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This work describes the computation of the first-order dielectric susceptibilities of tetrahedrally coordinated
semiconductors, within a molecular model. It allows the discussion of several approximations which have been
frequently used in the study of second-order dielectric susceptibilities and the estimation of local-field effects.
First of all, it is shown that the accuracy of a bonding-antibonding model decreases with increasing ionicity.
Secondly, using a method of moments and a model curve for the €,( E) spectrum, reasonable values of the low-
energy threshold of €,(E) as well as of the average dielectric gap defined by Phillips are obtained. Then local-
field effects are estimated. A Lorentz-Lorenz correction seems to be valid, if one includes the drastic reduction
due to self-polarization effects. Finally, the separation of the contributions of bond charge and charge transfer

to €,(0) is discussed.

INTRODUCTION

Recently, there has been great interest in the
theoretical evaluation of linear and nonlinear di-
electric susceptibilities of tetrahedrally coordinated
semiconductors. First-principles calculations are
possible!~® but they involve difficult computations
which imply a loss of physical insight. Thus, nu-
merous models have been developed. The sus-
ceptibilities have been determined from transitions
between bonding and antibonding states, 47 from
the computation of the average values of given
operators in the ground state,®!° and from a
bond-charge model'! or a charge-transfer mod-
el.!? In general, the parameters which are re-
quired are fitted to the first-order susceptibility,
and then the model is applied to higher-order sus-
ceptibilities. Particularly, this allows the inclu-
sion of local-field effects without any attempt to
determine them.

Our aim is to do a critical analysis of these
models, by the direct computation of the first-
order susceptibility €,(0) and an estimation of the
local-field effects. For this, we elaborate a lin-
ear-combination-of-atomic-orbitals (LCAO) de-
scription of the ground state, following a “molecu-
lar model” which gives correct predictions for
many physical properties. We first analyze the
bonding-antibonding model and show that its accu-
racy decreases with increasing ionicity. Then,
using a method of moments, a computation is
achieved which gives reasonable results and allows
a determination of local-field effects with a formal-
ism first described by Wiser, 13 in the tight-binding
limit.

In Sec. I, the molecular model is developed
based upon the assumption that bonds between
nearest neighbors do not interact.%"**~!® In order
to obtain a reasonable description of the electronic
charge density, the overlap between atomic sp°®
hybrid orbitals from which bonds are built up is
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included. Ionicity parameters are determined
within this model. In Sec. II, the static dielectric
constant €,(0) is computed, in terms of transitions
between bonding and antibonding molecular states.
We show that this method includes the results of
Harrison’s bond-orbital model®” and we demon-
strate that the f-sum rule is not verified in the
case of the most-ionic compounds. Then, the
computation of €;(0) is developed, starting with

the evaluation of the first moments of €,(E), the
imaginary part of the energy-dependent dielectric
function. This computation only requires a LCAO
description of the ground state. The general meth-
od is given in Sec. III, its application to the mo-
lecular model being achieved in Sec. IV. We show
that the low-energy threshold of the €,(E) spectrum
can be reasonably determined, as well as the av-
erage dielectric gap defined by Phillips.!? Finally,
local-field effects are estimated. A Lorentz-Lo-
renz correction seems to be valid, if one takes ac-
count of the drastic reduction due to the influence
of the self-polarization.

I. MOLECULAR MODEL; DESCRIPTION OF THE GROUND
STATE

We consider tetrahedrally coordinated crystals
of the AYB%¥ type, where N is equal to 4, 5, or 6.
In these crystals, each A atom is surrounded by
four B atoms and vice versa. The molecular or-
bitals for each bond AB are built out of atomic sp®
hybrid orbitals ¢, and ¢, pointing towards each
other (Fig. 1). In the molecular, or bond-orbital,
approximation®7:14=18 only the following matrix ele-
ments of the Hamiltonian H are taken into account:

ay=(0y|H| @), B=(w.|H|ws) .
(1.1)
o, and @, are intra-atomic terms and 8 is a reso-
nance integral. The sp’ orbitals are then coupled
by pairs, leading to a set of diatomic molecules
with a bonding level Ez and an antibonding level

aa:«ua'lea)y
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FIG. 1. Schematic representation of the atomic sp®
hybrid orbitals in the bond AB,

E,. The distance A between these two levels is
given by

Zﬁ* )2 ( Qp — Ua 2

2 _ b

a ’(1 -5t (1-52)“2) ’

where S stands for the overlap integral (¢, |¢,) and
B* =B - S(a, +a,)/2] 1.3)

Following equation (1.2), A can be divided into a
homopolar term

2p*
1-8°

and a heteropolar term
a —Qa
oo
One can also define an ionicity parameter

(:2
F=z +E2

(1.2)

E,= (1.9

15,18

1.5)

(1.6)

We note that F corresponds to the square of the
parameter f used in previous papers. !¢

When further interactions are included, the mo-
lecular levels E, and E, widen into valence and
conduction bands, respectively. Their barycenters
are slightly shifted from E; and E, through the
bonding-antibonding interactions. The correspond-
ing effect is weak and could be treated by second-
order perturbation theory. For the same reason,
the charge density is mainly built from the bonding
orbitals and, in the following, we shall take it as
the superposition of the individual bond densities.

