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Dispersion of surface plasmons in inhomogeneous media
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We show that recent claims for the existence of an extra branch in the surface plasmon dispersion for an

inhomogeneous medium are based on the use of a series solution of the wave equation that does not converge
for the parameters of the "extra branch. " This solution is nevertheless useful for obtaining a dispersion

relation for the usual branch that is valid for larger differences between surface and bulk dielectric functions

than had been treated previously.

In a recent paper' (hereafter referred to as I) it
was pointed out that theclaimof Guidotti, Rice,
and Lemberg' (to be referred to as GRL) to have
demonstrated the existence of an extra branch of
the surface-plasmon dispersion for a medium with
an accumulation or depletion layer is not justified.
The statements of neither Refs. 1 nor 2 were com-
plete, however. Now that the details of the GRL
calculations have been published (hereafter re-
ferred to as II),' it is possible to make a more com-
plete argument, and also to use their solution to
obtain a dispersion relation valid over a much
greater range of inhomogeneity than that derived in
I.

In both I and II the situation studied was that of a
medium with dielectric function e varying below the
surface (z =0) according to

e =c, + ~re'~~,

d being a constant, in contact with a medium with
dielectric function &„independent of coordinates
and frequency. Equation (1) assumes a local re-
lation between D and E. A local relation (although
different in detail) was also used by Cunningham

el al. ' in studying dispersion of surface plasmons
in inhomogeneous media. Discussing its validity
at length, they point out that the local approxima-
tion is questionable only in the region where car-
rier concentration or electric field varies rapidly
with z over a distance comparable to the screening
length. Certainly in a region where & goes through

0, resulting in the electric field becoming infinite,

P =(k' —e pt"c')'i', (3)

representing the reciprocal of the plasmon decay
length if the medium were homogeneous. With the
substitution

y = —(ae/e, )e' ~d, (4)

one obtains from the wave equation the differential
equation for p':

the validity of the local approximation is doubtful.
The difficulty arises, however, from the use of a
real & and can be avoided by the use of complex &,
with both real and imaginary parts satisfying (1).
Then in a region where the real part of e, e„goes
through 0, the imaginary part of e, e, dominates
the behavior. In practical cases, e, is both slowly
varying with z and large enough so that the electric
field rises but little (certainly less than an order
of magnitude) in the region where ez-0. ' Since
complex e was used by GRL in obtaining the so-
lution and the dispersion relation in II, their use
of the local approximation should not be a source
of significant error in their calculated dispersion.

Following a procedure similar to (although not
identical with) that in II, we simplify the wave
equation for the (only) magnetic field component

H, in the conducting medium by assuming a solution
in the form

edPzF(P/d)et(d~x- tdt)
7

where
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y(y —1), + [2P,dy —(2P,d+ I)]

pod+Q~d 2 g —1 F = 0. 5

Solutions to this may be obtained, as in II, by ex-
I)anding around the singular point at y = 0(z = —~},
in the form

as that obtained in I for the limit of small d, dif-
fering only by a term of the order of (ne/e, }'.
Thus, there is essentially no disagreement between
the calculations of I and II fox the usual surface-
plasmon branch and small he/e~.

In the numerical evaluation of the dispersion, in
both I and II, z, was assumed to be zero (corre-
sponding to ~ scattering time) and e was taken as

I' =~o3" &nX ~
(6)

g„being an arbitrary constant. Qf the two values
of r found to satisfy (5), 0 and —2p,d, the latter is
discarded because it leads to a solution not finite
at z = —~. For ~ = 0, one f~n~s'

n, = —(P q)/—(2P+ 1),
p'-q'

2(2p+1)(2p+2) 2(2p+2) '

(2+ 3p+q) p' -q'
2&2(22 2)(22 2) 22 ( }

q(p-q}
3(2p+ 1)(2p+ 3) '

(6+ 5p+q)(2+3p+q)
2x3x4(2p+ 2)(2p+3)(2p+4)

p'-q', „(6+5p+q)(p-q)q
2p+1 q 3x4(2p+1)(2p+3)(2p+4)

p2 2

2x4(2p+2)(2p+4) 2p+1

p—=pod, q:c()(2) d /c .

