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Effects of the local configuration on the lattice dynamics of group-IV semiconductors
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The relative importance of short-range order and local topology versus long-range order in determining the
vibrational properties of group-IV semiconductors is investigated. We have developed a cluster —Bethe-lattice
method which treats a cluster of atoms with the short-range order and local topology therein exactly. The rest
of the system is treated within the Bethe-Peierls approximation which retains the short-range tetrahedral
order. We have studied the lattice vibration spectra corresponding to clusters of different sizes in the diamond

structure. We find that the presence of rings of bonds have clear and discernible effects not found previously.
The main feature of the perfect-crystal density of states is already present in small ( —30 atoms) clusters. We
can conclude that, as in the electronic case, the density of vibrational states is governed by the local
configurations.

I. INTRODUCTION

The problem of whether or not the short-range
order and local topology determine the spectrum
of vibrations of group-IV semiconductors (Si, Ge)
is still an open question. ' It is known experiment-
ally that in amorphous semiconductors the short-
range order is kept, ' i.e., the perfect tetrahedral
arrangement of atoms almost remains in the amor-
phous phase. In addition, it is also known experi-
mentally that the vibrational densities of states of
the crystalline and amorphous phases are simi-
lar. ' Thus, one can conclude that the local bond-
ing character between the nearest neighbors de-
termines the basic properties of solids. ' This
conclusion, however, is an oversimplification of
the problem as we know from our knowledge of
the electronic properties of amorphous semicon-
ductors: small deviations from the perfect tetra-
hedral arrangement can give notable differences
in the density of electronic states. ' As a conse-
quence, it is only by a detailed study of the inter-
play of the long-range order versus short-range
order and local topology that we can hope to under-
stand the vibrational properties of amorphous
semiconductors.

In the past, there h ve been several approaches
to the study of the vibrational properties of amor-
phous materials: (i) calculation of the spectrum
of a finite cluster of atoms'; (ii) study of clusters
of atoms with quasiperiodic boundary conditions';
(iii) study of molecular units interacting weakly';
(iv) calculation of the density of phonon states by
statistically averaging the crystalline density of
states'; and (v) application of the Bethe-Peierls
approximation. "

None of these methods is completely satisfactory

for the study of group-IV semiconductors. Method
(i) requires very large clusters to yield results
independent of the boundary condition; even with
clusters of about 500 atoms, the boundary con-
dition is very important. ' Method (ii) shares some
of the drawbacks of method (i); in addition, the
periodicity can introduce spurious features in the
density of states. Despite their drawbacks, both
methods (i) and (ii) take into account the local
configuration exactly. Method (iii) is not accept-
able to study group-IV semiconductors since a
continuous random network structure is currently
being accepted to describe the structure of these
semiconductors. Method (iv) is not very useful
since it does not deal with a real structure and
consequently neither the short-range order nor
the local topology can be taken into account prop-
erly. Finally, although method (v) treats the
short-range order exactly, it cannot distinguish
between different topological arrangements of
atoms.

In this paper we introduce a technique which
allows us to study, for the first time, the effect
of both the short-range order and local topology on
the density of lattice vibrations in group-IV semi-
conductors. To this end we consider an infinite
connected network of atoms with any desired topo-
logical configuration. We focus our attention on
a particular atom of such system; then, the local
environment around it (i.e. , a cluster of atoms)
is treated exactly and the rest of the system is
approximated by the Bethe-Peierls approxima-
tion. " Finally the local density of states asso-
ciated with this atom is calculated. The technique
is essentially equivalent to the cluster-Bethe-
lattice method intended originally to study elec-
tronic densities of states. ' The Bethe-Peierls
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approximation provides us with a boundary to the
cluster of atoms we are dealing with such that
the desired short-range order is present in both
the cluster and the boundary condition. This tech-
nique allows us to study the effects of the sys-
tematic variation of bond angles and short-range-
order topologies.