Let us then consider the bond of Fig. 1. If one
writes the bonding orbital ¥, as

Yp=Co¥ +Cpy 1r.m
then its charge density is given by
p=2(Ciof +Ci ¢} +2C,Cr 0,0y , (1.8)

with:

[t () )

Cﬁ =% [1 _ sfl__seF)ua _(1 fsz)l/z] ’

2C, c,,=T:1—&s[(1-F)”2—S] . 1.9
The variations of these terms versus the ionicity
parameter F are reported on Fig, 2,

A simple interpretation of Eq. (1.8) can be given.
C% and C? correspond to the electronic charges on
the atoms A and B and their difference describes
a static charge transfer towards the atom A, which
is proportional to F'/2,1%18 The third term is a
nonspherical part of the charge density and depends
directly upon the overlap S of the atomic orbitals,
One can easily show that this term, which cancels
near the atoms, presents a maximum value along
the bond. This maximum is located just at the
middle of the bond for purely covalent crystals
and is shifted towards the electronegative atoms
for compounds. Then, it corresponds to the charge
heaping up between the atoms, which is an impor-
tant feature of the covalent bond. Integrating over
the whole space, one can define a total overlap
charge, or “bond charge,”

Qs =72 [1- P2 -]

(1.10)
the study of the variation of this charge with ion-
icity being of great interest in order to describe
the chemical bonding in compound semiconduc-
tors.'®!® particularly, one can note that Qg van-
ishes for a critical value of the ionicity parameter:

Fo=1-8 | (t.11)
Then
Ci=1, C%=0, (1.12)

the material becoming purely ionic.
The description of the ground-state wave func-

0.5 4
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FIG. 2. Variations of the coefficients of Eq. (1.9)
versus F, Values are computed with $=0, 5.
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TABLE I, Exponents of the Slater-type orbitals
computed by Clementi et al., Refs, 20 and 21: (1) s or-
bital and (2) p orbital.

ag (1) a, (2) ag (1) a, (2)
B 1.288 1.211 Ge 2,011 1.695
C 1.608 1.568 As 2,236 1.862
N 1.924 1,917 Se 2.439 2.072
Al 1.372 1.355 Cd 1.638 1.520
Si 1.634 1.428 In 1. 902 1.694
P 1.881 1.629 Sn 2,126 1.820
Zn 1.491 1.467 Sb 2,322 1.999
Ga 1.767 1.555 Te 2,508 2,162

tion and, equivalently, of the electronic charge
density requires the knowledge of the atomic or-
bitals ¢, and ¢,. We shall use here Slater-type
orbitals. Optimal exponents for the free-atom
functions have been derived by Clementi et al,2%2!
from a variational calculation done in the Hartree-
Fock approximation. Their values are reported in
Table I. However, in order to test the accuracy of
the wave functions obtained in this way, we have
determined the F,,, structure factor. For C, Si,
and Ge we find 0.50, 0.72, and 0.7&, which are
lower than the experimental values 1.1, 1.5, and
1.1, respectively.? To improve the agreement,

it is necessary to contract the atomic orbitals, as
is the case when atoms are placed into molecules.?
A 15% increase of the exponents gives 0.83, 0.97,
and 1.1, thus leading to a much more reasonable
agreement. Details about this computation are
given in Appendix A. So, from now on, we have
assumed this particular increase for every mate-
rial we consider. We shall see further that the re-
sults we obtain show little sensitivity to this pa-
rameter.

From these values, the overlap S can be com-
puted. Using Clementi’s exponents, values of or-
der 0.65 are obtained while 15%-increased expo-
nents lead to values nearly equal to 0.5, this last
result also being quoted by Harrison.” It is worth
noticing that, for this second value of S, the criti-
cal ionicity defined by Eq. (1.11) is equal to 0.75
and is very near the one determined by Phillips,
which is associated with the transition between
fourfold and sixfold coordinated structures.!” Fol-

TABLE II. Cohesive energies E, (Ref. 28); promotion
energies e (Refs. 6 and 28). E, is computed through
equations (2.13) and 1,14), All values are in eV,

E, e E,
C 7.3 2.1 16.1
Si 3.8 1.7 10.9
Ge 3.3 2,0 11.5
Sn 2.7 1.6 8.9

AND M. LANNOO

TABLE III. Ionicity parameters: (1) Phillips’s scale,
(2) our determination (see text).

