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Thermodynamics of metastable processes in the magnetization of type-I superconductors
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It is shown that in a nonellipsoidal sample of type-I superconductor, for values of the applied magnetic field

exceeding a thermodynamic transition field which is defined, the magnetization process is completely governed

by a metastable mechanism which is analyzed. The same mechanism is responsible for the frequently observed

irreversible behavior.

I. INTRODUCTION

It is well known that the magnetization of type-I
superconducting nonellipsoidal samples like cyl-
inders, disks, or slabs, placed in a field parallel
to their axes, exhibits an irreversible behavior. "
To date, this behavior does not seem well under-
stood, although many direct experimental ob-
servations of the flux structure during magnetiza-
tion have been reported. ' ' These observations
have revealed a two-stage flux penetration into
disks. In the first stage the fl.ux penetrates the
samples' corners reversibly, while the second
stage, which occurs for a mell. -defined value of
the applied field, is characterized by migration
of flux tubes towards the center of the sample.

Some general features underlying a unified ex-
planation which we propose for these measure-
ments and observations have been qualitatively
described in preliminary reports'" inconnection
with the existence of a geometry-dependent "mag-
netic energy barrier. " Typical. experimental re-
sults which strongly support this interpretation,
have also been given.

Recently, Clem eg g/. "have, independently,
discussed the enhancement of the critical current
in a type-I superconducting strip, in connection
with a Gibbs-free-energy barrier. This analysis
was however restricted to a supercondueting cyl-
inder with an elliptic cross section of very small
dimensions, and the barrier was mainly associated
with the field produced by a normal domain which
has entered the specimen.

The purpose of this paper is to develop a very
simple and quite general thermodynamic proof
for the existence of a magnetic energy barrier
and a subsequent metastabl. e mechanism, which
are strictly dependent on the shape of the speci-
men. These processes occur as the applied mag-
netic field (assumed to be uniform) rises above
some "ideal" value H, which will be defined. The
analysis leads to a general method for the de-
termination of the magnetic moment as a function
of the external field. These results will be il-

lustrated in a forthcoming paper, with many more
mathematical. details, in the particular case of
an infinite slab of rectangular cross section.

For the sake of definiteness the typical example
of a slab wil. l. serve to support most of the argu-
ments which follow, although the conclusions we
will arrive at are not restricted to particular
spec imen shapes.
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FIG. 1. Schematic of the half cross section of a type-I
superconducting slab, showing the intermediate-state
structure in the edges, a central normal domain aa', and
a possible intermediate position mm' during the process
of migration.

II. THERMODYNAMIC TRANSITION FIELD

Consider a sampl. e the half cross section of
which is represented in Fig. 1, submitted to a
uniform magnetic field parallel to the 0~ axis.
As the field is increased from zero, an inter-
mediate state begins to appear in the vicinity
of the edges, to prevent the resultant field in these
regions from rising to infinity. This corresponds
to a reversible stage of magnetization.

The particular properties of the field distribu-
tion in regions which are in the intermediate state,
have been investigated by several. authors. "'"
The major result is that in the absence of app&&ed
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currents, the magnetostatic field in these re-
gions must be unlfol m with R magIlltude equal
to the value H, of the critical field in the matex'i-
al. . This is valid on a macroscopic scale, i.e., in

a volume containing a sufficiently lax'ge number

of normal and superconducting domains. In ad-
dition, GQ the same scRle, complicRtiGQS Rx'ising

from the distortion of the lines of force, branching
and corrugation, in the neighborhood of the sur-
face of the sample (within a distance on the order
of the domain spacing) cRQ be lgQox'ed. Thx'ough-

out this paper the dimensions of the sample and
the volumes of the regions of the specimen in the
intermediate state, will be assumed to be large
enough to allow such surface effects to be dis-
carded, along with the surface energy of the nox-
mal-s upereonducting wal, ls.

As the field is increased furthex, penetration
of the ft.ux into the bulk of the sample could be
expected, at first sight, to occur at the lowest
value for which the presence of a domain in the
middle of the slab begins to be favorable from a
thermodynamic point of view.

With a view to defining this threshold value of
the Rpplied field, %6 %11.1 fil st establ. ish the ex-
pression of the increment 4G of the thermody-
namic potential G, between the states (I) and (H),
in which the magnetic field distribution is at
equil. ibrium, for the same value of the applied
field H„and defined as follows: (I) the sample
is in the diamagnetic state, except perhaps for
penetration in the edges; (II) the same state as
before with an extra, normal. domain which is as-
sumed to have freely penetrated the diamagnetic
region (Fig. 2).