This paper is organized as follows. In Sec. II
we discuss the application of the Bethe-Peierls
approximation to study lattice vibrations in the
diamond structure. We use the transfer matrix
technique which yields identical results to those
reported by Thorpe using mean-field techniques. "
The Weaire-Alben transformation, "valid in the
limit in which only central forces are present, is
recovered. In Sec. III the extension of the cluster-
Bethe-lattice method to study lattice vibrations
is made. We study clusters of different sizes in
the diamond lattice structure. The structure we
obtain in the density of states is analyzed. Fin-
ally, in Sec. IV, some conclusions are drawn.

II. BETHE-PEIERLS APPROXIMATION IN DIAMOND

STRUCTURE

To study the vibrational properties of group-IV
semiconductors we will consider the Born model'
where forces are restricted to nearest neighbors
only as in the Keating model. " The potential en-
ergy in the Born model is given by'

FIG. I. Tetrahedral unit of the diamond structure.

4p U, —U~a rz l '+4 a —p U, —U~z~'.

(1)

The sums are on atoms l and their nearest neigh-
bors &. r~(l) is the unit vector from the equili-
brium position of atom I. to that of its neighbor &.
U, and U, ~ are the displacement vectors of these
atoms. In the Born model we can distinguish a
central force given by (2/+ u) and a noncentral
one given by (n —P).

The four nearest neighbors of an atom in the
diamond structure are drawn in Fig. 1. This
tetrahedral unit repeats itself periodically to gen-
erate the diamond structure. These are only four
different bond directions in the diamond lattice
and then there are only four different dynamical
matrices" between nearest-neighboring atoms.
These matrices for the Born model are

—a —p

D —=D =, —P —a

-p -p
D0, 2

——D2 — pI

~~

~ ~~ !

p

—a —p
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Do 3—= D3 = p D0,4 =-D4 =

The diagonal term is

4(y 0 0

D;;=—Do= 0 4(y 0

0 0 4~

(2b)

where the first, second, and third columns (rows)
correspond to the x, y, and z components of the
vibrations, respectively. The matrix D, J in (2)
contains the dynamical matrix elements between

the three different vibrations of atoms i and j.
In order to calculate the density of states we

first calculate the Green's function 6, which is
given by

G=(m(u'1 —D) ', (3)
where m is the mass of the atoms, co is the fre-
quency and D is the full dynamical matrix.

Using a standard procedure'" we can write
for the matrix elements of the Green's function
the following infinite set of linear equations:
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(4)

where the 3~3 matrix Gg 0 is formed by the matrix
elements of the Green's function (3) between the
three vibrational modes of atoms j and 0. The
matrix Gy p involves the matrix elements of the
Green's function (3) between the vibrations of
atom 0, and the vibrations of the atom nearest
neighbor of atom i along the same direction as
bond 0-j in Fig. 1.

Equation (4) forms an infinite set of equations.
We seek the solution of G, , which gives the local
density of states Bp p at atom 0

no, (&u) = (I/rt) Im Tr[60 o(u)j .

In order to solve for G, , in (4), we use the Bethe-
Peierls approximation. " In this approximation
each atom is surrounded by four nearest neigh-
bors in a perfect tetrahedral orientation but the

coherence due to the presence of closed rings of
bonds is neglected. This is equivalent to dealing
with a Bethe lattice" instead of a perfect diamond
structure. Within this approximation the infinite
set of Eqs. (4) is such that the sequence of four
consecutive equations repeats itself up to infinity
and we can define the following four Sx 3 transfer
matrices' "

(6)

where i = 1, 2, 3, and 4 corresponds to the direc-
tions of the bonds 0-1, 0-2, 0-3, and 0-4 in Fig.
1, respectively, and G„' „G„',, corresponds to
any pair of nearest-neighborirg atoms forming a
bond along the direction of bond 0-i in Fig. 1.

