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It is shown that in a nonellipsoidal sample of type-I superconductor, for values of the applied magnetic field
exceeding a thermodynamic transition field which is defined, the magnetization process is completely governed
by a metastable mechanism which is analyzed. The same mechanism is responsible for the frequently observed

irreversible behavior.

I. INTRODUCTION

It is well known that the magnetization of type-I
superconducting nonellipsoidal samples like cyl-
inders, disks, or slabs, placed in a field parallel
to their axes, exhibits an irreversible behavior.!*?
To date, this behavior does not seem well under-
stood, although many direct experimental ob-
servations of the flux structure during magnetiza-
tion have been reported.®™® These observations
have revealed a two-stage flux penetration into
disks. In the first stage the flux penetrates the
samples’ corners reversibly, while the second
stage, which occurs for a well-defined value of
the applied field, is characterized by migration
of flux tubes towards the center of the sample.

Some general features underlying a unified ex-
planation which we propose for these measure-
ments and observations have been qualitatively
described in preliminary reports®''° in connection
with the existence of a geometry-dependent “mag-
netic energy barrier.” Typical experimental re-
sults which strongly support this interpretation,
have also been given.

Recently, Clem ef al.'" have, independently,
discussed the enhancement of the critical current
in a type-I superconducting strip, in connection
with a Gibbs-free-energy barrier. This analysis
was however restricted to a superconducting cyl-
inder with an elliptic cross section of very small
dimensions, and the barrier was mainly associated
with the field produced by a normal domain which
has entered the specimen.

The purpose of this paper is to develop a very
simple and quite general thermodynamic proof
for the existence of a magnetic energy barrier
and a subsequent metastable mechanism, which
are strictly dependent on the shape of the speci-
men. These processes occur as the applied mag-
netic field (assumed to be uniform) rises above
some “ideal” value H, which will be defined. The
analysis leads to a general method for the de-
termination of the magnetic moment as a function
of the external field. These results will be il-
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lustrated in a forthcoming paper, with many more
mathematical details, in the particular case of
an infinite slab of rectangular cross section.

For the sake of definiteness the typical example
of a slab will serve to support most of the argu-
ments which follow, although the conclusions we
will arrive at are not restricted to particular
specimen shapes.

II. THERMODYNAMIC TRANSITION FIELD

Consider a sample the half cross section of
which is represented in Fig. 1, submitted to a
uniform magnetic field parallel to the Oz axis.

As the field is increased from zero, an inter-
mediate state begins to appear in the vicinity

of the edges, to prevent the resultant field in these
regions from rising to infinity. This corresponds
to a reversible stage of magnetization.

The particular properties of the field distribu-
tion in regions which are in the intermediate state,
have been investigated by several authors.'?'!3
The major result is that in the absence of applied

|
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FIG. 1. Schematic of the half cross section of a type-I
superconducting slab, showing the intermediate-state
structure in the edges, a central normal domain aa’, and
a possible intermediate position mm’ during the process
of migration.
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currents, the magnetostatic field in these re-
gions must be uniform with a magnitude equal

to the value H, of the critical field in the materi-
al. This is valid on a macroscopic scale, i.e., in
a volume containing a sufficiently large number
of normal and superconducting domains. In ad-
dition, on the same scale, complications arising

from the distortion of the lines of force, branching

and corrugation, in the neighborhood of the sur-
face of the sample (within a distance on the order
of the domain spacing) can be ignored. Through-
out this paper the dimensions of the sample and
the volumes of the regions of the specimen in the
intermediate state, will be assumed to be large
enough to allow such surface effects to be dis-
carded, along with the surface energy of the nor-
mal-superconducting walls.

As the field is increased further, penetration
of the flux into the bulk of the sample could be
expected, at first sight, to occur at the lowest
value for which the presence of a domain in the
middle of the slab begins to be favorable from a
thermodynamic point of view.

With a view to defining this threshold value of
the applied field, we will first establish the ex-
pression of the increment AG of the thermody-
namic potential G, between the states (I) and (II),
in which the magnetic field distribution is at
equilibrium, for the same value of the applied
field H,, and defined as follows: (I) the sample
is in the diamagnetic state, except perhaps for
penetration in the edges; (II) the same state as
before with an extra normal domain which is as-
sumed to have freely penetrated the diamagnetic
region (Fig. 2).

