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The mobility variations and carrier velocities are calculated for electrons in (100)-silicon quantum inversion
layers at 300 and 77 K. Energy and momentum relaxation by intervalley phonons and acoustic phonons is
considered. Scattering by local potential fluctuations and surface roughness is also considered. The calculations
performed are based on a drifted Maxwellian distribution function and take into account repopulation of
carriers among the various subbands. Formulas are presented for energy and momentum loss by intervalley
phonons in both the zero- and first-order coupled cases. The calculations are compared with the data of Fang
and Fowler at 300 K and very good agreement is found for the velocity-field curve.

I. INTRODUCTION

When an electric field is applied to the surface
of a p-type semiconductor, such as occurs in a
metal-oxide-semiconductor structure under bias,
an n-type inversion layer is produced at the sur-
face. When the bands are strongly bent, as in
strong inversion, the potential well formed by the
insulator-semiconductor surface and the electro-
static potential in the semiconductor can be nar-
row enough that quantum-mechanical effects be-
come important. The motion of the electrons in
the direction perpendicular to the surface is con-
strained to remain within this potential well, and
if the thickness is comparable to the electron
wavelength, size-effect quantization leads to wide-
ly spaced subbands of electron energy levels. The
electron energy levels are grouped into the sub-
bands, each of which corresponds to a particular
quantized level formation in the direction perpen-
dicular to the surface.! In the case of silicon, the
transport of electrons within the inversion layer
remains dominated by intervalley and acoustic
phonons, at least for temperatures greater than
or of the order of liquid-nitrogen temperatures,
although other scattering mechanisms are also of
importance. The role of intervalley scattering by
both zero-order coupled and first-order coupled
phonons was examined previously, both in bulk
silicon? and in the inversion layer® by the present
author (hereafter referred to as I).

In the presence of high electric fields, it is well
known that electron transport becomes non-Ohmic !
Carriers gain energy from the electric field and
must lose this energy to the lattice through colli-
sions. As a rule, the average energy of the elec-
tron gas increases with a consequent decrease in
the collisional momentum relaxation time. De-
tailed measurements of the changing electron
velocity in the inversion layer as a function of the
drain-source field have been presented by Fang

and Fowler.® To date, an adequate treatment of the
drift velocity in these n-type inversion layers in
silicon is lacking. Hess and Sah® did carry out a
theoretical analysis, but they effectively treated
only a single phenomenological optical phonon with
an adjustable coupling strength. As a consequence,
even though they adjust this parameter to obtain a
reasonable fit to the experimental data, such an
approach does not adequately explain the data.

For example, their procedure then yields a theo-
retical curve which predicts a velocity at 77 K
some 2-3 time greater than bulk silicon, a some-
what unphysical result. Nakamura’ also considered
hot-electron transport, but treated only an energy
balance equation and included an empirical tem-
perature dependence of the mobility. He also pri-
marily treated a single intervalley phonon with an
adjustable coupling constant. As discussed in I,
the electron transport is considerably more com-
plex than assumed by these authors, and the pho-
non coupling constants can be taken from their bulk
values instead of being treated as adjustable pa-
rameters. The purpose of this paper is to treat
the high-field transport by including properly the
appropriate intervalley phonon interactions and
utilize the bulk coupling constants. It is shown
that this technique yields very good agreement

to experimental data without resorting to adjust-
able parameters.

In this paper, the momentum and energy relaxa-
tion times for hot electrons constrained to a quasi-
two-dimensional layer are developed for the situa-
tion in which the symmetric part of the distribution
function of the electrons in each subband is Max-
wellian with a characteristic temperature 7;,
where i refers to the subband of interest. The
assumption of a characteristic temperature is
clearly valid for the case of strong inversion,
since interelectronic collisions here will random-
ize the momentum. In Secs. II and III, the mo-
mentum and energy relaxation times, respectively,
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are developed for the zero-order and first-order
coupled intervalley phonons that are of importance
here. In Sec. IV, repopulation of the valleys is
discussed and valley-to-valley transition rates for
the intervalley phonon processes are developed.
Finally, in Sec. V, these results are applied to
electrons in an inversion layer on (100) silicon at
300 and 77 K and it is shown that good agreement
is obtained with experiment using the coupling
constants found in previous work. No adjustable
constants in the acoustic or intervalley scattering
are used in these calculations. Although local-
potential scattering and surface-roughness scat-
tering are included, and their strengths can be
adjusted to fit the Ohmic mobility, it must be em-
phasized that the high-field, hot-electron behavior
is governed by the intervalley scattering interac-
tions. As a result, the high-field behavior is es-
sentially independent of the local-potential and
surface-roughness scattering.