F(1) F(@)
AlP 0.307 0.189
GaAs 0.310 0.122
ZnSe 0.676 0.369
InSb 0.321 0.168
CdTe 0.675 0.390

lowing Walter ef al.® this seems reasonable since,
when F approaches F., electrostatic forces which
hold atoms together in sixfold coordinated struc-
tures become more important than covalent forces
which are dominant in fourfold coordinated struc-
tures. Nevertheless, a more precise comparison
between these two critical ionicities would require
a calculation of the cohesive energy with respect
to F in the two structures.

The last parameter which is needed is the ion-
icity F. One can try to identify F with Phillips’s
ionicity, as in previous work!® where this has given
good results for the transverse effective charges.
However, there is no direct argument to prove this
identification. So, it seems more appealing to de-
termine F directly from Eq. (1.6), in view of the
physical meaning of the parameters which are in-
cluded. o, and o, can be evaluated semiempirical-
ly from free-atom values, taking the appropriate
sp® average over s and p ionization potentials, ¢
For covalent systems, the integral B* can be de-
duced from the cohesive energy. In the simple
molecular model described above, one can easily
show that this cohesive energy is given by

E=48*/1+8)~4e , (1.13)

e being the promotion energy needed to obtain the
atoms in the sp® state. Knowing e from free-atom
values and the experimental cohesive energies, g*
and then E, are calculated through Eq. (1.13) (Ta-
ble II). In the case of compounds, we retain the
usual approximation® that E, is equal to the value
of the corresponding covalent system. The values
of F computed in this way are given in Table III.
They are substantially lower than Phillips’s values
but exhibit the same trends.

One can now try to compare these results with
experiment or with previous calculations., First
of all, the fact that the static electron transfer is
towards the more electronegative atom, is in
agreement with chemical-shift and x-ray measure-
ments?®~%" and, though quantitative comparison is
not directly possible, correlations can easily be
established between our values and experimental
ones. Second, if one assumes that the bond charge
can be equally divided between the atoms A and B,
one can define atomic charges and compute the
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FIG. 3. Comparison
of the bond charges com-
puted by Walter et al.
(Z,) with ours (Q,).

transverse effective charges following the method
which has been developed previously.'® Here
again, reasonable results are obtained. Finally
one can compute from (1.10) the overlap charge
and compare it to the results of recent calculations
due to Walter et al.'® Although the two definitions
of this charge are different, they should exhibit the
same trends, when plotted versus the ionicity F,
as is confirmed by Fig. 3. It is worth noticing
here that this is not the case for the bond charges
determined by Levine'! from the assumption that
they give the main contribution to the dielectric
susceptibility. Their behavior is exactly opposite
to the results of Fig. 3.

From all these facts, it appears that the molec-
ular model described above is reasonable, and thus
one can hope that it will give good results for all
average properties of the valence electrons, when
a detailed knowledge of the band structure is not
required.?® We shall then apply it to the computa-
tion of the static dielectric constant.

II. DIRECT COMPUTATION OF THE STATIC DIELECTRIC
CONSTANT IN THE MOLECULAR MODEL

This section is concerned with the calculation of
the static dielectric constant €,(0), in the molecu-
lar model described above, assuming that transi-
tions from the bond ing to antibonding states pre-

1 Qg

dominate, Such a model has been used by Phillips
et al.* and by Kleinman® to determine higher-order
dielectric susceptibilities in compound semiconduc-
tors. More recently, Harrison®" has deduced the
static dielectric constant from a direct computation
of the ground state in the presence of the electric
field but we shall see farther that this procedure
is rigorously equivalent to the model just men-
tioned. Let us now establish in detail the results
of this model, in order to discuss the validity of
the corresponding assumptions.

Using the well-known Kramers-Kronig relations,
one can write

<1(0)=1+%f EZ(EE,—)(:E’ ) 2.1)

with, in the random-phase approximation,

2
aB) =2 T | &|o) e | £ ) oE- (B~ B) .

v,C

(2.2)
lv) and |c) are two valence- and conduction-band
states, E, and E_ the corresponding energies, £
the component of the electron position T along the
[111] axis, and V the crystal volume. Use is made
of atomic units. Inthe molecular model, the va-
lence- and conduction-band states are simply the
bonding and antibonding states ¥ and y,, the dif-
ference between their energies being A, Thus
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FIG. 4. Elementary cell.