Assume for clarity that the magnetization of
the sample is obtained with currents in a coil.
Whatever may be the assumed domain configura-
tion, the magnetic contribution to the suited ther-
modynamic potential G is given by

Gy= f J[ﬁ-éﬁ-é(ﬁ-ﬁ)}dsr

== J fﬁ-aﬁdﬂr. (1)

The integration over the volume is extended to
the whole space and the integration over His ex-
tended to the magnetization process, when the
applied field is varied from 0 to H,,. -

In (1), H represents the applied field H, or the
resultant magnetostatic field as well. This latter
field is the sum of H, and the demagnetizing field
deriving from the polarization potential ¢, due
to the magnetic masses

ﬁ=ﬁo—grad¢,. (2)

FIG. 2. In a sample of arbitrary shape the intermed-
iate-state structure occurs in the edges as the local field
is larger than H,. mm’ is a normal domain position, the
stability of which is discussed in the text.

We shall keep H for convenience in the following.

In order to calculate the value of G in the states
(I) and (II) we can imagine a system consisting
of superconducting matter and vacuum (in place of
the matter in normal state), in the same con-
figuration (Fig. 2), viz., with structure in the
edges and, in the state (II), the extra domain
mm' (dimensions I, d, volume V,~1d?), lying
along a line of force of the magnetostatic field.
If such a device is magnetized up to the value
ﬁo of the applied field, the final magnetic state
is strictly the same as the real one. It follows,
from first law, that G, can be, as well, calcu-
lated in this way.

Since B =0 in the diamagnetic matter, the in-
tegration over the volume is in fact restricted
to the normal domains of the regions in the in-
termediate state, and to the outside space of the
sample which includes the generating currents.
Thus we can take §=uoﬁ and write in place of (1)

Gy=-3U, H?d%. (3)
normal and

outside space

The extra domain which is freely penetrated by
the flux, is in magnetic equilibrium. Except in
the vicinity of its free ends, the external field
distribution is only slightly modified. At every
point, the “unperturbed” field H,, in the state
(I), is now increased by an amount AH. This in-
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crement can be regarded as deriving from the
variation A¢, of the polarization potential, re-
sulting from the deficit of magnetic masses which
were located in place of the domain

AH=- gradA ¢, . (4)

The magnitude of the field inside the domain
H, (d), or for the sake of compactness H;, can
be shown, in a self-consistent way, to approach
the mean value Hi(d)=(¢,, = ¢,)/1 of the field
along the line of force, in state (I); here ¢, and
¢+ include both the polarization potential and
the potential of the applied field which is defined
outside the ger_Lerating currents. If that is as-
sumed, from Hi(d)+I;(d)=0 and I,;(d)=0, the
increase of polarization intensity in the domain
is then Al;=1,(d) - I;(d) ~H(d). It follows that
the main contribution to the increase of ¢, is
the potential created by the excess surface den-
sity —H,(d) at the very free end m. This increase

is readily shown to be onthe order of A¢, ~-H,(d)d.

Similarly, A¢,,~H(d)d. Thus, H, can be written
Hd = (¢m+A¢m_ (Pm'- A(Pm')/l
=[(@n=~ Om)/1][1+0(d/1)]. (5)

From the above discussion the variation of the
G, function between states (I) and (II) can now
be written

AG 4 =G y(IT) = G (1)

1
=—§u0<f qu d’r - f H%d37’>
normal and outside normal and

+ extradomain outside

o HIVe-du, [k -HDa.

normal and
outside

(6)
The main contribution of the extradomain has
been separated out. Since AH derives from a
magnetic potential A¢, [Eq. (4)] the volume in-
tegral can be transformed as follows:

f(Hix -H})d%r = f(ﬁl*'ﬁu)'A Har
== f(ﬁ1+ﬁlx)-gradA¢p ar
= - fdiv[(ﬁ[ +ﬁu)A¢P] a*r

- fdiv(ﬁ[ +H,)A0, d%r.

The second term in the right-hand member is
zero since divH=0 everywhere in normal and

outside space. Furthermore, the normal com-
ponent of H is continuous at the surface of gen-
erating currents. Thus, the first term can be
transformed into an integral extended to the sur-
face of the sample only. Since H; is purely tan-
gential, and the same for ﬁm except at the free
ends of the extra domain, we obtain

(H?x—H%)d%’:f ﬁn'EA‘dez"-

normal and free domain
outside surfaces

(7

But at the free surfaces of the domain, Ag,
is equated to A¢,, or A¢,. [the potential of H,
does not vary between (I) and (II)] of order +H,d,
as shown above. Thus the right-hand member
of Eq. (7) is on the order of H3d?=(d/1)H%V,,
and consequently AG, can be written

AGy ™~ -3uH; V[ 1+0(d/1)]. (8

On the other hand, the variation of the con-
densation energy between states (I) and (II) is
31 H2 V2. It follows that the resultant increase
of the thermodynamic potential G is given by

AG=3u VaHE-HY) ©)

up to order d/l. It can be concluded that a state
such as (II) is more stable than (I), as H, reaches
the value defined by

H,=H,. (10)

For an infinite elliptic cylinder placed in a field
normal to its broadest plane of symmetry

Gp= b =mm'[1/(1 + L) H,. (11)

I, L are the lengths of the small and large axes
of the ellipse. The field is uniform inside the
sample and the condition (10) leads to the tran-
sition of the sample as a whole into the inter-
mediate state.