II. MOMENTUM RELAXATION

Treatment of hot-electron problems via the as-
sumption of a drifted Maxwellian distribution func-
tion generally revolves around the use of a pair of
balance equations which require equilibration of
both the average momentum and the average ener-

—
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gy of the electron gas.”®° We will treat the first
of these in this section and defer discussion of the
other until Sec. III. The momentum balance equa-
tion requires that the rate at which momentum is
supplied to the electrons by the electric field be
offset by loss of momentum to the lattice, or

¢E= <%)> =m, \%> , (1)

where the last form follows for a drifted Maxwel-
lian

f(R) = C expl - m2(k - k,)?/2m k5 T,], (2)

where ik, =m., is the average drift momentum of
the electron gas, C is a constant for normalization
purposes, and 7, is the electron temperature.
From (2), it follows that

fo(E)=Ce E/BTe (3)

and
F1(BY=v(m oy /205 T,) £ E). (4)

From (1) and (4), the average momentum relaxa-
tion rate is shown to be just

) (28 ),

where

(6)

where y=E/kyT,. The explicit form of (6) follows from the fact that in quasi-two-dimensional systems,
the density of states is independent of the electron energy.! Thus, (6) gives the phenomenological momen-
tum relaxation time or, more properly, the momentum relaxation rate.

The scattering rate for interactions via the zero-order coupled intervalley phonons was shown in I to be,

for electrons in subband ¢ in valley a,
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where D is the coupling deformation potential, p, is the mass density, I;; is the square of the wave function
overlap integral between the electrons in the initial subband ¢ and the final subband j in valley b, w; is the
level width of the jth subband for the bth set of valleys, m,, and m,, are the two masses in the directions
parallel to the surface, N is the Bose-Einstein occupation factor for the phonon of circular frequency w,,
and E; is the energy level of the jth subband. The sum runs over all subbands and levels, that is over all
final states coupled by the particular phonon. The first term in the curly brackets is for phonon absorption
by the electron and the second term is for phonon emission by the electrons. The functions u,(x) are step
functions and are equal to unity for x =0 and zero otherwise. The terms in the square brackets allow for
degeneracy of the distribution function. These latter factors will not be carried further since these effects
are of limited applicability for hot electrons,® due to the high effective temperature of the distribution. In-
serting (7) into (6) and evaluating the integrals gives, for scattering from subband i in valley a to subband
j in valley b,

1 D2 1727 T [ o%¥o=%ei 1 *o=%ei -
<;>o= (0 7) 23,,L<e o%0 _+1 >(1+ A,.,)+<————xee‘,i — >]e Big, (8)
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where x,=7w,/kpT,, T, is the lattice temperature, x,=7%w,/k5T,;, B, is the number of equivalent valleys
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of the final subband to which the electron can scatter, and A;,;=(E, - E,)/ksT, (E;ZE, only). T, is the
effective temperature in subband i. In the case that T,,=T, and E;=E,, (8) reduces to Eq. (14) of I.

For the first-order coupled interaction, the phonon scattering rate was also found in I. For electrons
in subband ¢ in valley a, this is just

1 D2
_I_pmh—'aw Eli

- °”‘=— [N(2E + iw uo(E — B+ Fwg)+ (N + 1)(2E —Hw Yuo(E - E,+Hw,)], 9)
0 Jed

where the symbols have their previous meanings, and D, is the value of the first-order coupling constant.
Using (9) in (6), the momentum relaxation rate due to first-order coupled phonons is found to be, for scat-
tering from subband ¢ in valley a to subband j in valley b,
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In addition to the intervalley scattering, interac-
tions due to acoustic phonons and local-potential
scattering are considered. Kawaji'°~'2 and Sah
et al.'® have calculated the acoustic-phonon mo-
bility. The momentum relaxation rate for this
process is given by

1/T,e= [(mlbmzb)llz kBT/thmwjv I, (11)

where =, is the acoustic deformation potential and
v, is the sound velocity. The functional parameter
X depends on the overlap integral of the wave func-
tions and differs for bulk phonon or surfon scat-
tering.!°=!2 The other parameters have their usual
meaning. Equation (11) contains no dependence on
the electron temperature or electron kinetic ener-
gy, so that the momentum relaxation rate depends
only upon the lattice temperature.

