefficients determined from (5) with P= 2.
The second solution is

n, (rl) = Cn, (g) in@+ Q &„q

with C a constant. The coefficients 5 are obtained
by substituting into Eq. (2). We find, after some
algebra, that the general linear solution of Eq. (2}
cRQ be written

n~--lnq(fi + a~ 'q + a2 'g + ' ' ' )

+ ho+ k, q+ A2q +

ng=ri+f~ ri+f~'g + ''
The 8» Rx'e coefflclents obtained from the x'ecux'sloQ
relation (5) with a, = 1. The first few coefficients
in Eq. (3) are

h, = —s [(3+2o.) —~~(2+ 3a)+ (2aq/q+ n')] (9)

a~~f~= —s (2+3') .
%'e may construct dispersion relations from the

two linearly independent solutions u, and u~. A
dispersion relation based on retaining the fix'st-
(and also the second-) order term in u, does dis-
play solutions. These however cox'1'espond to vRl-
ues of 4 and ~ such that Iq I» 1, contrary to the
conditloQS fox' convergeQce of the sel ies expan-
sions in Eq. (3) and must consequently be rejected

The dispersion relation in Eq. (10) is derived
from the lowest-order term in e~, which ls sec-
OQd ox'dex':

[0,'/s, + k', /e(0}] [(s/h) —1)= —2(s/5}/c(0)a . (10)

Solutions of this equation satisfy the condition
It} I

&1 (0 5 & Iti I
~ 0 7) and are displayed in Figs. 1

and 2.
The parameters in the exponential model ax'e the
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FIG. 1. Behavior of the second dispersion branch with
degree of inhomogeneity when g& 0. The dashed curves
display the behavior as a function of u with g= -10%. Of
course, the smaller values of e correspond to higher
degrees of inhomogeneity. The solid curves sho%' the
dependence on g when e is heM constant. Higher values
of IgI correspond to higher degrees of inhomogsneity.
The light line (k = fgo(d/c) separates the radiative from
the nonradiative domains.

FIG. 2. Behavior of the second branch with degree of
surface inholnogeneity when g& 0. The solid curves show
the behavior with respect to g, while the dashed curves
display the dependence on g. Curves (8), (f), and (g)
demonstrate the effects of damping with g and g held con-
stant. In (8) v =, while in (f) ~= 8/v& and in (g) 7'= 6/u&.
~&=7 eV.
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FIG. 3. Second branch behavior near the light line.
The tangential approach to this line is typical in the
presence of electromagnetic coupling to the normal
modes of the system.

z-dependent dielectric function z(z) =5 —se '",
where z is the coordinate normal to the surface,
& = 1 —(v~2/(u', s =g((u~/(o'), and u)~2 = 4',e'/m is
the plasma frequency. e, is the dielectric function
of the passive contact medium n =aak~, and 0~2

= k,' —b(uP/c'), ko= k,' —eo(&u'/c'}. Note that a de-
fines a scale of length for decay of the inhomogene-
ity, and k„defines the field behavior through
F( xt}=F(z)e' *' ~' Atz=0q= s/5 —1 with
z/h = (u~2g/((u' —re~), and g = (n, n, )/n-, n, an.d n,
are the bulk and maximum surface concentration
of electrons, respectively.

We display in Fig. 1 solutions of the dispersion
relation (10) with g & 0, corresponding to a deple-
tion of electrons in the surface region. Also
shown in the figure is the behavior of this solution
with respect to the degree of surface inhomogene-
ity brought about by varying a and g.

In Fig. 2 is shown the behavior of the second
surface-plasmon dispersion branch as predicted
by Fzl. (10}when g&0 (accumulation layer). The
behavior of the second branch near the light line
is illustrated in Fig. 3. The dependence of the
sign of the slope on the sign of g, as well as the
behavior of the second branch with variation of a
is wholly consistent with the behavior of the sec-

ond dispex sion branch which appears in the exact
treatment' of surface-plasmon dispersion at the
surface of a semi-infinite metal overlayed with a
thin film of a second metal. There is a difference
between the two treatments in the way the second
dispersion branch approaches the light line, but
we expect this difference to stem from the nature
of the approximation leading to Eg. (10).

For completeness we have also treated approxi-
mately the effects of damping on the second
branch. We have assumed a free-electron be-
havior with relaxation time ~, and that the imagin-
ary part of the dielectric function is small enough
so that we may ignore it when compared with the
real part. The results are displayed in the lower
portion of Fig. 2. As can be seen, although the
effects of damping are not drastic, the inclusion
of a relaxation time tends to counteract the ten-
dency of the charge inhomogeneity at the surface.

The results in this comment, as well as the
exact treatment of the "step" surface inhomogene-
ity, ' present convincing arguments for the exis-
tence of a second dispersion branch in the spec-
trum of surface plasmons at a onducting surface
with inhomogeneous electron properties.

In answex to the second question, while our
previous solution of Eq. (1), which was based on
a series expansion about y = 0, does not converge
for second branch values of k and (d, the qualita-
tive behavior of the second dispersion branch in
that case, is in agreement with present results.

We conclude that the prediction of a second
branch in the surface-plasmon dispersion for the
model inhomogeneous system studied by Guidotti,
Rice, and l.emberg is valid. In the present series
expansion we have eliminated the divergences
present in the earlier solution. The exact shape
of the second branch does depend on the nature of
the approximation used, but the qualitative be-
havior should be, and in our case is, consistent
with the exact treatment of the "stepped" surface.
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