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Application to magnetic anisotropy energy of nickel
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In cubic symmetry, the description of a scalar anisotropic physical quantity E relative to a static property of a
given material can be made with the help of various expansions in terms of symmetrical polynomials or cubic
harmonics. A general method for generating the relevant symmetrical polynomials up to an arbitrary order is

presented and a new set of cubic harmonics particularly suitable to this problem is tabulated up to order
I = 36. The relations of the latter with the symmetrical polynomials are set up. A careful study of the very
important case where E can be accurately measured only in the planes I100I and I110I is made. From the
knowledge of the Fourier expansions of E in these planes the conditions for deriving E in a unique way for
arbitrary directions are given. It is also shown that some of the coefficients appearing in the former expansions
of E may always be determined unambiguously whatever the order up to which these expansions have to be
performed. Practical applications of these results are developed with specific reference to the magnetic
anisotropy energy of nickel at low temperatures. This study demonstrates the advantages of this method of
analysis over the usual procedures.

I. INTRODUCTION

The physical properties of crystals are defined

by relations, usually of tensorial type, between
several measurable quantities which are associated
with this crystal. Many properties may be speci-
fied by a relation between a scalar quantity and a
polar or axial vector. Some examples are given
by the free energy of a single-domain ferro- or
ferrimagnetic crystal in equilibrium as a function
of the magnetization vector E(M) or by the radius
of the Fermi surface for a metal as a function of
the direction u of the wave vector k~(u).

In a general way, a scalar quantity E may be
expressed as a function of a vector V through an
expansion of the form

parity and the time-reversal symmetry of V imply
some restrictions on the existence and the form
of the a tensors. Introduction of the time-reversal
operation requires a distinction between time-odd
and time-even tensors according to whether or not
their components change sign on time reversal. '

Here we shall restrict ourselves to the case where
the property under consideration is static, so that
there is no preferred direction in time, E being a
pure scalar time-even quantity and V a polar or
axial time-odd vector. With the above conditions
all the odd-order tensors in (l) are time-odd and
so must vanish; E may be rewritten

E = ~.+ ~;,n, otj+ ~&j»&&~j~k~, +
t, j, k, l

E =a, + a,.u;+ u; j n& nj+ a&» a&njak+ ~ ~ ~,
i f, j i, j.k

where the n,. 's (i =1, 2, 3) are the direction cosines
of V in an orthogonal coordinate system xyz.

The form of expansion (1) is such that the depen-
dence of the a tensors on V is only through its
modulus

~
V~. These tensors, which may be de-

pendent on other parameters (temperature or
hydrostatic pressure, for example), are charac-
teristic of the physical property under considera-
tion.

The point-group symmetry of the crystal, the

When further restrictions imposed by spatial
symmetry are expressed, the appropriate expan-
sion of Z in terms of increasing powers of the
direction cosines of V is obtained.

For some applications, such an expansion is
hardly tractable and the expansion (3) in terms of
the spherical harmonics Y, (0, Q) of the direction
(8, Q) of V is more appropriate

E=Q Q A( Y, (6lp).
l=O m=-l

The main advantage of the spherical harmonics
is that they form a complete orthonormal set of
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square integrable functions on the unit sphere.
The convergence of expansions (2) and (3) is not

necessarily rapid and the order to which one may
limit them is essentially dependent on the kind of
experiment and the accuracy of the measurements.
It will be seen that to describe correctly the varia-
tion of the anisotropy energy in nickel at liquid-
helium temperature, an expansion up to the 18th order
at least is required, while for iron at the same
temperature there are no significant terms beyond
the 8th order.

The usefulness of such expansions up to such
high orders may be questionable since it is almost
impossible in the frame of available theories to
calculate from first principles the components of
the a tensors or the ~, coefficients. But, as we
shall see later, these expansions are absolutely
necessary for correct analysis of the experimental
data.

Furthermore the evolution of the scalar quantity
E as a function of various parameters, such as
temperature in the case of anisotropy energy, or
any comparison of the properties of different
materials is most easily described using the coef-
ficients of the above expansions.

Our study will be limited to crystals with cubic
symmetry for which the relevant point group is
0„. The expansion in terms of direction cosines
is relatively simpler in that case; on the other
hand the corresponding expansion in terms of
spherical harmonics is more complicated because
one of the three fourfold axes plays a privileged
role as z axis. Although this problem has already
been extensively studied by several authors
(references will be found in the papers by Altmann,
and Cracknell, -' Mueller and Priestley, ' and Birss
and Keeler'), important questions remain unclear
for some practical applications.

In Sec. II the explicit forms of the expansions
appropriate to 0& symmetry are recalled: ex-
pansion (2} is preferably expressed in terms of
suitable symmetrical polynomials and expansion
(3} is written in terms of normalized linear com-
binations of spherical harmonics invariant in
cubic symmetry' (cubic harmonies). Specie. l atten-
tion is paid to the number of independent coeffic-
ients to be determined up to a given order. From
the symmetrical polynomials, it is possible to
derive a set of cubic harmonics the coefficients of
which are square roots of exact rational ratios.
The relations between the symmetrical polynomials
and these cubic harmonics are tabulated and thus
we avoid any fruitless discussion about the respec-
tive advantages of either type of expansion.

Section III is mainly devoted to the methods of
extracting from the experimental data the coeffic-
ients of the above expansions. In principle, n mea-

II. EXPLICIT FORMS OF THE EXPANSIONS FOR O~

SYMMETRY

A. Number of independent coefficients

The appropriate form of the expansion (3) in
terms of spherical harmonics may be written

E=+ 8(,K;, ,

where the A, „called the cubic harmonics, ' are
linear combinations of the spherical harnionics
normalized on the unit sphere and invariant under
the operations of the 01, group. Generally, we
have

K, , =g,a, C, (6)

where the C, „are real normalized spherical
harmonics. ' The index i labels the g, different
independent cubic harmonics for a given l when

g, &1. g, is simply given by the number of unit
irreducible representations F', of the 0& group
contained in the reduction of the representation
D,' of the full rotation group. Using the character
table of the 0& group one easily gets

(6)

for l even, where the symbol [x] denotes the larg-
est integer ~ x, and, of course, g, =0 for l odd.

surements of E for n arbitrary directions of V
provide n equations for determining n coefficients
in the expansion of E; but the experimental diffi-
culties usually do not allow the possibility of get-
ting reliable enough results for directions of V
outside the symmetry planes (100] and (110j for a
cubic crystal. The consequences of these limita-
tions on the number of independent coefficients in
the expansions which can be obtained, are dis-
cussed. General methods are proposed for the calcu-
lation of the coefficients from the experimental
data according to the convergence of the expan-
sions.