Assume for clarity that the magnetization of
the sample is obtained with currents in a coil.
Whatever mRy be the assumed domain

configurat-

ionn, the magnetic contribution to the suited ther-
modynamic potential. G is given by

G„=
J

'~ [H 5B —5(B H)]d'r

B 5Hd r

The integration over the volume is extended to
the whole space and the integration over H is ex-
tended to the magnetization process, when the
applied field is varied from 0 to Ho.

In (I), H represents the applied field H, or the
x'esultant magnetostatie field as well. This latter
field is the sum of Ho and the demagnetizing field
deriving from the polRrizRtion potentlRl Qp due
to tl e magnetic masses

H = Ho —gradgp .

FIG. 2. In a sample of arbitrary shape the intermed-
iate-state stx'ucture occurs in the edges as the local field
ls larger thaI1 H~, pRtpl is a normal doTQaln posltlonq the
stability of which is discussed in the text,

We shall. keep H for convenience in the following.
In order to cal.eulate the val. ue of G„ in. the states

(I) and (II) we can imagine a system consisting
of superconducting matter and vacuum (in place of
the matter in normal state), in the same con-
figuration (Fig. 2), viz. , with structure in the
edges and, in the state (H), the extra domain
~m' (dimensions I, d, volume V~-Id'), lying
al.ong a line of force of the magnetostati, c fieM.
If such a device is magnetized up to the value
H, of the appl. ied field, the final magnetic state
is strictly the same as the real. one. It follows,
from fix'st law, that G~ ean be, as well, ealcu-
lRted 1Q UHS wRy.

Since 8 = 0 in the diamagnetic matter„ the in-
tegration over the volume is in fact restricted
to the nox mal domains of the regions in the in-
termediate state, and to the outside space of the
sample which includes the generating eux'rents.
Thus we can take B = p H and write in place of (I)

0U sldc spat. c

The extx'a domain which is freely penetrated by
the flux, is in magnetic equilibrium. Except in
the vicinity of its free ends„ the extex"nal, field
distribution is only slightly modified. At every
point, the "unperturbed" field HI, in the state
(I), is now increased by an amount &H. This in-
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AGs ——G~(II) —G„(I)

«;, «*. I « .)normal and

1= —aPO
normal and outside

outside~ ex tradomain

crement can be regarded as deriving from the
variation 4Q~ of the polarization potential, re-
sulting from the deficit of magnetic masses which
were located in place of the domain

b H = —grad& Q~ .

The magnitude of the field inside the domain

H„(d), or for the sake of compactness H, , can
be shown, in a self-consistent way, to approach
the mean value H&(d) =(Q —Q .)/I of the field
along the line of force, in state (I); here y and

include both the polarization potential and
the potential of the applied field which is defined
outside the generating currents. If that is as-
sumed, from H, (d)+I, (d)=0 and I»(d)=0, the
increase of polarization intensity in the domain
is then &l„=f„(d)—f, (d)-H, (d). It follows that
the main contribution to the increase of (II) is
the potential created by the excess surface den-
sity -Hz(d) at the very free end m. This increase
is readily shown to be ontheorderof dP --HI(d)d.
Similarly, AQ„. -H&(d)d. Thus, H, can be written

H, =(y +~y. -y„.-&4 )/I

= [(4.—4. )/I] [ I+o(d/I)].

From the above discussion the variation of the
G„ function between states (I) and (II) can now

be written

outside space. Furthermore, the normal com-
ponent of H is continuous at the surface of gen-
erating currents. Thus, the first term can be
transformed into an integral extended to the sur-
face of the sample only. Since H~ is purely tan-
gential, and the same for H», except at the free
ends of the extra domain, we obtain

J pr;, -«l)«* = Jnormal and free domain
outside surfaces

But at the free surfaces of the domain, 4'
is equated to &P„or &P ~ [ the potential of H,
does not vary between (I) and (II)] of order aH» d,
as shown above. Thus the right-hand member
of Eg. (7) is on the order of H~~ds = (d/I )H2» V»,
and consequently 4G„can be written

aG„~ ——,'p, H', V,[ I+0(d/I )].
On the other hand, the variation of the con-

densation energy between states (I) and (II) is
&poH', V„'. It follows that the resultant increase
of the thermodynamic potential G is given by

b, G = »go V»(H2 —H2)

up to order d/I. It can be concluded that a state
such as (11) is more stable than (I), as Ho reaches
the value defined by

H„=H, .

For an infinite elliptic cylinder placed in a field
normal to its broadest plane of symmetry

—y„, =mm'[I /(I + &}]Ho.