(2.3)

ZRB lelayl? ,

the indices ¢ and j running over every molecular
orbitals of the crystal. |B) and |A) are given by

61(0) 1 +

|B)=(1+22+2X8)2(¢, + 1 9p),

(2.4)
|4y =(L+12=2)"8) 2N g, - @,) ,
where
r=C,/C, (2.5)
and
A =(x+S)/(1 +1S) (2.6)

to ensure the orthogonalization of the two eigen-
states.

The sum in equation (2. 3) can be reduced to the
sum over the elementary cell represented on Fig. 4
in view of the translational invariance. Moreover,
using the tetrahedral symmetry of the cell, one ob-
tains

4
a0 -1+ 52 Sls[Flayl .7
where |B) is any one of the four bonding orbitals
in the cell, R is the nearest-neighbor distance, and
the spin degeneracy has been taken into account.

An important test of the accuracy of this model
is provided by the verification of the f-sum rule:

2

= f E(E)dE=w? | (2.8)
where w, is the plasma frequency. With the help
of the above results, this leads to

%A};|<BIFIA,>12=1 ,

the first member of this equation requiring the
same computation as for €,(0).

First of all, we shall look at a simple limit of
the molecular model, showing that the above for-
mulation includes Harrison’s one. We assume

(2.9)

that the spatial extension of the atomic orbitals is
negligible with respect to nearest-neighbor dis-
tance. Then, the interatomic matrix elements,
and thus the overlap integral S, become negligible
and one obtains

2
SllFlay-() (2.10)
where
A= -FY2)/(1+F'/?) , (2.11)
Thus
€, (0) = 1+”£————ﬂz—g7z(E2+c) (2.12)

Apart from a scaling parameter which does not en-
ter directly into the model, this is identical to
Harrison’s result. Moreover, the f-sum rule, in
the form of Eq. (2.9), becomes

2A( 2R \?
?(uxﬁ) -1, (2.13)

This relation surely fails when A approaches zero,

i.e. for the more ionic compounds. This point can
easily be understood by noticing that, in this limit,
one obtains

Vs=Ws, Ya=% (2.14)

As interatomic terms have been neglected, this
means that, in the more ionic materials, the main
part of the oscillator strength is due to intra-atom-
ic terms which have not been included.

It is now interesting to determine the influence
of the spatial extension of the atomic orbitals., For
this, we have used the Slater-type orbitals with the
exponents discussed in Sec. I, and we have consid-
ered every transition from the bonding state of a
molecular orbital to the antibonding states of the
same orbital and of the adjacent orbitals. For the
parameter A, wehave used the set of values dis-
cussed in Sec. I. In Table IV, results are given
for the purely covalent materials. One can note
that the sum rule is not exactly satisfied, particu-
larly for C. On Fig. 5, results have been plotted
against the bond parameter A for two compounds.
Here again, when A approaches zero, the f sum
becomes very weak.

In view of these results, one can first conclude
that the use of the f-sum rule to determine the ma-
trix elements which are needed in the computation

TABLE IV. f sum under the form of Eq. (2.9).

C 0.475
Si 0.725
Ge 0.820
Sn 0,815
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FIG. 5, Variation
of the f sum com-
puted under the
form of Eq. (2.9)
versus the bond
parameter A, Dots
indicate the results
for the ionicity
values computed in
Sec. I.
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of the susceptibilities is incorrect, particularly
for the more ionic compounds. However, the dir
rect computation of €,(0) within this model depends
upon the moment of order —1 of €,(E) while the f
sum is associated with the moment of order 1.
Thus, the weights of the various states are not the
same in the two computations, and conclusions
about the f sum are not directly applicable to €,(0).
Nevertheless, one can note that the variations of
the f sum when going from purely covalent mate-
rials, such as Ge, to ionic materials, such as
ZnSe, is very large, and thus the dependence of
€,(0) on ionicity can be completely hidden by this
effect. So, the bond-orbital model parameters
which are deduced from the above approximations
are probably less correct for the more ionic mate-
rials, This casts some doubt on the 3 exponent
occurring in the denominator of Eq. (2.12), which
was considered by Harrison as being an important
feature of the behavior of €,(0) as a function of the
heteropolar term C,

We then believe that a model which describes
electric field effects uniquely in terms of transi-
tions from bonding to antibonding molecular states
cannot give accurate predictions concerning the
dielectric susceptibilities of the more ionic com-
pounds, and that any agreement with experiment
should be considered as fortuitous. Any quantita-
tive model should incorporate transitions which
complete the f-sum rule in the ionic limit. This
will be the aim of Sec. III, with the help of a meth-
od of moments.

