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Violation of Vegard's law in covalent semiconductor alloys
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Anomalous S-shaped deviations from Vegard's law in some semiconductor alloys are attributed to the effect
of bond-bending forces. This idea is substantiated by numerical calculations on two-dimensional model alloys.
A criterion is found which separates the occurrence of usually observed concave bowing and S-shaped
deviations. In addition, our results show that the distribution of bond lengths in an alloy is bimodal.

I. INTRODUCTION

According to Vegard's law, ' the lattice constants
a(x) of alloys should vary linearly with composi-
tion x. However, in pseudobinary semiconductor
alloys A, g„C (cation alloy) or AC, g„(anion al-
loy) substantial violations of Vegard's law have
been found' ' for which no physical explanation has
been given.

In most alloys" the lattice constants bow below
the corresponding linear value. Such quadratic
deviations are always found in metallic alloys. '
Surprisingly, some covalent pseudobinary alloys
exhibit S-shaped (cubic) violations of Vegard's
law,"as shown in the inset of Fig. I(A). In this
paper, we attribute the unusual cubic violation to
the importance of bond-bending forces in the co-
valent alloys. Numerical calculations on model a.l-
loys will be presented to confirm this mechanism.
Furthermore, our studies can elucidate the nature
of disorder in these alloys.

In the following, we first give a qualitative de-
scription of the effect of the bond-bending forces
(Sec. II). In Sec. III the method of our numerical
calculations is displayed, and our results are
presented and discussed in Sec. IV.

II. QUALITATIVE CONSIDERATIONS

To see qualitatively horn bond-bending forces
cause the S-shaped deviation, let us examine two
extreme concentrations (x-0 or 1) in the case of
AC„j7„. For small x, the bonds around the few
substituted large size ions D tend to expand,
which in turn will induce changes of the bond angles
at neighbor ions. However, the bond-bending
forces of the host lattice, provided that they a,re
sufficiently large, mill resist any distortion of
angles and, thus, prevent the bonds around the
ions D from expanding, so that the average lattice
parameter of the alloy, a{x), is smaller than
Vegard's value. In the case of x =1, i.e. , when a
few small ions C are substituted for the ions D,
an analogous argument leads to values of a(x)

above the linear lam. Therefore, the deviation
will exhibit an 8 shape.

When, on the contrary, the bond-stretching
forces are dominant, one always finds either a
concave or convex curve for a(x), depending on
whether the force constant of AC is larger or
smaller than that of AD; no S shape can be expect-
ed. This result can be easily verified by similar
model considerations. As a consequence, we ean
explain the quadratic deviation from Vegard's law
in metal alloys, ' because bond stretching, or cen-
tral forces are dominant in the densely packed
metal structures.

III. DETAILS OF NUMERICAL CALCULATIONS

Let us turn to the discussion of the detailed cal-
culations on model alloys which contain -100
atoms in a periodically repeated two-dimensional
unit cell. Two structures have been studied —the
square (SL) and the trigonal (TL) boron-nitride
lattices. The pseudobinary a.lloy is simulated by
randomly substituting the ions at one sublattiee to
the extent specified by the composition x.

We have used Keating's potentials' for the har-
monic bond stretching, purely noncentral bond-
bending and the anharmonic bond-stretching
forces, which have been found to be the most im-
portant contributions. '" Both Coulomb interaction
and the anharmonic bond-bending forces have been
neglected. ""

The potential energy at any ion 0 is given by

N~

I3+ — '„(x„.x„.—.„.A. „.),
where n„., y„- are the harmonic and anharmonic
bond-stretching force constants between the center
ion 0 and its ith neighbor. The bond-bending force
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parameter P,.o,. depends on the sort of ion 0. Be-
cause of the heteropolarity, one expects that
P„~„WP~„~, etc. In the following, we define'

pic = 2(/~cd + pcgc), Rlld C D fol' compound AD.
N„ is the number of the nearest neighbor, with 0
=1,2 fox' the SL and the TL. q~ and q~ are nor-
malization factors. Finally x« is the distance
vector from ion 0 to the ith neighbor and Xo,. is the
equilibrium bond length of the corresponding pure
comp ound.

'gath a set of force parameters and equilibx'ium
bond lengths the lattice constant of the alloy a(x)
is determined by a relaxation method involving the
followlllg Steps: (1) Rsslglllllg five Vll'tuR1 1RttlCes
with two lattice constants larger than, two smaller
than, and one equal to the value predicted by Ve-
ga.rd's law; (ii) letting each ion in a virtual lattice
relax according to d V/dx, =0, where x, is the
position vector of the ion measured with respect
to an origin in the unit cell and V is given in Eq.
(1); (ill) cRlclllRtlllg tile totRl 61161'gy; (lv) ltel'Rtlllg
(ii) Rnd (iii) until the lattice relaxes to the lowest
total energy; and (v) fitting the five energies with
a parabola to find a(x) corresponding to the mini-
mum energy.