= ——'P, H„Vd ——'LU, H„-H& d t'.
normal and
outside

The main contribution of the extradomain has
been separated out. Since 4H derives from a
magnetic potential &P» [Eq. (4)] the volume in-
tegral can be transformed as follows:

(H '„-H', ) d'r =
i (Hg +8„) b, H d'r

(Hq + ~ grad4 P d'r

l, I. are the lengths of the smal. l and large axes
of the ellipse. The field is uniform inside the
sample and the condition (10) leads to the tran-
sition of the sampl. e as a whole into the inter-
mediate state.

Instead, in the case of a slab of rectangular
cross section (Fig. 1}, assumed in a completely
diamagnetic state, detailed calculations" show
that the potential difference 2Q at abscissa x is
determined by the equation

= (@./H. )[«s, (e'. —el )"'/y. }
(el /e'. )~(-s,N'. e', )'~'/y. )—],

l div [(H~ + H»)A P» ]d»r

div(H~ + H»)d $» d'r.

The second term in the right-hand member is
zero since divH=0 everywhere in normal and

where F, & are elliptic integrals of the first and
second kind, and 8 =sin '[(Q', —Q')/($2 —Q2»)].
and thereby the field H» (x), monotically decreases
from a to b. The greatest value occurs between
a and a' on the axis. It follows that the lowest
threshold value of the applied field corresponds
to the appearance of a straight line domain along
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the axis. This value is determined, from Eqs.
(5) and (10) by

(13)

By using Ezl. (12) applied to x=0, Q=Q, , and
&=&~ = &L, Q=tII), , this yields, for L«1.

H, = (I /I )( I —(l /zzl )(I+ In[ 4zzI, /I )]].H, .

Note, by comparing with Ezl. (11), that this re-
sult is close to (1 —zz)H, , in which v is the de-
magnetizing factor of the elliptic cylinder in-
scribed in the slab (z = l /L).

In more general cases, for a sample of arbi-
trary shape [ Fig. 3(a)], consider, as the applied
field is increased from zero, the first pair of
points a, a' belonging to the same l.ine of force,
located on the surface of the sample, and such
that

Then a one-domain phase, characterized by a
normal domain lying along aa' is thermodynam-
ically possible. The threshold value H, of the
applied field for which this just occurs will be
called the thermodynamic transition field For.
not overly complicated shapes, it can be recog-
nized that a and a' coincide with the points at
which an external flux line meets the matter in the
diamagnetic state (Fig. 3). Furthermore, it must
be noted that the convenient assumption of the

domain lying along a line of force is not essential.
The lowest threshold is likely to correspond to a
straight line between two definite points a, a' with
some subsequent rearrangement of the field dis-
tr ibution.

As H, is increased beyond H, , the one-domain
phase spreads out into a partial intermediate
state around azz' [Fig. 3(b)]. In addition, due to
the requirement of internal stability discussed
above, as the number of domains s large enough,
they all. become parallel to a common straight-
line direction.

For further increase of the field, this partial
intermediate state progressively extends over
the whole volume of the sample which finally tran-
sits into the normal state.

III. METASTABLE MECHANISM

The question now arises as how this thermo-
dynamic configuration of absolute stability can be
attained. Now, in superconductors the well. -known
fluxoid theorem, "well. confirmed by direct ob-
servations, ' ' prevents a flux tube from being
spontaneously created in the bulk of a specimen,
and thereby imposes a migration from an edge
structure as schematically shown in Fig. 4. As
a result it can be ascertained that (i) zz domain
can only reach a given position inside the sample
by migration from zz peripheral region izz which
the field hzzs the critical value; in addition, for
the migration to be possible, (ii) zz continuous
set of intermediate positions must exist betweezz

the edge and the given PLace, along which the con-
ditiozz (10) is obeyed.

Consider now a position such as mm' in Figs.
1 or 3(a). When H, =H, , since zza' is the first
couple for which Q, —Q, .= aa' H, , we have

.& mm'H~,

b) Ho

so that for any intermediate position of a domain
between aa' and a limiting position such as ii'
in the edge structure

whence, from Eq. (9),

FIG. 3, Internal configuration of the magnetization in
a sample of arbitrary shape. (a) One-domain, (b) multi-
domain thermodynamic phase; (c) one-domain, (d) multi-
domain metastable phase.

I"IG. 4. By migration from the edge structure of the
sample a Qux tube can reach a position inside any given
contour C, since the requirement of the fluxoid theorem
drops as the contour is penetrated by the tube.
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This proves that the migration is impeded by a
kind of magnetic energy barrier and that a further
increase of the applied field is needed for the
migration to take place. Thus the sample remains
in an almost compl. ete diamagnetic state, although
a configuration with a bundle of domains some-
where in the bulk would be of lower potential. The
new threshold value H of Ho must be such that
4G ~0 all along some definite path for the domain.
H may be appreciably larger than H&. In fact
for Ho&H, y —y &/H, , whence, according
to Eq. (9), d G&0. Migration takes place up the
vicinity of aa' but, of course, due to the very
presence of the migrating flux tubes, the field
distribution undergoes some local. change so that
the field inside the tubes recovers the critical
value.