III. CALCULATION OF ¢,(0) IN TERMS OF THE

MOMENTS OF ¢, (E)

One can define the moments M, of €,(E) through

the relation

2
M, == fez(E)E"dE . (3.1)

Then, Eq. (2.1) can be rewritten
«0)=1+M_, . (3.2)

The knowledge of the moment of order —1 of the
€,(E) curve gives directly the static dielectric con-
stant. Unfortunately, this curve cannot be com-
puted in the molecular model described above, but
one can determine a finite set of moments M, M,,
M,, ..., which, though they do not suffice to recon-
struct the entire curve, provide interesting infor-
mation about it and can lead to reasonable results
for €,(0). For this, we shall derive expressions
of these moments, which only require the knowledge
of the ground-state wave function, and show that
€,(0) can be written in the form used by Phillips in
the spectroscopic model.!” This will allow a direct
determination of the average energy gap E,.
Starting with the Eq. (2.2) and using the closure
relation, one obtains®

M,,=§§Z((vl£[nﬂv>-zv;<vl &Iv')(v'l[n]|v>) ’

(3.3)
where v and »’ stand for valence-band states and

o] =18, (H, (8, ... 5 £ ]1]] . (3.4)

Applying these results, one can compute the lowest-
order moments:

M0=8—‘1,T ) ((vlﬁzlv)—;(ﬂﬂv')(v'l5‘”>>,

(3.5)
Ml =w: ’ (3-6)
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where w, is the plasma frequency and p, the ¢ com-
ponent of the momentum operator. Equation (3.6)
is in fact a statement of the f-sum rule,

For n > 2, the calculation of M, involves the po-
tential and its successive derivatives. Developing
the expression of the third moment, for instance,
one can easily demonstrate, within this formalism,
the Hopfield sum rule, ** which relates M, to the
product of the electron density fluctuations and the
Laplacian of the crystal potential.

For n >3, one has to take care of the asymp-
totic behavior of €,(E) in the high-energy range.
€,(F) tends to zero according to a power law,
which leads to divergences in the higher-order
moments. This law can easily be established
if one computes directly the contribution of the
transitions from the valence states to the high-en-
ergy free electron states (Appendix B). Denoting
the radial part of the atomic orbitals from which
valence states are built up by the form

@(¥) =Ny?teor | (3.8)

one obtains

&, (E) x E?5/2 (3.9)
if p is even, and

€,(E) < E?71/2 (3.10)
if p is odd.

It is worth noticing that, in the special case of
transitions from the ls states, Kabir and Salpeter®
and Rau and Fano® have obtained an exponent equal
to -2, corresponding to » =1 in the above results.
In view of these rates of decrease, M, will diverge
from M, for C, M, for Si and Ge, and M; for Sn,
when use is made of Slater-type orbitals. This re-
sult is confirmed by a direct computation of the
moments through Eq. (3.3). This point is particu-
larly interesting and will be discussed further, to
develop a model for €,(E).

Coming back to the static dielectric constant one
can write

€(0)=1+w2/E% | (3.11)
where:
E:=M,/M_, (3.12)

This is the form derived by Phillips, in the spec-
troscopic model, and Eq. (3.12) allows the com-
putation of the average dielectric gap E,.!" How-
ever, the expressions given above take into account
all transitions from the valence-band states, name-
ly, transitions toward the inner states which do not
contribute to the susceptibility, since these states
are occupied, This point is in general not serious,

N. DECARPIGNY AND M. LANNOO 14

except for d states which are closer to the valence
band than others, but corrections due to these
states are included in Phillips’s determination of
E,, to which we shall compare our results.

The computation of M_;, knowing the first mo-
ments M,, M;, and M,, is a problem which has
previously been resolved for the calculation of
various integral properties of the electron density
of states.®~% We shall follow a similar method
and represent €,(E) in an approximate way, such
as, within the model, the first moments of the ap-
proximate curve be equal to the exact ones. First
of all, one can replace €,(E) by a 6 function at an

unknown energy E,. Denoting

m,=M,/M, , (3.13)
one obtains

E,=m, (3.14)

In this case, the whole method described above
is equivalent to the two-parameter variational pro-
cedure used by Flytzanis and Ducuing, i.e., the
Unsdld approximation, *°

Then, one can develop a second model which
takes account of the width of the €,(E) curves and
one can build up this model from the power law
given by Eqgs. (3.9) and (3.10). Moreover, an im-
portant feature appears in the low-energy range
of the experimental spectra, namely, a threshold
energy under which no transition occurs. This can
be included in the €,(E) model curve through a low-
energy cutoff.3® In order to take account of these
two points, use has been made of the function

&(E)=0
&(E)= A(E-E,)™ f{E>E,,

if E<E, ,
(3.15)

where m =p+3 or m=p+% according to the parity
of p.

The parameters Ej and E;, and then the average
gap E,, can be determined from the reduced mo-
ments m, and m,. Results are plotted on Fig. 6.