For scattering by local potentials, arising from
ionized impurities or trapped interface charge,
the phenomenological form developed by Sah et al.!?
is used. In this form, the momentum relaxation
rate is given by

(1/7);=Ge*r?N,/2¢%mky T, , (12)

where G is a global multiplicative factor to take
account of screening, spatial charge distribution,
and position correlation effects as well as any
other factors not understood. For surface rough-
ness scattering, the relaxation rate can be taken
from Stern,! and is given by

1 Lzbzh‘(mu,mﬂ,)‘ ’2(3)° oL

T 16m2,w§
X [I,(k?L?/2) ~1,(k?L?/2)], (13)

where 6 is the mean-square height of the deviation
of the surface from flatness, and L is the lateral
scale length of the fluctuations, and I, and I, are
modified Bessel functions of the first kind. When
kL <1, the scattering rate of (13) is independent

of carrier energy, and even when this inequality is
not satisfied, the right-hand side of (13) is a very

ﬂ <2—:2-—ie—;> (2+x,;+ ZA”)}e'Au, (10)

slowly varying function. The factor G and the
product L6 are the only adjustable parameters in
this work. Although the high-field treatment of

the transport properties is essentially independent
of their values, these values must be chosen judi-
ciously in order to obtain a good fit to the low-field
Ohmic mobility.

III. ENERGY RELAXATION

The second balance equation requires that the
average rate of energy which the electron gas
gains from the field be balanced by a loss of ener-
gy to the lattice. This requires that

ey,E= —<7> . (14)

It can be seen that the pair of equations (1) and (14)
contain only two unknown parameters, the drift
velocity v, and the effective temperature T,; ina
particular valley. We will discuss below the way
in which the knowledge of the individual valleys
can be combined to give the resulting parameters
for the electron gas as a whole.

For optical and intervalley phonons, the right-
hand side of (14) is given for a particular phonon

by
~at =l (5), () 09

where the first term in brackets is the scattering
rate for emission of phonons and the second term
is the scattering rate for the absorption of phonons.
The average is carried out using (2), and to lowest
order

(@) (@) 1o

By changing the appropriate signs on the terms in
(7) it can be used in (12) to give the average energy
loss associated with scattering by zero-order
coupled phonons from subband ¢ in valley a to sub-
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band j in valley b, as

_<E_>= D2(mym,y)* g <exo-xei - 1>e'A”. am
dt Pltw ; e -1

Similarly, from (9) the average energy loss asso-
ciated with scattering by first-order coupled pho-
nons from subband 7 in valley a to subband ¢ in
valley b is found to be

<dE> _ 2D ymyB,ks Ty (e"ﬂ"‘e" - 1>
-5 -

Pultw; e*o —

X[2(1+4;,) +x,]e24. (18)
The acoustic-phonon scattering and local-potential
scattering are essentially elastic and do not con-
tribute to any appreciable energy relaxation. Their
effects in energy relaxation will be ignored in this
work.

IV. REPOPULATION

In semiconductors with multivalley band struc-
tures, hot-electron conditions can alter the rela-
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tive populations of the various valleys due to dif-
ferent temperatures in the various valleys. This
is also true in the inversion layers, where the
relative populations of the various subbands in
each valley can also be expected to be modified.
The equilibrium equation for a particular subband
can be written, in analogy with the multivalley
case, 14

T B, w

where the sum runs over all subbands j#:. The
subscript ¢ on the right-hand-side terms refers
to collision-induced transitions. In Sec. V, three
subbands will be used in the calculations: =, ,n,,n,
(for levels of energy E, E,, E;, respectively, in
the notation of I and Ref. 1). The meaning and
labeling of these subbands is explained below. To
coordinate with this, let us now adopt a three-
level scheme for illustration. Then we can write

%= - j (Typ+ T n (E)C e E*BTe1 dE + j T, n,(E")C e F'*B%e2 dE" + f T, ny(E")C e E"/*BTesqE” | (20)

where the integrals run over all the states in each subband, and I';, is the fofal scattering rate from level

i to level j. Now, (20) can be rewritten

dny

a (Qp+ adn + aymy+ agng,

(21)

where %, is the total number of electrons in level i [as opposed to the density of states n;(E) of level ].