In Sec. IV, the methods outlined in Sec. III are
used and the unknown coefficients of the expansions
of E in terms of symmetrical polynomials are ex-
plicitly determined from the results of Fourier
analysis of the experimental data in the symmetry
planes.

Some experimental results for the magnetic
anisotropy energy of nickel at low temperatures
are analyzed in Sec. V. This reference to a typi-
cal experimental situation will make evident the
usefulness of our method which allows the deter-
mination of the first coefficients of our expan-
sions without having to invert any system of equa-
tions.
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Mueller and Priestley' with the choice of a pax"tic-
ular set of cubic harmonics, give numerical
values of the coefficients &a, with 8 significant

figures up to l = 30.

thus allows one to define a cubic harmonic K'„

which may be written

B. Symmetrical polynomials

Let e„n„n, be the direction cosines of V with
respect to the three fourfold axes of the cube. The
equivalence of these three axes leads immediately
to an expansion for F. of the form

with l even and n, m ~ 0; 8 Rnd P are defined by

3 = 3(cqc2+ Q2Qp+ cx3Qq),

I = 27e,e2n3,

(3)

(9)

where the coefficients 3 and 27 are such that the
above expressions both vary from the minimum
value 0 for direction (100) to the maximum value
1 for direction (111). The A. „' are independent
coefficients to be determined fxom experiment.
The number g, of coefficients A„' for a fixed.
value of / is equal to the number of integer solu-
tions of the equation

It is easy to check the agreement with the previous
determination of g, from group theory. For ex-
ample, in the case of /= 24, we have three coeffi-
cients: A,' „A.,' „and A.,'",.

As we shall see later in this paper, the partic-
ularly simple form of expansion (7) is certainly
the most convenient for analyzing experimental
data. Its only disadvantage comes from the fact
that the different monomials 8"I'" are neither
ox thogonal nor normalized.

For those who would prefer, however, to use
an expansion in tex ms of spherical harmonics, we

have been led to build R set of cubic harmonics
related with the above polynomials in a more
straightforward way than the cubic harmonics of
Mueller Rnd Priestley from which they differ fox'

$~~ 12.

C. Cubic harmonics

A monoIQlRl such Rs S I', of ox'del E= 4R+ 6Bl,
being invariant under the operations of the cubic
group, may be expxessed as a linear combination
of spherical harmonics associated with the I",'
representation of the 0& group. The maximum
ord6x' of these sphex'lcRl harmonics ls obviously
l.

A cubic harmonic of order / is then defined by
normalizing on the unit sphere the part of order /

of the above linear combination. Each monomial 8"P

The explicit method for obtaining these cubic
harmonics is given in Appendix A, but the following
remarks must be made: (i) The coefficients
g'„'I appearing in (11) have the advantage to be
kDowQ exRctly; their squax 6 lD 1.RtloQal fox'IQ RDd

theix numerical values with eight exact figures up
to f = 36 are available. ' (ii) When g, = 1 our cubic
harmonics are of course identical with those
given by other authors, as they are unique: K,
= K„~. (111) When g( 1, we obtain g( independent

cubic harmonics K„' „derived from the g, indepen-
dent monomials 8"P with 4m+ 6m = E. The cubic
harmonics involve coefficients a'„' which are still
square roots of fractional ratios, but they are no

longer orthogonal within each subset of order /, .
Their main advantage is that they may be expres-
sed quite simply in terms of the symmetrical poly-
nomials. If necessary, each subset of cubic har-
monics of order / may of course be orthogonalized

by the usual procedures.

9. Relations between the two kinds of expansion

Kith the previously defined cubic harmonics the
Rnlsotx'oplc scR1Rx" quRDtlty E may be written

Of course expansions (7) and (12) involve the
SRme Dumbel of lDdepeDdent coefflclents which

depend only on the required precision to fit the
experimental data. In order to obtain the relations
b6tween the two lndependeQt sets of coefflclents
A„' and 8„' the 8"P will be expressed in terms
of the cubic harmonics K„' . For convenience we
introduce the functions H„' related to the cubic
harmonics by

(13)

%6 cRD then w'lite

with, fox'the integers X, p, p. , ~= 4v+ 6p, .
According to the way we have derived the cubic

harmonics we note that tn Etl. (14), for ~= l, I1„
is the only nonvanishing coefficient.

The DumellcRl VRhles of the p p'~ ln rRtloQRl

form are also available' for /» 36. In Appendix 8
the method used to get these results is summa. -
l'ized.
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III. ANALYSIS OF THE DATA

A. Fourier expansions in the symmetry planes

As has already been stated, in most cases the
anisotropic scalar quantity E can be measured
conveniently in the symmetry planes of the cry-
stal only, i.e. , in cubic symmetry, the(100j and
the (110jplanes. The main reason for these
restrictions is particularly clear in the specific
example of the magnetic anisotropy energy of
ferromagnetic crystals: the external magnetic
field H must be rotated in a symmetry plane in
order that the magnetization vector M remains
in the same plane as H, and thus has its direction
accurately calculable from the measured torque,
for instance. '

The experimental variations of E(8, &6) in the
planes [100j or (110j can be given as expansions
in terms of the angle 6 between the measuring
direction and the [001] direction:

K

E,o»
= E(8, 0) =A(8) = g as» cos4k8,

k=O

K

E„»=E (8, sm) =B(8)= b» cos2k8.
=0

(15a)

(15b)

B. Uniqueness of the inversion

We shall discuss successively three different
cases depending on whether experimental data
are taken in a single or in both symmetry planes.

l. 1100$ plane only

Projection of Eq. (7) involves only the coeffi-
cients A„' „because P =—0 in this plane. The ex-
perimental expansion (15a) limited to an order
L = 4K, according to the accuracy of the measure-
ments, is identified with the above projection
limited to the same order (n (K,). We obviously
get a linear system of (K, + 1)-independent equa-
tions with K, + 1 unknown A„' 0 Therefore, ex-
periments in the (100j planes only, allow the de-

The orders 4K, or ~ up to which the above ex-
pansions are limited depend on the accuracy of
the experiment. In these conditions a given number
of coefficients a,» or(and) b» may be obtained
from the experimental data. By projecting Eq. (7)
in the two planes (100j and (110j, the coefficients
a„and b» are expressed as linear combinations
of the A„' . In what follows we discuss in detail the
the possibility of inverting in a unique way the
previous linear system in order to obtain the un-
known coefficients A„'; this last point is of
fundamental importance for the knowledge of E
for an arbitrary direction, i.e. , for a complete
description of the investigated anisotropic prop-
erty.

termination of all the coefficients A' for which
I,- L=4K..

2. Ill0) plane only

As E is extremal for the symmetry direction
[111],we must have

= 0, cos8, = I/v 3
dB
dg (16a)

thus the K, +1 experimental coefficients b» are
not independent and they must obey the following
relation:

»
K

kb» sin2k&o= 0.
k=1

(16b)

Projection of Eq. (7) limited to the order L= 2k»
involves all the coefficients A„' up to this order.
The number Ni of these unknown coefficients is
given by

(17)

3. (100j and fll0j planes

We now use both experimental expansions (15a)
and (15b) with K, = [&K»], and projections of Eq.
(7) in both planes limited to the order L = 2K,.
The number Ni of unknown coefficients A„' is
still given by Eq. (17). In order to have the num-
ber of independent Fourier coefficients, we must
take into account the following relations required
by the symmetry of the problem:

A(0) =B(0),

A. (-,'w) = B(-,'v),
(18a)

(Iea)

e 0 d6 e-
(20a)

The experimental coefficients a,k and b» must
then satisfy

~~

K K

&.k =
k=0

(18b)

where the values of g, are determined by Eq. (6).
The linear system of equations obtained by iden-

tification of the experimental expansion (15b) with
this projection is then a system of K~ -independent
equations for K,) 2. It is easy to check that, up
to L=2K, (10, we have K, =Ni and so, experi-
ments in the [110jplanes only allow a unique
determination of E. On the other hand, for L~ 12,
as Ni)K, we have an indeterminate system, but
we shall see later that the coefficient A', , (and
of course A', ,) can still be determined in a unique
way.
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(-1)'a = Q (-1)'5„,

4 k'a4~ = k'5,„.
=l

(19b)

(20b)

C. Direct determination of the first coefficients

A', , is immediately given in either of the two
planes by Eq. (18b). In the same way, using the
projections of Eq. (I) in the two symmetry planes,
we get from relations (20)

We express by Eqs. (20) that near the fourfold
axis I001), (6'E/68'), , is independent of Q; this
property results directly from the fact that when
8- 0, E(8, P) = n+ P8'+. .. , where a and P are con-
stants.

We then have K, +K~+ 2 coefficients a~ and b»
which are subject to the four Eqs. (16b), (18b),
(19b), and (20b). One may easily see that these
four relations are independent for L= 2Kb ~ 8, but,
if we expect the trivial case where L=O, only
three of them are independent for L = 4 and L = 6.
Therefore, experiments in both symmetry planes
lead, after checking their reliability through the
previous relations, to (Nc =K,+K, -1)- or (Ãc =K,
+ JC, -2)-independent Fourier coefficients accord-
ing to whether 4 «L ~ 6 or L & 8, respectively.
The values of N~ and N~ are compared in Table I
and we see immediately that Nc =N~ for L ~ 16.
So a unique determination of E is possible up to
this order. But for L~ 18, we haveN~&N~ which
means that there is an infinity of functions E(8, P)
compatible with A(8) and B(8).

It must be noted that with a particular choice of
cubic harmonics MueQer and Priestley' have al-
ready shown that a unique expansion of the aniso-
tropic quantity is possible for L&18 from data in
two planes.

The reason for the indeterminacy appearing for
L » 18 will be discussed below together with a
possible process of inversion for this case. How-
ever, we shall show first that all the coefficients
A'„up to the order 1 = 10, that is, the first five
coefficients of expansion (7), can always be unam-
biguously obtained. This is a particularly inter-
esting feature of the expansion of E in texms of
symmetrical polynomials which does not exist for
an expansion in terms of cubic harmonics.

TABLE I. Comparison, for each value of I, between
the number &c of independent Fourier coefficients in
the symmetry planes and the number &L, of unknown co-
efficients in the expansions (7) or (12) of E.

6 8 10 12 14 16 18 20 22 24 ~ ~ ~

(21)

= 16 k46,„

78A j 0+ 162A() 1 + 216A2 () (23)

=-64 k b~

1176A i, o 8100Ao, z

—14 040A,'+ 14 580A", , + 19440A"„.

As all the A'„, are known from data in the (100}
plane, Eq. (23) provides A,', and then Eq. (24)
provides A,",. The following unknown coefficients
cannot be derived from higher-order derivatives
because, at each step, at least two new indeter-
mined A. „' appear.

This possibility of obtaining uniquely the five
first A,' in the expansion of E, irrespective of
the total number of coefficients necessary to de-
scribe the property, is of fundamental importance
and, to our knowledge, has never yet been used.

The complete inversion of the systems involved
in the three cases of Sec. III B will be discussed in
Sec. IV.