In Sec. IV, these two models will be discussed,
through the comparison of our values of E, with
Phillips’s values, But, it is worth noticing that
the second model introduces a new interesting pa-
rameter, i.e., the threshold energy E,;, which can
also be compared with experimental values.

IV. CALCULATION OF THE AVERAGE DIELECTRIC GAP
E; IN THE MOLECULAR MODEL; DISCUSSION

Using Eq. (3.5) one can write M, in the molecu-
lar model:

27N
M, = Vv & ‘<<Bi ‘ 52|Bt>’;|<3i| 5131>]2> ’
(4.1)
where N and V, respectively, stand for the total
number of electrons and the whole crystal volume,
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FIG. 6. Variations of the threshold energy E; and the
average gap E,, normalized to 7y, with the ratio mz/mﬁ.
Plots are given for the various power laws: 1, C; 2,

Si and Ge; 3, Sn.

the sum runs over the molecular bonds of the ele-
mentary cell represented on Fig. 4, and |B;) and
|B,) are given by Eq. (2.4). Inthe same way

R N CAIERS sEAPERID N

vV 5
(4.2)
Following the procedure described in Sec. II, one
obtains

MﬁgLVN((BI?le)— ZJ:RBWBW) " ws
=315 Sleol3l) )

where |B) is any one of the four bonding orbitals
in the elementary cell., Every matrix element
between a bonding orbital and either itself or the
adjacent bonding orbitals has been considered.
Computation has been done using Slater-type or-
bitals with the exponents discussed in Sec. I. Re-
sults are given in Table V for purely covalent ma-
terials, and they are plotted against the bond pa-
rameter A for two compounds on Fig. 7.

First of all, one can discuss the validity of the
second model. On Fig. 8, theoretical curves are
compared to experimental results®”® for C, Si,
and Ge. A reasonable agreement is obtained in
the high-energy range, as well as for the thresh-

TABLE V. Average dielectric gap E, (1) within the
one-6-function model, (2) within the second model (see
text), and (3) Phillips’s values (Ref, 17). Low-energy
cutoff E; of the second model. All energies are in eV,

E, (1) E, (2) E, (3 E,
c 20.0 17.9 13.6 10.2
si 9.1 7.7 4.8 3.4
Ge 8.3 7.0 4.3 3.2
Sn 6.5 5.2 3.1 2.0

old energy. This second point is very interesting,
if one remembers that the above computations only
require a simple LCAO description of the ground
state, rather than a detailed knowledge of the band
structure, particularly of the conduction band, and
thus, it gives us confidence in this model. Never-
theless, the theoretical curves cannot exhibit the
structures of the experimental curves in the low-
energy range. One has to note that this is also
the case forthe constant-conductivity model devel-
oped by Wemple et al. as well as for recent re-
sults obtained by Breckenridge et al.* within the
Penn model [Fig. 8(b)]. The contributions of these
structures will be discussed farther. In the case
of compounds, the same agreement is obtained for
E,, as shown on Fig. 7.

Before discussing the results we have obtained
for E,, we shall treat two particular points. First
of all, we have looked at the influence of the val-
ues of the screening constants. The reduced mo-
ments m, and m,, and thus the threshold energy
E, and the average gap E,, are only slightly sensi-

fev) GaAs

10+

w

E
0 0.5 1A
ev) ZnSe
10+
------- E/
. --- 5
£
% .
E
EO
0 0.5 Tox

FIG. 7. Variations of the threshold energy E and the
average gap E, versus the bond parameter A. Variation
of E¢{ computed within the one~6-function model is also
reported. Horizontal lines correspond to Phillips’s re-
sults (E,) and to the experimental threshold energies,
Ref. 24 (E).
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tive to variations of these values, which have no
influence on the previous conclusions. Second,
we have to come back to the power law followed
by the high-energy tail of the €,(E) spectra. In
fact, a more correct description of the bonding
wave function requires the orthogonalization of the
Slater-type orbitals to core-state orbitals. Then
this bonding wave function possesses a 1s compo-
nent and, according to Eq. (3. 10), it seems that
the rate of decrease of €,(E) could be described
better by a —% power law. Nevertheless, one has
to keep in mind that core-state components will
also be included in the computation of m; and m,.
In fact, only m, is increased by the orthogonaliza-
tion procedure, since it depends upon matrix ele-
ments of p? and p, which are greater for the core
states than for the valence states, and thus E; and
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€ _(E)
2

Ge

30 (C)

0 5 10 15 E(ev)

FIG. 8, Comparison of the experimental (full line) and
and theoretical (dashed line) curves for €,(E): (a)
diamond; (b) silicon; (c) germanium. In the case of Si
(b), results of Wemple et al., Ref, 36 (W) and Brecken-
ridge et al., Ref. 39 (B) are also reported.

to a less extent E, will be decreased (Fig. 6).
Since this effect is not included in the computation
of m, and m,, it seems to us better to use -4 and
-3 for Si, Ge, and Sn.