The parameter a;; is just

- -1
a”=<fI‘“n,(E)C,.e'E/”BTeidE>(] ni(E)C‘e‘E/”BTeidE> =f T,e”dy , (22)

where once again y=E/k, T,;. Although the con-
tribution to I';; is just the scattering rate 1/7, the
average in (22) is not the same as that leading to
the momentum relaxation rate and thus o;; is not
just (1/7). Rather, the average is that appropri-
ate to the energy relaxation time, although the
signs on the various contributions are different.
Thus, we can use (7) and (9) in (22) to give the
contributions to a;; due to zero-order coupled
phonons and first-order coupled phonons, respec-
tively. These are just, for scattering from level
¢ in subband a to level j in subband b,

1/ s
o D¥(mypmy) By (€0l +1\ .,
i50= Pli2w ;0 e*o -1

(23)

and

2D ®m ym B ok Te; (e"o"‘e' +1

pulw,, % )(2+xe,)e Aij
m

Q5=

(24)

Equations similar to (21) can also be written
for either levels n, or n,, but not both as the set of
three yield only two independent equations. The
third equation is just the conservation of the total
density

NG=N,+Ny+ Ny . (25)

These equations can then be solved in a straight-
forward manner to yield the fractional occupations
nl/ns, n,/ng, and n,/n, in terms of the various cou-
pling constants o ;.

It should be noted at this point that the rate at
which scattering occurs both within a particular
level and out of that level depends only upon the
characteristic electron temperature T,; of that
level. Thus, a set of two balance equations can be
solved independently for the velocity-field charac-
teristics of each level and the three levels joint
total velocity-field characteristics found through
determining the total current. Since J=#ev,, then
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the partial occupations of the three levels found
above can be used to find the effective velocity as

Vg= (0, /gy + (M /M )04y + (M3/M IV - (26)

V. ELECTRON INVERSION LAYERS IN SILICON

In a quantized electron inversion layer at the
surface of (100)-oriented silicon, the six equiva-
lent minima of the bulk silicon conduction band
split into two sets of subbands. One set consists
of the subbands arising from the two valleys which
show the longitudinal mass in the direction perpen-
dicular to the surface. This set has energy levels
E,, E,, E,, ...in the notation of Stern and How-
ard.’® The lowest subband at the surface E, be-
longs to this set. The other set of subbands arises
from the four equivalent valleys which show a
transverse mass in the direction normal to the
surface. This set has energy levels designated as
E!, E|, E}, .. .. Generally, these levels line up
such that Ej is almost degenerate with E,. Except
at very low temperatures, it is unreasonable to
assume that all of the electrons are in the lowest
subband. However, it is not a bad approximation
to assume that most of the electrons occupy the
three lowest levels E;, E,, and E{, and this was
done in I. This approximation will also be taken
in the present work. As mentioned above, the val-
leys are uncoupled in the two balance equations
and these can be solved for each valley separately
to determine its parameters. Then the fractional
occupations of the valleys are found from the tran-
sition rate equations of the previous section and
the total effective mobility or velocity is found.

Scattering between the two equivalent valleys in
the E, and E, subbands involves g-type phonons.*!*
These phonons couple the [001] valley with its part-
ner along the [00T] direction. In the present cal-
culation, the scattering between these two minima
will be treated by using a high-energy phonon of
750-K equivalent activation temperature (T, = 7w,/
kg) and a low-energy phonon of 134-K equivalent
activation temperature. The former is chosen as
it is the value of the LO phonon that is allowed in
the g process. It is treated via a zero-order in-
teraction. The 134-K phonon is found to be the
strongest low-energy g phonon in magnetophonon
resonance studies in silicon.!” This phonon is for-
bidden in zero-order!®!® and will be treated by a
first-order interaction.

Scattering between the two subbands E,, E,, and
the four E} subband valleys involves f-type pho-
nons.*'%, For this scattering, which is primarily
responsible for repopulation among the subbands,
f phonons of 630- and 230-K equivalent activation
temperatures are utilized. The former is zero-

order coupled while the latter is the value of the
zone-edge TA phonon which is forbidden to zero
order. This is treated via the first-order inter-
action.