K
2

K

A' = —— k'a = —— k'b
X,o

= j. -1

Th~s result shows that t:he coeff~cxent A', o may
be determined independently in the (100) and (110)
planes and separately from the other coefficients

Besides the intrinsic importance of obtaining
directly A', 0, we can in this way check the reli-
ability of the data taken in two different planes
which may have been affected by slight variations
in the experimental conditions. This is particula, r-
ly important in the case of anisotropy energy mea-
surements because of the very strong variation
with temperature of the anisotropy constants. ' '

Pursuing the procedure initiated by Eq. (21), we
calculate higher-order derivatives of B(6) for
6) = 0. We thus get

K~ 1 1 2
2 3 4
2 3 4
2 3 4

2 3
5 6
5 7
5 7

3 4 4
7 8 9
8 10 11
8 10 12

e ~ ~

10 11 12
13 14 16 ~ ~ ~

14 16 19

D. Origin of the indeterminacy for L ~~18
The indeterminacy appearing at order 18 results

directly from the fact that the experiments provide
the values of E, only in nine planes: the three
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equivalent {100}planes and the six equivalent (110}
planes. Indeed, let us build the polynomial g of
lowest order w1th respect to ~„~„~,1nvar1ant
in cubic symmetry (0& group) and vanishing in the
nine symmetry planes. This polynomial must be
divisible by the ninth-order polynomial Q, defined
by

Q, = o.,o.,a,(a,' —o.2)(a2 —a,')(n,' —o.,') .
It may be noted that Q9, which 18 odd Und61 1Q-

version vanishes in the nine planes and is invari-
ant in the 0 group but not in the 0» group; Q, is
px'opoltloIlRl to the odd CUblc harmonic of lowest,
ox'dex K,. The ratio between our unknown polyno-
mial g and Q, must be odd Rnd invariant in 0 group
and is thus proportional to K,. Consequently f is
proportional to (K,)' and is of order 18. More
precisely, in what follows we will define g„as

Thus if A(8) and 8(8) contain nonvanishing terms
up to order I =18, for instance, it is of course
possible to find a set oIA'„ in the expansion (7)
of E fox arbitrary directions by choosing an addi-
tional condition such as A,"., = 0; but any other
solution of the type E —&|I)18, where & is an arbi-
trary parameter, will be equally valid.

In the same way, other polynomials g», g„„.. .
invariant in 0» group and vanishing in the nine
symmetry planes may be obtained by multiplying
tf), 8 by the SUccess1ve even cubic 1nvRx'1Rnts px'0-
portional to the cubic harmonics K„K„.. . . This
is in agreement with the fact that X~ -N~ = 1, 2, 3, . . .
for 18~ I.~ 20, K=22, I.=24, . . . , respectively.

It is easy to express g„defined by Eqs. (25) and

(26) in terms of S and P, as given in (6) and (9),
Rs

P„=27 2(-4P2+ SS'P+ 6SP' P' —4S3P-) . (27)

E. Attempts at optimisation for I.~ I8

%6 have aust seen that when L ~» 18 It 18 necessRry
to intxoduce additional axbitxary conditions to
achieve a complete inversion of the data. When
I.= 18, fox' example, there are 12'„' to be deter-
mined which are related by 11 equations only.
One additional arbitrary condition is then required,
but the results of the inversion vary from one
condition to the other. The aim of this section is
to find which could be the best condition. In fact,

A,"O,A.,",may be obtained directly as explained in
Sec. III C Rnd oIlly five of them, 1.6., A. o 2,gz»
8,"»A.,"»A,"„truly depend on our particular
choice. Thus, the part of expansion t', 7) limited to
the order 1= 18 which remains unknown involves
the same monomials S"P as the function $18 ex-

pressed by Eq. (27). This point results directly
from the fact that two diffex'ent solutions of the
problem E(8, g) and E(8, g) are necessarily rela-
ted by

(28)

where X is a real constant and P„ is the nor-
malized expression fox 4„. In what follows we
designate D(8, g) as the common part of E and E
involving the seven known A„', and e(8, Q) and

f(8, P) as the remaining parts; we have then

(29)

The simplest way of inverting our whole system
is to set A,",= 0 or A,",= 0. As there is no special
reason for setting any one of the five unknown co-
efficients equal to zero more than an other we
have tried to build a function E(8, Q) describing
our anisotropic physical property which would be
less arbitrary.

It was initially proposed to make the function
E(8, P) orthogonal to g». Starting from a function
E(8, Q) obtained from one of the above arbitrary
choices, the condition

leads to a unique function E(&, P) with &=(E~Q,g.
It is easy to check that Eq. (30) is equivalent to
minimizing (E(E) on the unit sphere. The value
of ~ obtained in this way i.s of the order of the con-
stant term Zoo, and the coefficient of I" for in-
stance, which is A,".in E(8, P), becomes of the
order of SOOA,', in E(8, P). Thus the function
E(8, P) is strongly affected by this condition for
any direction outside the symmetry planes, The
procedure 1s thus inadequate. An improvement 18
obtained if, instead of orthogonalizing E{8,P) to

p„, we orthogonalize only the unknown part f(8, P)
to Q» and thus take &= {e~Q,g. In this way &

is of the order of 0.2A,"„and a term such Rs

A,".,P' in E(&, P) is replaced by roughly -26A,"',P'
in E{8,P), a result which however is still not
very satisfactory.

It seemed to us moxe xeasonable, in order to
have as smooth as possible a surface r = E(8, P),
to build a function f(&, Q) in such a way that {f ')
- {f)'is minimum ({f)and (f') are, respectively,
the mean values of f and f'over allthe spacedirec-
tions; we must note that making (f(f) minimum is
equivalent to the condition (f') minimum). In this
wayAt'+' in E(8, P) is replaced by 35A,",P' in
E{&,p), this result is not more satisfactory.