Now, one can compare the average dielectric
gaps E, we have obtained with those of Phillips.
Results have been reported on Fig. 9. Though our
values are too large, a strong correlation appears
in the case of purely covalent materials, since the
dependence is nearly linear. One can note that this
difference between the values of E, can be associ-
ated with the difference between the theoretical
and experimental curves of €,(E) in the low-energy
range, since the weight of the low-energy states
is important in the moment of order —1, The lin-
ear law mentioned above is roughly followed by
the compounds when use is made of the ionicity pa-
rameters given in Sec. I. It is interesting to note
that this is not the case if Phillips’s ionicity is
used and thus the inclusion of this scale within a
molecular model can be questionable.

The fact that the values of E, we obtain are too
large can be explained by the local-field correction,
as has previously been emphasized for compounds
by Flytzanis et al.,'® and it seems that the same
argument can be developed, at least partially, for
the €,(E) spectra, as mentioned by Lubinsky e?
al.*® Direct computations of this correction have
been done recently*' ™ but they lead to different
results and thus do not establish its influence in a
definitive way. However, it has been proved by
Wiser!'® and more recently by Sinha et al.*! that,
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(o] 5 10 15 Egp(eV)

FIG. 9. Comparison of E, and E,. Full line: local-
field correction neglected; dashed line: local-field cor-
rection included, Dots correspond to purely covalent ma-
terials while crosses correspond to compounds,

in the tight-binding limit used here, a Lorentz-
Lorenz-type correction is available. In this case

4
€(0)=1 +1—:%%E ,

where « is the polarizability of the elementary
cell. Denoting

(4.4)

(4.5)

where a, is the polarizability computed above and
0, the self-polarization term,® one can easily
write down Eq. (4.4) in the form

(wy/E)*
1- (%_ 9)((*’9/E,)2 ’

where 6 is directly related to a,,. This relation
can be demonstrated within the bonding-antibonding
model, and preliminary calculations have allowed
us to show that 6 is roughly constant for the purely
covalent materials.® Thus, if one writes

€(0) = 1+(w,/E,)? | 4.7

where E,, is Phillips’s average dielectric gap, one
should obtain simply

A=0g= 0Oy ,

€0)=1+ (4.6)

E:=E+(3-0)uf , (4.8)
which approximately leads to
E,=E,, +(3-6) W}/2E,, (4.9)

if the second term of Eq. (4.8) is smaller than
E,,. As w}/E,, is a slowly varying function of E,,,

Eq. (4.9) is a linear law of slope 1 which is in
reasonable agreement with the results of Fig. 9.
Moreover, Eq. (4.8) provides a determination of
6, which is obtained equal to 0.21. In order to
test the validity of this result, the values of E,
corrected for the local-field effect have been
plotted against Phillips’s values on Fig. 9, showing
a correct agreement. Then, one can conclude that
within a tight-binding limit, the Lorentz-Lorenz
correction remains available for purely covalent
materials if one takes account of the drastic re-
duction due to the self-polarization effect, In the
case of compounds, values of E, corrected in the
same way have been reported in Table VI, It
seems that, in this case, the value of 6 must be
reduced, thus increasing the local-field correction
with respect to the covalent case. Work to justify
this point is in progress.* However it is not pos-
sible to detail here the corresponding arguments.

We believe from this study that the method of
moments gives a coherent picture of ¢,(E) and
€,(0). It provides a reasonable estimate of the
threshold energy E,occurringin €,(E). It is then
likely that it leads to a correct order of magnitude
of E,. The difference with the experimental values
must then be attributed to a local-field correction,
including self-polarizability effects. At last, one
can note that the one-d- function model which leads
to values of E, greater than those of the second
model, but not too different (Table V and Fig. 7),
appears interesting in view of its simplicity, and
thus it seems well suited for more complex prob-
lems, such as the computation of higher-order
susceptibilities. °

A final point can be made concerning the validity
of the bond-charge model!! or charge-transfer
model. ¥ At each stage of the above computations,
the contributions of intra-atomic and interatomic
terms to the static dielectric constant can be sep-
arated and one can show that they are of the same
order. As these terms can be associated with
charge-transfer ard bond-charge contributions,
it seems to us that none of them can be neglected,
and, though this conclusion is not directly applica-
ble to second-order susceptibility, we think that it
remains roughly valid.