Instead, in the case of a slab of rectangular
cross section (Fig. 1), assumed in a completely
diamagnetic state, detailed calculations'* show
that the potential difference 2¢ at abscissa x is
determined by the equation

% =(¢q /H) EC6, (95~ 05)"2/94)
- (93 /02)F (6,05 - 93)%/9.)],
(12)

where F, E are elliptic integrals of the first and
second kind, and 8 =sin™}[(¢2 - ¢?)/(¢2 - ¢2)]. ¢,
and thereby the field H, (x), monotically decreases
from a to b. The greatest value occurs between

a and a’ on the axis. It follows that the lowest
threshold value of the applied field corresponds

to the appearance of a straight line domain along
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the axis. This value is determined, from Eqgs.
(5) and (10) by

(¢a'—¢a')/l :Hc' (13)

By using Eq. (12) applied to x=0, ¢=¢,, and
x=x,=3L, ¢=¢,, this yields, for [ <L

Hy~(1/L){1-(/7L)(1+In[ 4nL/1))}H,.

Note, by comparing with Eq. (11), that this re-
sult is close to (1 - v)H,, in which v is the de-
magnetizing factor of the elliptic cylinder in-
scribed in the slab (v=1/L).

In more general cases, for a sample of arbi-
trary shape [ Fig. 3(a)], consider, as the applied
field is increased from zero, the first pair of
points a, a’ belonging to the same line of force,
located on the surface of the sample, and such
that

¢‘a - ¢a' :aa,HC'

Then a one-domain phase, characterized by a
normal domain lying along aa’ is thermodynam-
ically possible. The threshold value H, of the
applied field for which this just occurs will be
called the thermodynamic transition field. For
not overly complicated shapes, it can be recog-
nized that a and a’ coincide with the points at
which an external flux line meets the matter in the
diamagnetic state (Fig. 3). Furthermore, it must
be noted that the convenient assumption of the

\_

\

FIG. 3. Internal configuration of the magnetization in
a sample of arbitrary shape. (a) One-domain, (b) multi-
domain thermodynamic phase; (c) one~-domain, (d) multi-
domain metastable phase.

d) Ho>Hm

domain lying along a line of force is not essential.
The lowest threshold is likely to correspond to a
straight line between two definite points a,a’ with
some subsequent rearrangement of the field dis-
tribution.

As H is increased beyond H,, the one-domain
phase spreads out into a partial intermediate
state around aa’ [Fig. 3(b)]. In addition, due to
the requirement of internal stability discussed
above, as the number of domains is large enough,
they all become parallel to a common straight-
line direction.

For further increase of the field, this partial
intermediate state progressively extends over
the whole volume of the sample which finally tran-
sits into the normal state.

IIl. METASTABLE MECHANISM

The question now arises as how this thermo-
dynamic configuration of absolute stability can be
attained. Now, in superconductors the well-known
fluxoid theorem,'? well confirmed by direct ob-
servations,®”® prevents a flux tube from being
spontaneously created in the bulk of a specimen,
and thereby imposes a migration from an edge
structure as schematically shown in Fig. 4. As
a result it can be ascertained that (i) @ domain
can only veach a given position inside the sample
by migration from a pervipheval rvegion in which
the field has the cvitical value; in addition, for
the migration to be possible, (ii) a continuous
set of intermediate positions must exist between
the edge and the given place, along which the con-
dition (10) is obeyed.

Consider now a position such as mm’ in Figs.

1 or 3(a). When H,=H,, since aa’ is the first
couple for which ¢, — ¢,-=aa’ H,, we have

¢m - ¢m’<mm,Hcy

so that for any intermediate position of a domain
between aa’ and a limiting position such as i’
in the edge structure

H,<H_,

whence, from Eq. (9),

FIG. 4. By migration from the edge structure of the
sample a flux tube can reach a position inside any given
contour C, since the requirement of the fluxoid theorem
drops as the contour is penetrated by the tube.
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AG> 0.

This proves that the migration is impeded by a
kind of magnetic energy barrier and that a further
increase of the applied field is needed for the
migration to take place. Thus the sample remains
in an almost complete diamagnetic state, although
a configuration with a bundle of domains some-
where in the bulk would be of lower potential. The
new threshold value H,, of H, must be such that
AG <0 all along some definite path for the domain.
H, may be appreciably larger than H;. In fact
for H>H,, ¢, - ¢,->lH,, whence, according
to Eq. (9), AG<0. Migration takes place up the
vicinity of aa’ but, of course, due to the very
presence of the migrating flux tubes, the field
distribution undergoes some local change so that
the field inside the tubes recovers the critical
value.