For the reasons just discussed, the conf iguration
which appears beyond the thermodynamic threshold
H, can be regarded as metastable. Beyond H
this conf iguration cons ists of an increas ing num-
ber of migrated domains in the bulk of the sample,
and is similar to the thermodynamic configuration,
except for a certain delay in the values of the
applied field [Figs. 3(c) and 3(d)).

It is worth stressing that the threshold field
magnitudes H, , H are strongly dependent on

the geometry of the sample. In the slab of Fig. 1
no domain can exist in position nn'. Indeed, we
have

g —Q„=niH„&+ii'H, +n'i'H„i,

H„, , H„,' stand for the mean value of the tan-
gential field along ni, n'i'. Ignoring the fine
structure of the magnetization in the edge, the
tangential component of the field decreases from
H, sin~ by going from n to i. It follows that

Q„—Q„&(ni sinu + ii' + n'i' cosu)H, = nn'H,

which leads to H„&H, along nn'. In a more in-
tuitive way, if the latter inequality were not sa-
tisfied, the intermediate-state structure should,
at least, extend up to nn'.

Instead, as the two symmetrical structures meet
each other at (d, in the equatorial plane, the mi-
gration can start since, in that configuration, for
any pplfpl

—Q ~ &Q, —Q, =2ii'H, &mw'H, .

Similar arguments can be given for edge structures
which may occur in arbitrary shapes.

Particular forms could perhaps be imagined,
in which (10) would be obeyed along a definite
continuous set of positions between aa' and the
edge structure. A much more special case is

presented by volumes in which the field is com-
pletel. y uniform, such as an ellipsoid. Then, a
demagnetizing factor v can be defined, and (10)
is obeyed at once for all l.ines parallel to H„
whereas the threshold fields take on the common
value

H =H, =(1 —v}H, .

~tl cNlofl

in the td~s

Hm Hg

Ho

FIG. 5. General behavior of the magnetic moment of
a type-I superconducting slab as a function of the applied
field. The hatched area relates to the ideal thermodynam-
ic process. A diamagnetic path is shown below H, &H .

IV. MAGNETIZATION LA% AND IRREVERSIBLE
BEHAVIOR

As Ho has just overcome the migration thresh-
old H, the ideal configuration of minimum po-
tential would consist of a bundle of domains of
definite extension in the bulk diamagnetic region
of the sample. If this were true, the magnetic
moment would exhibit a discontinuous drop around
H . The reason why this is not observed in the
actual. experimental. situation"'" can be easily
understood in the light of the above discussion.

Assume that a few domains have just migrated
into position aa' (Fig. 1}. It is readily realized
that, on account of the resulting increase of mag-
netic masses in a, a', the field around ~ is re-
duced. It fol.lows that the two symmetrical. edge
structures, which have just met in the equatorial.
plane, now separate. Thus, after migration every
flux tube again raises the energy barrier behind
itself, so that a further increase of the field is
required for the migration to proceed further.
The same rule obtains whatever the edge structure
from which the migration initially moves. As a
result, the over alf decre-asing part of the mag
netimtion law -M(HO) is governed by the migra
tion condition (10). Thus, in this range of applied
field, the magnetization is also of metastabie
character (Fig. 5).

The metastable mechanism just discussed offers
at once, a simple interpretation of the usually
observed irreversible behavior of magnetization.
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In fact the magnetization is reversible up to the
beginning of the migration process, i.e., for
H, 0 . In this stage, the small penetration in
the edges explains the observed'~ slight curvature
of the function —M(Ho) (Fig. 5).

The reversible process would correspond to the
ideal. thermodynamic phase and would give rise
to a magnetization curve of area 2VH', (V is the
volume of the sample), as shown in Fig. 5.

Another interesting feature associated with the
irreversible behavior is the existence of the
"diamagnetic paths, " first mentioned by Schweitzer
and co-workers' in type-II materials and easily

observed in type I as well. ' If the field is de-
creased below some value H, &II (Fig. 5) the total
flux which has entered the sample by migration
is confined inside by the energy barrier, so that
the magnetic moment approximately responds,
at least in a first stage, to the equation

M +HO=Ct.

This is the equation of a parallel to the diamag-
netic l.ine. The latter remark suggests that the
present analysis and conclusions could be applied,
to a certain extent, to type-II superconductors.
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