The reason for this failuxe comes from the fact
that the function (t)„ is strongly anisotropic w'ith

very sharp peaks in 48 dix"ections, In the octant
where n„(2„n, are positive there are six such
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directions given by 3/2' A 1,0 -1 -4 -9 -16 a4

n] = 0.835 992 09, n,. = 0.504 896 07,

cy„= 0.214 935 27,
32/27

33/211 A 12
3,0

1 6 20 ~8

-1 -8

IV. INVERSION OF THE SYSTEMS

A. {100)plane

The projection of Eq. (7) in the (100j plane is

E&oo= QAo oS"
n=O

with

(31)

S"= (3"/2'") sin'"28.

From the relation

n

1

(32)

expansion (31) can be put in the form (15a) and

we get, by identification of the coefficients

K 3n rn
+0 24n 2n n 0~

n=0

K n

g42 = ( 1) 243 Z Can An, O
n=

(33)

We shall leave aside the determination of A,',
which is easily achieved by the relation (18b).
However, in some cases A,', cannot be obtained:
for instance, the most accurate studies of mag-
netic anisotropy energy, through torque measure-
ments, "provide only the first derivative with
respect to 8 of the projection of Eq. (7) in the
plane of measurement. The inversion of the linear
system (33) limited to L =4K, = 18 gives in matrix
form

where (i, j, k) is one of the permutations of (1, 2, 3).
Thus all the surfaces F(8, g) previously built differ
considerably from the surface E(8, Q) because of
the existence of these peaks (or holes). The best
condition is probably to choose ~ in such a way
that the area of the surface F(8, P) is minimum,
but this requirement is very hardly tractable.

To conclude this section, we think that for L =18
the most reasonable arbitrary condition is still to
setA,",=0 or A,",=0. The same procedure may
be pursued for higher values of L: (i) for L= 20,
we shall take Aa'2 = 0; (ii) for L = 22, two additional
conditions are necessary and we can take A", , = 0

= 0.

34/213 A4', 0

(34)

The corresponding calculations when L = 36 have
also been performed. '

It is to be noticed that the order of magnitude of
the factors 3"/2'" ' makes the contribution of
high-order coefficients A„', to the experimental
coefficients a4„decrease very fast with n. The
reliability of the determination of the former is
thus very sensitive to the accuracy of the experi-
ment.

B. (110I plane

The projection of Eq. (7) in the (110) plane is
obtained by replacing S and P by the expressions

S = 3 sin'8 —
4 sin'6},

P = —"sin'6- —"sin'g. (35)

As already pointed out, identification of this pro-
jection as a function of 0 with the experimental
expansion (15b) leads to a linear system of equa-
tions which is indeterminate for L = 2' ~ 12.
Thus the inversion is not so straightforward as
in the previous ca,se. Nevertheless, we shall
show below that it is possible to define linear
combinations of the coefficients A'„which are
related to the coefficients 6» by an inversible
system of equations. This possibility is of great
interest when it is necessary to use data taken
in both symmetry planes, that is when L-12,
because it simplifies considerably the inversion
problem.

In the (110) plane we get from Eqs. (35) the
identity

S = -P —4S + ~SP —4P, (36)

which simply expresses that the function $18
vanishes in the plane. Using this identity, the
projection of Eq. (7) may be written

E„,=Ao o+ Q (C„, S+C„, P+C„„S'P)P
m=0

(37)

The coefficients C~ are linear combinations of
the A„'; their derivation is developed in Appendix
C. The first C~ limited to the order L=18 are
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C4=A, 0,
12

C6 +0,1 +3,0 4 ~4,0

8 & 12 9 16
C8 +280 4+380 16 +450

g10 + g» +'g16 +. ..10 1,1 2 30 8 40

Before proceeding further in the identification
we recall that the coefficient A. ~ 0 ean be immedi-
ately calculated by Eq. (18b), and that the Ks+ 1
experimental coefficients b~ are not independent,
but must satisfy the relation (16b) which takes
the explicit form

12 1 12 3 16 18C12-&0,2
—4&3,0 —i &4,0-&3,1+'' '

~

In order to identify expansions (37) and (15b) we
write the monomials S"P in the form

&2= T&4+ 3 &6-~7'&8+ m &10+ ~~12
3913 y, 7616 y, + 6935
729 14 2187 16 729 18 (40)

8"I' = y~ eos2p6) .
—0

The derivation of the coefficients y~ is described
in Appendix D.

This is a good preliminary test of the reliability
of the experimental data.

Using Eqs. (37}, (39), and Appendix D, we get
the following results in matrix form:

3/2'

32/211

34/212

36/215

c,

C10

Ci2

2 20 130
Y Y7 ~8

211
nfl

176

68 (41)

[See the Ref. 6 for the expressions of Eqs. (40) and
(41) up to L=36.]

As in the previous ca,se, the order of magnitude
of the multiylicative factors of the coefficients

(33m+ 1/28m+ 5 33m+ 3/28m+7 33 +2/2m8m+ 11 fcr2P

C„, , C„, , C,+, , respectively) causes their
contributions to the coefficients b» to decrease
very fast with their order 2p, leading to the same
difficulties in their determination.

The relations (38) together with the inverted
system (41) confirm our previous conclusions:
(i) the coefficient A', 8 =C, can always be deter-
mined whatever the order L, = 2K, of the expansion
(15b) is; (ii) when L» 10,C„C„and C„are
simply equal to &~o,» &28.0~ and Agio» respectively,
and a unique determination of E is possible using
data taken in the (110] plane only.