Scattering between the valleys of the E} subband
involves both the g- and f-type phonons. As inI,
it is a viable procedure to use just two effective
phonons of 630 and 190 K for these phonons, as is
also done in treating bulk silicon. The former is
zero-order coupled while the latter is first-order
coupled since all phonons which could contribute to
this low-temperature interaction are forbidden.

In this work, as inI and in bulk silicon,? all of the
high-energy phonons are assumed to be coupled
with a value of D=9 X 10® eV/cm and all of the
first-order coupled phonons are assumed to be
coupled with D, =5.6 eV. A value of Z,=12 eV,
appropriate to the surface,'! is taken for the de-
formation potential of acoustic scattering. The
values of the unknown constants G(GN,= 2.5 X 10*°
cm™2) and L5(0.5 10\2) were taken so that the total
calculated mobility for n =10'?/cm? at 300 K
agreed with the experimental data of Fang and
Fowler,? used in I. Thisvalue was then considered
constant throughout the rest of the calculations.

The values for the various masses are their
normal values and are tabulated in Stern' and How-
ard.!> The level thicknesses w; are taken from
the self-consistent calculations reported in the
same references and from estimates made using
a triangular-well approximation. Their variation
as well as the variation of the energy levels with
temperature of the lattice is explicitly taken into
account.

The calculated low-field Ohmic mobilities for
electrons is 600 cm?/V sec at 300 K and 2500 cm?/
V sec at 77 K for an inversion density of n =102/
cm? For n,=10'3/cm?, a mobility at 300 K of 390
cm?/V sec is calculated. In Fig. 1, the velocity is
shown as a function of electric field at 300 K for
ny=10'2/cm? and n = 10'3/cm? for (100) silicon.
The mobility increases above the Ohmic value for
fields in the range 102-10% V/cm, due primarily
to the falloff of local potential scattering as T, in-
creases. For fields above 103 V/m, the lower
subbands are becoming very hot and carrier trans-
fer into the E{ valley begins. This upper valley
remains relatively cool for fields below 20 kV/cm.
For fields above this, however, heating of this up-
per set of valleys begins to become significant and
the repopulation will eventually redistribute the
carriers equally among all valleys at very high
fields. The carrier transfer from the E, and E,
valleys to the Ej valley can be seen in the velocity-
field curves as an inflection point. It is most prev-
alent in Fig. 1 in the curve for n,=10'*/cm?® at a
field in the vicinity of 10* V/em. The relative
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populations of the E, and E} subbands are shown in
Fig. 2 for n,=10'?/cm? and in Fig. 3 for ny =103/
cm?, The experimental data of Fang and Fowler?®
for n,=6.6 X 10'2/cm? is also shown in Fig. 1. It
can be seen that the agreement is very good with
this data. It can also be seen in Fig. 1, that when
the upper valleys begin to become hot, the direc-
tion of the field is important, since all four val-
leys are equivalent only for a field along the (110)
direction. For other field directions, redistribu-
tion among these valleys becomes important.

The velocity-field curve calculated for ny=10'2/
cm? at 77 K is shown in Fig. 4. Hot-electron ef-
fects and repopulation of the various valleys set
in at much lower electric fields at this tempera-
ture. Significant repopulation results in an inflec-
tion point in the velocity-field curve in the region
around 200 V/m. The relative populations of the
E, and Ej subbands are shown in Fig. 5. Repopu-
lation occurs over a relatively narrow range of
electric field and is essentially complete by a field
of 300 V/cm. Even though the large population
shift occurs from the light mass E valley to the
heavy mass E{ valley, the velocity increases

107
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>
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T b
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103 104 108
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FIG. 1. Velocity-field curves calculated for z
=10'%/cm? and n, =10'3/cm?, on (100) silicon, are
shown. The data of Fang and Fowler (Ref. 5) for ng
=6.6%x10'2/cm? are indicated by the open circles. The
solid curves are for the drain-source electric field
parallel to the [011] direction, so that the four valleys
of the Ej subband make the same angle with the field and
are thus equivalent. The dashed curves are for thedrain-
source electric field parallel to the [010] direction, for
which repopulation occurs among the four valleys of the
Ej subband as it becomes hot.