Before deriving the dispersion relation, GRL
simplified the solution (6), ('la), (7b) by dropping
all terms higher than linear iny, p,d, and e~d'u'/
c'. (Note that the restriction p,d «1 is not nec-
essary and thus the validity of their approximate
solution and dispersion relation is not limited to
small k„,as they state. ) The solution they obtain
is then

Pog I P g e /4 ef()ft+ x tdf)

2P+ 1 (8)

This is precisely the solution, to terms linear in
hz/c~, obtained by expanding the Bessel function
in the solution (11) of I for d small enough so that
P= 2'/e), . As noted in I, the dispersion relation
GRL obtained using (8) is also essentially the same

e =e„(1—(up/u)2).

This is the usual procedure in dispersion calcula-
tions when damping is not expected to be large.
Consistent with our earlier discussion, it should
not lead to serious error where ne/e, is small,
and g therefore slowly varying„ throughout, as is
the case for the usual surface-plasmon branch.
The extra branch found by GRL, however, lies in
a narrow frequency range between the plasma fre-
quency ~» for the bulk carrier concentration and
the plasma frequency &~, for the surface carrier
concentration. Thus, in the frequency range of the
extra branch, for an accumulation layer, where
co~, & +», the surface value of c, q„will be less than
0 and e, & 0, while for a depletion layer &, &0 and

c,&0. In both cases e goes through 0 somewhere
inside the sample. Thus the existence of the extra
branch found by GRL is open to question because
of their use of a local approximation with & real
and going through 0. Note, however, that use of a
local approximation in such a case, although it does
not give the correct electric fields in the neighbor-
hood of & =0, may still yield the correct dispersion.
This was demonstrated by Cunningham, Maradudin,
and %allis for one particular case. Also, the dis-
persion they calculated for other cases in which z
went through 0 seemed quite reasonable, certainly
showing no extra branches. The more serious ob-
jection to the extra branch stems from the. fact
that, when &~ and &, have opposite signs, the value
of y at the surface, given by (e~ —c,)/e, according
to (1}and (4), is greater than unity. As can be seen
by extending (Va), the series (6} does not converge
for y &1. Thus the solution (8) can hardly be con-
sidered to represent the correct solution at z =0
for the frequency range of the extra. branch. In
fact, (8) and the resulting dispersion relation can
only be considered valid when (be/e, ( «I, and
thus the theory of GRL is essentially identical to
that of I for the case of small d.

Although (6), plus (7), is not a valid solution for
~ne/e, ( &1, it does represent a useful solution so
long as ~ne/e,

~

«1. By matching, at z = 0, H, and

E, obtained from (6), ('7), (4), and (2) with expo-
nentially decaying H, and F.

„

for a homogeneous
medium above z =0, we obtain the dispersion re-
lation
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~p p~ 1 b,e dF /dy
E'2 6s - Pod Cg P'

g Q

(10)
then makes the second term in braces vanish and

the dispersion relation becomes

1—p 1

s Pod

where

n, —2n, (be/e, ) + 3n, (be/e, )'+ ~ ~ ~

1 —ng(be/ey) + n2(be/ey) + ' ' '

(11)

p z
= (p„—e 2(d /c ) / (12)

It is apparent that in the limit that 6&je, vanishes,
e, becomes identical with g„and we recover from
(11) the dispersion relation for a homogeneous con-
ductor. To terms linear in bele„(11),with n,
taken from (7a), (7b), is identical with the disper-
sion relation (15) of I, valid for small be/e, . (Note
that e, was taken as unity in I.) In the limit p,d- ~,
the o. 's approach constant values independent of
p,d, as can be seen in (7a) and (7b), and the series
F and dF/dy still converge provided ~be/e,

~
is not

greater than unity. The p,d in the denominator

(p./e. ) = —(p./e, ),

This allows us to generalize the result obtained in

I, that the limiting value of ~ is given by e, = —e
„

to arbitrary magnitude of be/e„provided )be/e, ~

&1.
The form (11), with the n's given by (7a) and (7b),

should be useful for calculation of plasmon disper-
sion in semiconductors with accumulation or de-
pletion layers. When ~be/e~~ is close to unity, so
that the real part of c becomes very small, it will
be necessary, consistent with the above discussion,
to use complex c in numerical evaluation of the dis-
persion.

Note added in Proof. Since the time this com-
ment was written, C. Kao and myself have solved
the wave equation for the case where the real part
of e goes through 0 in the sample. The dispersion
we obtain is quite different from that described by
Guidotti and Rice in the following comment. Our
work appears in Phys. Rev. B 14, 2464 (1976).
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