C. (100)and (110) planes

%hen L, » 12, it is necessary to use data taken
in both (100] and (110) planes. The practical pro-
cess of inversion follows directly from the pre-
ceding discussions, and we note successively
that: (i) &8' 6 can be determined by Eq. (18b);
(ii) A ', , can be determined either by Eq. (34) or
Eq. (41). The formula coming from Eq. (41)
differs from the formula (22) because it does not
involve the coefficient 52. The former is easily
obtained from the latter by using Eq. (40). As al-
ready mentioned, this double determination of

A l ~0 is a good test of the re liability of the experi-
ments and can allow some corrections to be made
to the data before going on with the process:
(i) Eqs. (34) give all the coefficients A„' 8 up to
L=4n=4K, . (ii} Eqs. (41) give all the coefficients
C~ up to L = 2P = 2K,. It is then obvious by inspec-
tion of relations (38} that if L= 2K8 ~ 16 the deter-
mination of the coefficients of E is completed
simply by replacing in these relations the values
of the coefficients A„' 8 given by Eqs. (34). Note
that C, provide us with a supplementary test of
the reliability of the experiments. It is also clear
that for I.= 18 we meet an indeterminacy for the
A„' because we cannot separate AG"3 and A3",.

We recall now that, for any order I.= 2K„ the
relations (23} and (24} enable us to determine
266, and A1,8, from data taken in the (110]plane,
using only the coefficients A4, „A2' „and A. 3"0

known from data taken in the (100) plane. It is
much easier to derive A06 1 and Al 1 from these
relations than from Eqs. (38) which require the
knowledge of all the coefficients A„' 0 up to I.= 4n
= 4K,.

The applicability of this method of inversion
was tested' on an entirely calculable "experi-
mental" situation, i.e. , the surface obtained by
geometrical inversion of a cube with respect to
its center. It appeared that small numerical
errors in the highest Fourier coefficients affect
considerably the values of many coefficients 3, „'

of lower order.
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V. APPLICATION TO THE MAGNETIC ANISOTROPY

ENERGY OF NICKEL

The magnetic anisotropy energy of a ferromag-
netic crystal is a function" E,(T, H, ~, n) of the
temperature T, the projection H,-M of the internal
field along the direction of the magnetization and
the direction a of the magnetization. Nickel cry-
stallizes in the fcc system, so E, can be expanded
in terms of symmetrical polynomials of the di-
rection cosines of the magnetization in the form
(7). The coefficients A„' of this expansion which
depend on T and H,.M are called in this case
"anisotropy constants. " In order to determine
these constants, the most powerful experimental
method is to measure the mechanical torque I'
which must be applied to hold in place a spherical
sample, in a. uniform magnetic field high enough
to have a single domain. For given field and

temperature, l" is measured as a function of P,
the angle of the applied field H with the [001J di-
rection either in a (100j or a (110j plane. This
situation is necessary in order to deduce from
this angle P the angle 8 of the magnetization M
with the same origin direction because, when H

lies in a symmetry plane, the sample being a
single domain, M remains in the same plane and
we simply have

a'
4

I
a8

I
ai6

-10 700.48

—46.00

73.95

b4

b,'

b8'

b i'o

b)',

h ('6

—5194.78

—7485.58

-458.48

-29.85

38.3,'3

37.30

27.44

16.68

7.77

I
aop

a 24

3.75

—5.52

—3.02

2.28

b)o

b)4

b~6

h~8

b)2

1.40

—1.93

—2.53

—1.69

—0.49

1.23

1.49

TABLE II. Fourier coefficients of the expansions of
I

~pp and I (~p relative to a spherical sample of nickel for
&= 4.2 K and H=-19179 Oe. The a4'kand b2„are given in
experimental units (1 e.u. =- 58.68 ergs/crn~).

I'=HM sin(Q —6) . (42)

BEa 100 ~E 110
100 g g

(43)

It is of course impossible to determine A,', by
this method, but this coefficient is not relevant
to this problem. From Eqs. (15a) and (15b) we
get

Kg

~100 =
k= 1

Kg

[-sk „)s Skk= g,','s' skk,

(44a)
K K~

I;„= (-2kb,») sin2k0= P b,'» sin2k8.
k= 1 k=1

(44b)

We can use the coefficients a4k and b» directly
in the inversion procedure providing a straight-
forward change in the formulas. As an example
we give, in Table II, the coefficients a4, and b,'k
measured on the same spherical sample of nickel
for T = 4.2 K and H= 19 179 Oe (H,„=16981 Oe).
All the Fourier coefficients and the anisotropy
constants of this section, except in Table IV,
are given in experimental units further denoted

With the help of Eq. (42), it is thus possible, from
the Fourier expansions of I"„,a,nd I'„, measured
as functions of Q, to derive the same expansions
as functions of 6. I „,and I'„, are then related
to the anisotropy energy E, by

KII Ktl

A', 0= —', Q ka4»—- -', g kb,'» .
k= 1 k =1

(45)

We get A', , = -6970.31 and -6969.99 in the [100[
and (110j planes, respectively. The agreement
is very good and allows simultaneous use of the
two experiments when necessary. We then use
Eqs. (34) in order to get the coefficients A„' „ the
values of which are given in Table III. Although

as e.u. with 1 e.u. = 58.68 ergs/ cm' In Ta.ble II,
the coefficient 6,,' has been calculated as a function
of the other b'„using Eqs. (40) and (44b) and

compared with the measured value -5190.50. The
small difference is easily explainable by para-
sitic torques'" which mainly affect this term. The
fact that we never use the measured value of 62 in
the inversion procedure, except to compare it to
the calculated one, is of a great interest for
minimizing the effects of these parasitic torques.

Our experimental procedure enables us to de-
termine the coefficients a4„and b,'k up to K,
=[—', K,]=8 and K, = 17. The convergence of the
expansions (44a) and (44b) appears to be sufficient
at this order and the high-order terms can be con-
sidered as an experimental "noise. "

We first determine A', 0 independently from the
two experiments by formulas (22) which may be
rewritten here as
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TABLE III. Anisotropy constants A„'
0 (in experimen-

tal units) of nickel for T =4.2 K and H =19179 Oe, which

may be deduced from the values of the a~ given in Table
II.