The fox'ce constants span a multidimensional pa-
rameter space which is difficult to explore com-
pletely. However, it is not necessary to do so,
since we have guidelines fox typical values of +,
P, and y from studies of the elastic properties in
zinc-blende' (ZB) and diamond-type' crystals.
The sets of parameters sepaxating the concave and
the S-shaped deviations for the two lattices are
listed in Table I along with the equilibrium bond

length; n„ f), and y given in Refs. 8, 9, and 12.

All values of our parametex s for the trigonal
lattice are close to those of the three-dimensional
ZB materials. A similar S-shaped curve for the
square lattice required, however, values of the
P/n ratio to be =30% larger, and of the y's = 50%
smaller than the corresponding ZB numbers.
Furthermore, the maximum values of ~(x)100/a
are =0.07 (Tf.) and 0.04 (SL), whereas in ZB ma-
tex'lais the typical deviations ax'e 0.1-0.2. The
discrepancy between the trigonal and ZB cases
may be due to the difference in dimensionality.
This argument does not seem to apply for the much
smaller value of the SL. Also, the SL force con-
stants which yield 8-shaped curves lie outside the
physically realistic range. This suggests that the
SL is not very well suited to simulating an open
structure in two dimensions.

Relations among the fox'ce constants have been
examined near the special points in parameter
space given in Table I. As n„nlrb„c 1, -P/a for
each compound can be reduced. This is consistent
with the above qualitative discussion. An increase
of y or of the asymmetry in P will enhance the
8-shaped vlolatioQ.

The most sensitive quantity for the separation
between S-shape and concave curves is the differ-
ence in the bond bending forces of the two con-
stituents. To demonstrate this most clearly, we
express the deviation from Vegard's law by

Sa(x) = C~(l -x)+C,(2x —l)x(1 -x) .
C, and C, characterizing the stx'engths of the
quadratic and cubic deviations, are determined by

TABLE I. Parameters for the trigonal and square lattices. Distances are given in A; ~, p,
and y in 10 dyn/cm and $0~~ dyn/cm . Also given are typical values for III-V compounds.
Nuxnhers in hrackets denote ZB (three-dlxnenslonal) values for p and P/&, appropriately scaled
to account for differences in dixnensionality, normalization, and bond angles.

TL

37.5
0.856

-69.32
(-f87)

14
1.33
i.42
0.37(0.293)

-0.059

37.5
0.86

-i.87.06
( )—f70.33

14.67
2

i.2i
0.39(0.39)

-0.068

Data are taken from Ref. 8.
Data are taken from Ref. 9 (for Ge).
Data are taken from Ref. 42.
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a least-squares fit to ba at four different compo-
sitions. In Figs. 1(A) and l(B), C, and C, are
plotted versus P„=(P» —P„c)/(P» + P„c). The
vertical arrows indicate the values of P„", where
aa(x =0.8) &0, separating sets of concave a(x)
curves on the left and S-shaped a(x) curves on the
right of P~. %e choose x =0.8 as a proper indica-
tor for definiteness of the separation, in view of
both numerical convergence problems and experi-
mental unce1tR1Qtles near x= 0 or x= 1. Mathe-
matically, however, an S-shaped a(x) curve will
exist as long as )C, [=(C,). For small P», e.g. ,
for P„&P'„', the harmonic bond-stretching forces
prevail and cause the concave deviation. On the
other hand, for P„&P„, the stiffness of the bond

angles tries to maintain the bond length close to

X„~, thus producing the S-shaped violation.
In real ZB alloys, P„also seems to be the physi-

cal quantity which separates the two kinds of vio-
lations. To our knowledge, all materials with
P„~—0.071 show 9 shape, whereas concave devia-
tions are only found" for P„&—0.071; the P values
of the constituents are taken from Ref. 8.

The static disorder of the alloy ions away from
their ideal lattice sites is given by the static root-
mean-square displacement u. This quantity is the
static contribution to the Debye-%aller factor in
our alloy, and could be obtained by careful x-ray
diffraction studies. For x =0.8 and P„=—0.06 we
find u = (2u2)'~' =0.04, 0.05 A for the square and

trigonal lattice, respectively. These numbers
compare favorably with the one obtained by a one-
dimensional hard-sphere model, "where

~„.=-.'[x(l -x)]'i' iX„,-X„,i
= 0.034 A.