TABLE VI. (1) Value of E, corrected for local-field
effect (see text), and (2) Phillips’s values (Ref. 17). All
energies are in eV,

E, (1) E, )
AlP 8.7 5.6
GaAs 5.9 5.2
ZnSe 10.3 7.1
InSb 4.7 3.7
CdTe 7.7 5.4
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CONCLUSION

Though theoretical models have given interesting
informations about the origins of the nonlinear di-
electric susceptibilities, they were often built on
a more-or-less justified basis. The parameters
used in these calculations were generally deter-
mined in order to give the experimental values of
the static dielectric constant €;(0). In this work,
we have computed directly ¢,(0) within a molecular
model, This has allowed us to discuss the differ-
ent approximations, as well as to estimate the
local-field corrections.

First of all, we have shown that the direct cal-
culation of €,(0) in terms of transitions between
bonding and antibonding molecular states does not
verify the f-sum rule, particularly for the most
ionic compounds. Thus, it appears that models
using this description are questionable.

Then, ¢,(0) has been computed with the help of a
method of moments. Model curves for ¢,(E) have
been determined, suchas their first moments being
equal to the exact moments, and then the average
dielectric gap E, defined by Phillips has been di-
rectly calculated. The most interesting model,
which takes account of the essential features of
€,(E) in the high- and low-energy ranges, allows
the determination of the low-energy threshold of
the ¢,(F) spectrum, starting with a simple LCAO
description of the ground state. Reasonable agree-
ment with experimental values has been obtained.
Values of E,, though strongly correlated with Phil-
lips’s values, were too large, but the inclusion of
local-field effects has led to satisfactory results.
We have shown that a Lorentz-Lorenz correction
is available if self-polarization effects are included.
Finally, we have noted that intra-atomic and inter-
atomic terms, within the expressions of the mo-
ments which are used, are of the same order.
Thus, it appears that neither the contribution of
the charge transfer, nor that of the bond charge
can be neglected.

It seems to us that the application of this model
to the computation of the nonlinear susceptibilities
can give interesting and valid informations as well
for the computations of other properties, such as
magnetic susceptibilities,  which are directly re-
lated to the moments of the electron distribution.
Moreover, this model can give important features
of the €,(E) spectrum of other semiconductors,
such as Se and Te, without requiring a detailed
knowledge of their band structure. At last, it can
be a new tool to obtain simple informations about
the local-field effects.

APPENDIX A

The determination of the F,, structure factor
requires the computation of the integral

F=fpe‘x';d‘r , (A1)
where p is given by Eq. (1.8) and K is the vector
(2m/a)(2, 2,2), a being the lattice parameter. Ac-
cording to the symmetry of the crystals we con-
-sider the contributions of terms which are centered
on the atomic sites vanish, and thus, in the case
of covalent materials, the integral reduces to
2 Kox

F=m[ Pa Py e’®rar (A2)
Moreover, in view of the form of the product ¢, ¢,,
it can be simply described by a Gaussian distribu-
tion of the electron density along each bond. Then,
one can write

Ga9p=Ae™” (A3)

the origin of the electron coordinate T being taken
at the middle of the bond. In order to determine
the parameters A and v, one can assume that the
moments of order 0 and 2 of this Gaussian distri-
bution are equal to the corresponding moments of
the exact distribution;

f<pa<p,,dr=Af eV dr

and

f(p,(pbrsz=Af e""zd‘r .

The first integral is just the overlap S. Then,
knowing A and v, F is easily computed. One ob-
tains

(A4)

(A5)

F-_2S o K2(r2)/6s

1+S ’ (a6)

where (»?%) stands for the integral (A5). If the
structure factor is computed per cubic cell,

Fppp=16F . (A7)

Numerical values are discussed in Sec. I.
APPENDIX B

The contribution to €,(E) of transitions from va-
lence states to high-energy free-electron states
can be written

ea(E)oc;U o Fe® ar| 5 - (By-E,) |

(B1)
where ¢(7) is given by Eq. (3.8) and E, is the bond-
ing-state energy. In the high-energy range, E,
can be neglected with respect to E;. The integra-
tion of the angular part giving, for large values of
k, a contribution of the type

coskr/kr (B2)
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the integral which appears in Eq. (B1) can easily
be written,

Iocf yPlemer(ethrygmi*y gr (B3)
0
which gives

1 (a+ik)Y*2 + (a — ik)P*2
0:73 o? _f_kz)pfz . (B4)

I

Then, if p is even

I<1/P*3 | (B5)
while if p is odd
ICIV/ (B6)

and one obtains

&E) <) 8(E-E)r™ (B7)
k

where m equals 2p +6 or 2p+8 following p being
even or odd. Then, denoting

E=K%/2 | (B8)
the relation

SE-Ep)=(1/r) (k- K) (B9)
leads to

&(E) ] E™ 5(k — K) 2 dk (B10)
and

€(E)cx:}_,—:-ll(m-l)/zl (Bll)

which gives directly Eqs. (3.9) and (3.10).
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