A&0
4

A2. o

A,'2,

A4'60

A2o
5s0

6s0

A28
?, 0

A
8sO

-6970.31

—862.40

1493.52

-6431.98

30 642.80

-65 244.73

63 343.33

-23 320.87

A1 p: 6958 79) A3 p 1723 16

As 1032 71 A 6Q 837 1

There are two ways of proceeding further by
using either Etls. (41) or relations (23) and (24)
which may be rewritten here as

(46)

-8 k'b',
~

= -78A', , + 162A', , + 216A,' 0, (47)
=1

32 k b2y 1176A 1 p 8100Ap 1 14 040A o Q

the torques were measured with a relative accuracy
of 10 ', this is not sufficient to allow for the de-
termination of the higher-order coefficients as
might be expected after the study of a test example
which showed that the precision of a standard
computer calculation was itself inadequate.

It is therefore absolutely necessary to truncate
the experimental expansions at an order above
which the coefficients seem to become unsignifi-
cant, i.e. , in this case, at Z, = 9 and fC, = 4 (be-
tween upper and lower part of Table II). From
(45) we recalculate A', , obtaining A', , = -6958.79
and -6949.96 in the (100) and it110i planes, respec-
tively. The agreement is not as good as before,
but yet acceptable. We then get by Eqs. (34)

The value of C4 differs slightly from that calcula-
ted from Etl. (45) because the coefficient b2 enter-
ing this formula was calculated before truncating
the expansion at order 18. Using formulas (38)
and the values (46), we deduce from C, and C„,
respectively, A, p l 156 80 and A,",= 619.92. These
values are in good agreement with those of (49) .
We can calculate C, = -211~ 24 which, on compari-
son with its value in (50), confirms the agreement.
It is impossible to go further in the inversion
using C» to C„because of the indeterminacy
arising at L=18.

We draw attention again to the advantage offered
by the possibility of determining A', , without the
complicated inversion of the experimental data.
For this purpose, we have analyzed the data taken
at various temperatures in the (110j plane for
nickel (values extrapolated to H, „=0'") assuming
that only the three coefficients A', „A', „and A', ,
were sufficient to describe the anisotropy energy
of the material. These coefficients were calcula-
ted from b,', b,', and b,'; the resulting value of

p is compared in Table IV with its value ob-
tained without any assumption from formula (45).
We see immediately from this comparison that
more than three coefficients are required to des-
cribe correctly the anisotropy energy of nickel
at temperatures lower than about 100 K. A simi-
lar test with two coefficients only shows, contrary
to the usual practice described in the literature,
that it is never possible to describe this anisotropy
with the two constants K, = 3A', , and K, = 27A', ,
In contrast to the case of nickel, two constants
are sufficient to represent the anisotropy energy

TABLE IV. Comparative values of the anisotropy
constants A&4

0 of nickel at various temperatures ob-
tained from data in the (110) plane, (I) using only three
Fourier coefficients and, (II) using all the available co-
efficients with Eq. {45).

A) 0
(10' ergs/cmo)

I II

+ 14 580A
y y+ 19 440A3 Q

~ (48)

A' = 149.40, A' = 621.10.t

Besides, inversion (41) provides

(49)

C = -6949.61,

C, = -938.50,

C, = -216.70)

C ~p 3100 02

C, , = -902.91,

C14 1860 70

C„=1161.09,

C1s: 183 97

(50)

From the value of A', , obtained in the (110) plane
and relations (46)-(48), we get

4.20
21.50
35.00
50.55
78.35
95.15

109.15
125.15
155.75
185.55
212.90
245.10
273.15
294.60

4.212
4.006
3.711
3.333
2.786
2.406
2.109
1.778
1.288
0.898
0.628
0.397
0.258
0.183

4.049
3.895
3.646
3.304
2.780
2,404
2.110
1.780
1.289
0.898
0.628
0.397
0.258
0.183
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of iron at all temperatures. '
The different tests which were used in this sec-

tion~ such Rs the detel mlnatlon of +1 0 And C8
from data, ln both symmetry planes, allow an esti-
mation of the reliability of the coefficients A„
obtained by inversion of the experimental data;
this reliability would be almost impossible to pre-
dict from the initial accuracy of the measurements.

VI. CONCLUSION

The scalar quantity E{6,P) may be expanded in
terms of symmetrical polynomials as well as in
terms of cubic ha, rmonies. All the coefficients of
these expansions may be obtained in a unique way
from measurements taken in a(110) plane only
when the order of these expansions is J ~ 10, Rnd

from measurements in both the (110) and (100I
planes when 12 ~ L, + 16; for L & 18, there is no
longer a unique solution of the problem. However,
it should be emphasized that the first coefficients
A„' of the expansion in terms of symmetrical
polynomials may be obtained in a unique way from
the experimental data in the symmetry planes
whatever the value of J. Furthermore, the first
two coefflclents A() 0 Rnd Ql {), the latter being of
fundamental importance for describing magnetic
anisotropy properties for instance, may be ob-
tained from data taken in one symmetry plane
only. These features Rre speelfle to Rn expRnslon
of E in terms of symmetrical polynomials and

thel e ls no equivRlent for Rn expRnslon ln terms
of cubic harmonics.
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APPENDIX A: DERIVATION OF THE CUBIC HARMONKS

It is easy to express S and P in terms of K, and

K6y the cubic harmonies of oldel 4 Rnd 6) Rs

8 6 (3 x)1/2K

{Al)

K, = (T'r)"'C, ,+ (r)"'C. ..