The nature of the disorder effect in the ZB al-
loys can be illustrated by the distribution functions
of the bond angles and bond lengths. The bond
angles form unimodal distributions around the
equilibrium angles of 120' and 90'; the widths are
4' and 2' for the TL and the SL, respectively.
However, the distributions of the bond length are
bimodal in both lattices. %e plot the distribution
functions in Figs. 2(A) and 2(B). The peaks of the
TL are better separated than the ones in SL, and
the maxima of the TL peaks lie closer to the bond
lengths of the constituents. The line shapes of all
peaks are in general close to Gaussian, e.g. , the
quotient ((~x)')/[3((dx)')2] = 0.89, 0.79, 0.97, and
1.32 for the minor, major peaks of the TL and the
SL, respectively, whereas the ideal value is l.
These moments were calculated with respect to
Rpproprlate peRk poslt1ons. The 11new1dths for the
structures in TL are nearly equal to (0.04 A)
whereas in SL, the ones for the minor and the
major peaks are 0.045 and 0.055 A.

All the features discussed above depend neither
strongly on x nor critically on the particular set
of force parameters. The difference between the
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FIG. 1. Dependence of the coefficients C2 (dashed lines)
1»nes) on. Pr . ~A) square lattice, (8) tri-

gonal lattice. The vertical arrows indicate /3„" separating
concave and 8-shaped a(x) curves. The hvo insets indi-
cate the txvo characteristic violations.

FIG. 2. Distribution functions for the bond lengths:
4A) square lattice, (8) trlgollal lattice. The t%vo curves
al'e smoothed fl oYA hlstograms. Xgg, Xggy and & lndl-
cate, respechvely, the equilibrium bond lengths and
Vegard's value.
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TL and SL is probably due to the fact that the TI.
is less densely packed, therefore it is easiex' fox'

the ions to maintain their "natural" bond lengths„
which in turn, induces a larger spread of the dis-
tribution in bond angles.

In the treatment of alloy problems, it is usual. ly
assumed that the atoms are located at the ideal
lattice sites. For example ln the vlx'tuRl-crystRl
approximation, '~ an averaged atomic separation is
used as well as an averaged periodic potential.
Similarly in treating phonons in the binary alloys,
the random-element isodisplacement, "takes into
account the differences in the force constants and
the ionic masses in an averaged way. The im-
px'ovement achieved by the coherent-potential ap-
proximation" is only to account for the potential
Quctuations of the alloy constituents around the
average potential, but not to take lattice relaxa-
tlon into RccouQt.

Thex'e is, however, much evidence that the ef-
fects of relaxation in alloys cannot be simply ne-
glected. This may e.g. be seen from cRlculR-
tions of impurity-state energies in semiconduc-
tors" and also from calculations of surface states
in semiconductors which agree with experiment
only when relaxation is taken into account. "
Furthermore, CPA calculations on electronic den-
sity of states for semiconductor alloys'6 lead to
band tails in the gap region, which is a qualitative-
ly wxong feature of the approach, as no band tails
are obsexved experimentally. ""Similarly in
propexly prepared samples of amorphous semi-
eonductox's no band tails have been found. " Ithas
been argued that "lattice relaxation" leads to the
vanishing of the band tails. " Also, it has been
shown that surface relaxation leads to the shift of
oeeupied surface states in the bulk gap toward the

bulk valence band and of unoccupied surface states
toward the bulk conduction band. 23

Our calculations, fox' the first time„ take into
account lattice relaxation in alloys. e arrive at
an important result that the distribution of the
bond lengths is bimodal, rather than unimodal,
which would be more consistent with the virtual-
crystal" or coherent-potential" approaches. Thi s
bimodal distribution of bond lengths should be in-
corporated in refined treatments of semiconductor
alloy problems. As a first step, this could be ac-
complished by using two weighted Gaussian dis-
tributions located about the natural bond lengths
with a width of approximately —, ~X„c-X»

~
.

In conclusion, we attribute the physical origin
of the anomalous S-shaped violation of Vegard'8
law in semiconductor alloys to covalent bond-bend-
ing forces. To confirm this assumption we have
performed numerical calculations of the lattice
constant a(x) for various compositions x in two-
dimensional pseudobinary model alloys, using
harmonic and anharmonic potentials of Keating
type. The difference in the bond-bending forces
of the two constituents turns out to be the critical
quantity for separating the normally observed con-
cave a(x) from the s-shaped curves. Our calcula-
tions also allow conclusions on the disorder effects
in alloys. We find unimodal distx'ibutions for bond
angles, yet bimodal ones fox' the bond lengths,
all of approximately Gaussian fox'm. The bimodal
distribution is more pronounced for more open
crystal structures. Finally, our method for cal-
culating lattice relaxation is easily applicable to
three-dimensional alloy systems and could also be
extended to calculate eleetxonie and vibrational
properties.
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