1.0

300K
05 1012 ¢m2
(100) Si
- Do
s
0 1 1 1 1 1
103 104 105

FIG. 2. Relative populations of the Ej and Ej subbands
are shown as a function of the electric field for n
=10'/cm? at 300 K.

monotonically with the electric field, as can be
seen in Fig. 4. No negative differential conduc-
tivity exists in this system, at least for the values
utilized in the present calculation. Hess and Sah®
show such an effect occurring at 77 K, although at
much higher fields, so that it can only be specu-
lated that it arises in their calculations from re-
population. It would indeed be surprising if such
an effect did occur since the ratio of the densities
of states for these two sets of valleys is so low,
being essentially only about 4. However, negative
differential conductivity due to equivalent valley
repopulation is known in bulk silicon, in the case
that the electric field makes different angles with
the individual valleys, although this effect occurs
at lower temperatures.?’ The onset of this insta-

1.0
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n
s
300K

ng 1013 cm2
(100) Si

0.5~

103 104 105
ELECTRIC FIELD (V/cm)

FIG. 3. Relative populations of the E, and Ef subbands
are shown as a function of the electric field for =g =1013/
cm? at 300 K.
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FIG. 4. Drift velocity of electrons calculated for n
=10'2/cm? is shown at 77 K as a function of the drain-
source electric field. For these values of the field, the
upper Ej subband remains relatively cool so that there
is effectively no difference among the various directions
lying in the surface.

bility actually occurs at fields very near to those
for which repopulation occurs in the present cal-
culations, so that there is good confidence in the
current calculations and one can not rule out the
possibility that negative differential conductivity
could occur in the inversion layer for some values
of surface carrier density.

V1. CONCLUSIONS

The inclusion of intervalley scattering in treat-
ing the transport of electrons in inversion layers
in silicon yields very good agreement with those
experimental data that are available. The results
found here include both zero-order and first-order
coupled intervalley phonons and takes account of
the repopulation among the three lowest subbands.
Repopulation of the various subbands results in
transfer of most of the carriers out of the E, and
E, subbands into the heavy mass E{ subband. How-
ever, at very high fields, above 10° V/cm at 300
K, this process is reversed as the heavy-mass
valleys become hot. At these very high fields, the
carriers are sufficiently hot that the inversion lay-
er appears bulklike. with the carriers equally dis-
tributed among the various valleys. In fact, the

1.0
"o
L s
77K
(100) Si
0s |- ng = 10'2/cm?

ELECTRIC FIELD (V/cm)

FIG. 5. Relative populations of the E, and Ej subbands
are shown as a function of the electric field for ng
=10'%/ecm? and 77 K.

saturated velocity approaches that of bulk material,
approximately 10” cm/sec. The role of other sub-
bands is not expected to change the results much.
Although the higher subbands show larger mobil-
ities due to an increase in w;, they get hot at lower
applied electric fields, so that the net effect does
not modify the high-field behavior to any great ex-
tent.

At 77 K, the repopulation occurs at much lower
fields, in fact at fields close to where it occurs in
bulk material® for E along a {100) direction. Al-
though repopulation occurs, the velocity-field
curve remains monotonic in character and there is
no evidence of any negative differential conduc-
tivity. The ratio of densities of states for the val-
leys on (100) silicon is only about 4, a value that
should be too low at these temperatures to generate
any negative differential conductivity. For ex-
ample, in GaAs this effect occurs in the bulk ma-
terial when carriers transfer from the central val-
ley of the conduction band to the subsidiary valleys
lying along the [100] directions. However, the ra-
tio of densities-of-states in that case is about 70,
more than an order of magnitude larger than in the
present case. In silicon, the effect is known to
occur at much lower temperatures for repopula-
tion among the [100] valleys when the electric field
does not make the same angle with all of the val-
leys. Again in the case at 77 K, as at 300 K, for
still higher fields than those shown, the velocity
saturates near the bulk value of 107 cm/sec.??

In conclusion, it has been shown that hot-elec-
tron transport in inversion layers at a silicon sur-
face is dominated by intervalley scattering. When
proper treatment of all necessary phonons is in-



14 HOT-ELECTRON EFFECTS IN SILICON QUANTIZED... 5371

cluded, results agree well with experimental data.
This good agreement is obtained by utilizing val-
ues for the deformation potentials that agree with
bulk values. Although agreement at a single tem-

perature can also be obtained by using a single
phonon and adjusting the coupling constant,®” the
incorporation of all the important phonons avoids
this ad hoc procedure.
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