A6 ())) C60 {8) C6&6 '

Let us consider the terms of highest order E=4n
+6m in the expansion of 8"P in spherical har-
monics. These terms come necessarily from the
expansion of (-I)('(K6)"(K,) . In order to obtain
their explicit expression, we consider the term
with highest power of cos8 which, apart a multi-

plleRtlve constRnt ls given by

(-1)"(cos())'"""(7+cos4&)"(1—cos4&), (A3)

and may be rewritten (still neglecting a constant
factor) as

where o„', is the coefficient of x"' "in the poly-
nomial d'(x) given by

d'(x) = (-1)"' (x'+ 14x+ 1)"{x'—2x+ 1) . (A5)

A cubic harmonic of order l is necessarily of
the form

l ~&4j
((1)

+f18 ~ ~f18~ & S4~
0=-0

Setting

i.e., the coefficient of y' '" in the polynomial

(A6)

it is easy to check that the coefficient of the
(cose)' term in (A6) is

t~&4

+„~ 7j {) + Q~ ~ 2'g4q cos4QQ, A9)
q =0

where A is a constant factor.
Comparison of (A9) with the term in large paren-

theses in (A4) shows that it is possible to define
a unique cubic harmonic for each pair (n, m) by
limiting the summation over q in (A6) to q= n+ rn

and by taking

n(6) I &(6) q2 ()ii8 o(6) I,o(6) )/(21 8m 86m/ 0 0 & 86pt Rem 4Q

The constant k is obtained from the normaliza-
tion condition for K„'

(A11)

The numerical coefficients a~'„~ a.re very easily
obtained from the integer coefficients of the poly-
nomials d'(x) and C,(y), and as can be seen from
(A10) and (A11), they are square roots of rational
ratios. %hen / is small, this calculation is im-
mediate. For an arbitrary value of /, the calcula-
tion is straightforward and was obtained with a
computer by using the PL/1-FORMAC language"
allowing formal multiplication of polynomials.

APPENDIX B: EXPANSION OF THE S&P IN TERMS OF

THE CUBIC HARMONICS

As pointed out in Sec. II C, the cubic harmonics
K„' or the related functions B„' given by (13) do
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not form a complete orthonormal set. Indeed,
when several functions belong to the same subset
of order l (g, &1), they are not orthogonal to each
other. Nevertheless, these harmonics were built
in close connection with the symmetrical poly-
nomials and this lack of orthogonality does not
introduce any major difficulty in the ealeulation
of the coefficients P"„„ofexpression (14}.

From Eqs. (Al) and (A2), and setting z = cos6,
we have

S=a —6 cos4$,
P= c(1 —cos4$),

with

a = n(1 —z')'+ 3z'(1 —z'),
b = —', (1 -z')'

22 z 2(1 z 2}2

From (Bl) and (B2) it is possible to expand
S"P in the form

n+ fft

S"P =d, + g d, cos4qg,
a=1

(B2)

(B3)

where d, and —,'d, are the coefficients of x"' and
x"' +', respectively, in the expansion of the poly-
nomial

(--,')"' c (bx' —2ax+b)"(x' —2x+1)

Introducing the Legendre polynomials P~(z) and

the associated Legendre polynomials, we have,
from Eqs. (11), (13), and (A10),

H„„=P„(z)+ 2
'

&",)" cos(4qp)P'„'(z) .
1

(2A+ 1)A!
4( ')), d„,„P'„'"'"'(z)dz,

(B5)

with 4v'+ 6p'=4v+ 6p, = ~ and v'+ p.
'» v+ p. .

The coefficients P"„', and y",™„areobtained with
a computer using the PL/1-FORMAC language"
which gives the results in exact rational form.
Wheng~=1, there is only one possibility v'= v,

and

P
n, m [O(0) /O(n+ 2}j ~n, m

When g&, &1, (B5) is a linear system of gz equa-
tions which allows the calculation of the gz un-
known coefficients P&™i in a straightforward way.
The numerical values of the p„'„ in rational
form have been calculated' up to l = 36. These
calculations have been checked by comparing
the numerical values of the S"P obtained by
direct calculation and by using the P"„'„and the
numerical values of the H„„ for the three direc-
tions (100), (110), and (111). For instance, for
the direction (100) we have

pn, m 0
g= 0 V, )I

APPENDIX C: EXPRESSIONS OF THE COEFFICIENTS

C2 IN TERMS OF THEA

Starting from Eq. (36), it is possible to express
S" in the (110}plane a.s

(B4)

Using (B4), the identification of expansions (14)
and (B3) leads to

d. = P gP".;„P,( ), z
'h=o V, P

[2n/3] [(2n -2)/3]
S"= a P'+ Q b„,SP'

5 =

[(2n -4)/3]

c„„S'P", (Cl)

with ~=4v+ 6p. ;
with the recurrence relations between the coeffi-
cients,

with ~'=4v'+6p, ' and q~v'+ p, '~n+m; further-
more, when v'+ p.

' & n+ m, we have P"„; „,= 0.
The expression of d, allows one to calculate

p0 0 simply by

I
an+1, 5

——Cff 5 1
—4Cn, 5-2 ~

=3 1
&+ 1 5 2 & 5-1 fl -1,5-1 4 n -1,$-2 &

=3 3 l.

Cff+ 1 ~j
—4Cn j + 2Cff 1 5 1

—Cfl 225 1
—4C55

(C2)

1

0

Using the expression of d, and the orthogonality
properties of the P&"(z), we get

Replacing the S"by their expressions (Cl), we

get E110 in the form (37). If we limit our expan-
sions to the order 18, application of the recurrence
relations (C2) leads to the following result, in
matrix form:
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Sll~wl (Sll + 3m/26tl + 8m)( »2+ 2» 1)it+ 2m

x(Sx'+10x+3)"(x'+ 2x+1) /x'""

Noting that cos2p6= —,'(x +x ), we get Eq. (39) of
the main text:

It is then straightforward to deduce Eqs. (38)
from (Cl) and (CS). The expressions of Eqs. (CS)
and (38) completed up to order 36 a,re also avail-
able. '

APPENDIX D: EXPANSION OF THE MONOMIALS S.P
IN THE $»O) PLANE

In the (110) plane S and I' are given by expres-
sions (35) as functions of the angle 6 between the
measuring direction and the [001]direction of the
plane. I.et x= e"8, so

where 2y'„and y„are the coefficients of x'""
and x'"+' ', respectively, in the expansion of the
polynomial

y (SR+3m/26tk+Bm 1)( »2~ 2» I)tl+2m

x (3x'-'+ 10x+ 3)"(x'+ 2x+ 1)".

This calculation has been carried out with a
computer by using PL/1-FORMAC language"
which allows for formal multiplication of polyno-

mialss.
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