If we insert (6) into the four generic equations
in (4), we get

m(O Tl=D() ' T, +D, +D2 ' T2 ' T, +D3 ' T3 '
Tl+D4

' T4 ' T

Cu 2= 0 2+ 2+D, ~ T, ~ T2+D3 ' T3 T2+D4 T4 T2 )

m(u'T, =D ~ T +D3+D, T, T +D, T, T +D T T3)
. (7)

m(d T4 D() T4 +D4 +Dl Tl T4 +D2 T2 T4 +D3 T3 T4 ~

(8)

The Green's function Gp 0 is now given by
4

rn(u'Go, =1+D, ~ G, 0+ Q D, T; ~ G, ,
f=1

In order to solve for the T's in (7) we use the fol-
lowing operators which transform the T matrices
into each other:

It is obvious that

2 2 l 2) 3 3 l 3)

T =S .T, S

Using these relations, the problem of solving (7)
has been reduced to obtain the solution of

S,=' 0 1 0

to 01)

(-1 0 0)
S, =— 0 1 0

0 0 1$

4

rrr~'T, =D, +D, ~ T, + P D; oo; ~ T, ~ S; ~ T, .
4=2

(11)
Even more; it is straightforward to prove that Tl
has to be of the following form:

S, =—

—1 0

0 —1

(0 01)

1 0 0

S =—, 0 —1 0

(0 o

tp f]

Tl — tl tp

I1111,), ,

(12)
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If we now insert (12) into (11), we find

(m u' —4a)to = —a —3at ~
—4Ptot, + 2(a + P)t ', ,

(o)

(m~' —4a)t, = —P —2(a —P)tot,

+ (a —5p)t', + pt o.

(13)

The solution of (13) to get to and t, entails the solu-
tion of a quartic equation, that can be easily ob-
tained numerically.

Finally, the local density of states at atom 0 is
given by

(b)

= —v '1m[3(m&d' —4a+4at, +BPt, ) ']. (l4)

If we call
0.4 0.6

~'/& max

0.8 1.0

we can see that there are some interesting rela-
tions between the lattice vibrations density of
states and the electronic density of states of a
simple s-state Hamiltonian'" with interaction
between nearest neighbors only.

In the limit of only central forces' "z = p and

t, is identical to t, . Then (13) becomes

Io — z 3a~o-

t, is nothing but the transfer matrix for the elec-
tronic case.'" Once we insert t, in Eq. (14) we

see that we obtain a continuous density of states
identical to the electronic density of states for
the Bethe lattice and two 5 functions at e =+4@,
with weight equal to i. They correspond to the
acoustic and optical transverse modes, respec-
tively. This result is nothing but the Weaire-
Alben theorem. "

In the limit in which the central and noncentral
forces are equal, i.e., P =0, it is easy to see that

t, =0 and t, is again given by (16). The density of
states now is identical to the electronic density of
states. The transverse-modes merge into the
longitudinal-modes region.

Although our derivation of the density of states
is different from the Thorpe's derivation, "the re-
sults are identical. In Fig. 2 we have drawn
the density of states as a function of the reduced
frequency, &u/&q„, „, in the diamond lattice for P/a
= 0.6 which is a ratio of the parameters appropri-
ate to Si or Ge. In Fig. 2(a) we show the density
of states using the Bethe-Peierls approximation
and in Fig. 2(b) we show exact density of states
of the perfect infinite diamond structure. " As
pointed out in Hef. 10, the crystal transverse-
optical and acoustical modes are well approxi-
mated by the Bethe-Peierls approximation. How-

ever, the peaks corresponding to longitudinal
modes at the values of 0.66 and 0.76 reduced fre-

FIG. 2. Density of vibrational states in the diamond
structure for the Born model with P/n =0.6 vs the re-
duced frequency &/& . & „=Se/m. (a} Bethe-Peierls
approximation. (b} Exact (Ref. 10}.

quency do not appear in the Bethe-Peierls approxi-
mation.

It has been argued that the peaks in the spec-
trum corresponding to the longitudinal modes
in the crystal are coming from long-range cor-
relations since a small cluster calculation by
Thorpe did not give any noticeable feature in
that part of the spectrum. " In order to eluci-
date the origin of these peaks we study different
clusters of atoms using the cluster-Bethe-lattice
method. '" This is done in Sec. HI.