For the reasons just discussed, the configuration
which appears beyond the thermodynamic threshold
H, can be regarded as metastable. Beyond H,,,
this configuration consists of an increasing num-
ber of migrated domains in the bulk of the sample,
and is similar to the thermodynamic configuration,
except for a certain delay in the values of the
applied field [ Figs. 3(c) and 3(d)].

It is worth stressing that the threshold field
magnitudes H,, H, are strongly dependent on
the geometry of the sample. In the slab of Fig. 1
no domain can exist in position #n’. Indeed, we
have

Gy — P =niHy +30'H +n'¢'H»pr (14)

H,;, H,,; stand for the mean value of the tan-
gential field along ni, n’é’. Ignoring the fine
structure of the magnetization in the edge, the
tangential component of the field decreases from
H_sina by going from % to i. It follows that

Op— P <(misina +ii’ +n'i’ cosa)H =nn'H,,

which leads to H;<H_ along nn’. In a more in-
tuitive way, if the latter inequality were not sa-
tisfied, the intermediate-state structure should,
at least, extend up to nn’.

Instead, as the two symmetrical structures meet
each other at w, in the equatorial plane, the mi-
gration can start since, in that configuration, for
any mm’

O = P>y — ¢, =2ii’'H,>mm'H, .

Similar arguments can be given for edge structures
which may occur in arbitrary shapes.

Particular forms could perhaps be imagined,
in which (10) would be obeyed along a definite
continuous set of positions between aa’ and the
edge structure. A much more special case is

presented by volumes in which the field is com-
pletely uniform, such as an ellipsoid. Then, a
demagnetizing factor v can be defined, and (10)
is obeyed at once for all lines parallel to ﬁo,
whereas the threshold fields take on the common
value

H,=H,=(1-v)H,.

IV. MAGNETIZATION LAW AND IRREVERSIBLE
BEHAVIOR

As Hj has just overcome the migration thresh-
old H,,, the ideal configuration of minimum po-
tential would consist of a bundle of domains of
definite extension in the bulk diamagnetic region
of the sample. If this were true, the magnetic
moment would exhibit a discontinuous drop around
H, . The reason why this is not observed in the
actual experimental situation'*'*® can be easily
understood in the light of the above discussion.

Assume that a few domains have just migrated
into position aa’ (Fig. 1). It is readily realized
that, on account of the resulting increase of mag-
netic masses in a,a’, the field around w is re-
duced. It follows that the two symmetrical edge
structures, which have just met in the equatorial
plane, now separate. Thus, after migration every
flux tube again raises the energy barrier behind
itself, so that a further increase of the field is
required for the migration to proceed further.

The same rule obtains whatever the edge structure
from which the migration initially moves. As a
result, the over-all decreasing part of the mag-
netization law - M (H,) is govevned by the migra-
tion condition (10). Thus, in this range of applied
field, the magnetization is also of metastable
character (Fig. 5).

The metastable mechanism just discussed offers
at once, a simple interpretation of the usually
observed irreversible behavior of magnetization.

M

penetration
in the edges

migration process

diamagnetic path

S=cp

I:%VHg\T NS

' N \X\ NANRRR: Fo
Hm Hy -

0" H He

FIG. 5. General behavior of the magnetic moment of
a type-I superconducting slab as a function of the applied
field. The hatched area relates to the ideal thermodynam-
ic process. A diamagnetic path is shown below H{>H,,.
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In fact the magnetization is reversible up to the
beginning of the migration process, i.e., for
H <H,. In this stage, the small penetration in
the edges explains the observed!* slight curvature
of the function - M(H,) (Fig. 5).
The reversible process would correspond to the
ideal thermodynamic phase and would give rise
to a magnetization curve of area 3VH?2 (V is the
volume of the sample), as shown in Fig. 5.
Another interesting feature associated with the
irreversible behavior is the existence of the
“diamagnetic paths,” first mentioned by Schweitzer
and co-workers'® in type-II materials and easily

observed in type I as well.? If the field is de-
creased below some value H,>H, (Fig. 5) the total
flux which has entered the sample by migration

is confined inside by the energy barrier, so that
the magnetic moment approximately responds,

at least in a first stage, to the equation

M +H,=Ct.

This is the equation of a parallel to the diamag-
netic line. The latter remark suggests that the
present analysis and conclusions could be applied,
to a certain extent, to type-II superconductors.
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