III. STUDY OF CLUSTERS OF DIFFERENT SIZE

Once we know the solution for the Bethe-Peierls
approximation, the study of any structure using

FIG. 3. Twenty-nine-atom cluster in the diamond
structure .



the cluster-Bethe-lattice method is rather
straightforward. In this section, we focus our
attention on the diamond structure.

Let us take a cluster of 29 atoms as in Fig. 3
and saturate the dangling bonds of atoms labelled
5-28 with the diamond lattice treated within the
Bethe-Peierls approximation. We are aiming to
calculate the density of states at the central atom
labelled 0. To do this we ean write a finite sys-
tern of linear equations as in Ref. 5. Using the
symmetry of the diamond structure we can write

density of states spectrum at around 0.62 and 0.80,
which can be identified with the two peaks on the
crystal spectrum [Fig. 2(b)] at 0.66 and 0.76, re-
spectively. Although the peaks in the cluster are
not as sharp as in the crystal case [see Fig. 2(b)]
they are clearly noticeable. Another feature of the
density of states curve of Fig. 4(a) is that the
transverse modes peaks that were already present
in the Bethe-Peierls approximation become more
pronounced in the cluster. The two peaks at the
edges of the spectrum (dotted line) are, of course,
spurious.

The structure in the density of states is rather
stable against changes in the boundary condition.
%e have takendUferent values of n and P in the bound-
ary of the cluster and the structure of the density of
states remains almost unchanged except for the
two peaks at the edge of the spectrum which, since
they are due to the boundary condition, are ex-
tremely sensitive to the values of n and P.

A direct comparison of Fig. 4(a) with Figs. 2(a)

=1+j9,~ Q, + D; S; C, S;,
1=2

gQ, D ~ Q +D ~ Q 0+D2 M, Q7 0'M,

+D~ M3' 67 0' M3,

0 3 &0+ 2 ~&80+ 4 1 18 0 1

(17)+D, T, G7 0)

eC18 0=D2. Q7 0+6, S2 M3 G7 0. M3 82

+(D, ~ 7', +D, ~ T, ) ) G„,.
The M's are nothing but the operators of the mir-
ror symmetry operations of the cluster

0 b — (a)

M, =— 1 0 0 i; M=— 0 1 Oi; M=— 0 0

01 100 010
(18)

Owing to the symmetry of the cluster the matrix
elements of the matrices G„, in (17) have special
relations. We can write

o.b — (b)
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20 g20

0.4—

If we now insert these matrices in (17), we end
up with a system of 13 linear equations with 13 un-
knowns which can be readily solved numerically
in the computer to get Tr(60 0). %e have then re-
duced the problem of solving 87 (29 atoms in the
cluster & three directions of vibrations per atom)
linear equations.

The solution for the local density of states at the
central atom for P/n=0. 6 is given in Fig. 4(a). We
notice immediately that there are two peaks in the

0
0 0.4 O.b

to/o) max

FIG. 4. Density of vibrational states for t'he diamond
structure treated within the cluster-Bethe-lattice approx-
imation. P/e =0.6. (a} Local density of states at atom
labelled 0 of the 29-atom cluster of Fig. 3. (b} The
same for the 35-atom cluster. (c} The same for the 59-
atom cluster.
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and 2(b) reveals that the two peaks in the middle
region of the spectrum are due to the topology of
the cluster, in particular, to the presence of 12
sixfold rings of bonds passing through the central
atom.

In order to check the above discussed results, we
have studied the density of states of clusters of
different sizes. In particular we calculate the den-
sity of states of 35- and 59-atom clusters in the
diamond structure. The cluster of 35 atoms can
be obtained from the cluster of 29 atoms by satur-
ating atoms labelled 17 and 18 in Fig. 3 with a new
atom (and the same for the five equivalent pairs of
atoms). The 59-atom cluster can be obtained from
the 35-atom cluster by saturating atoms labelled
5, 6, and 7 in Fig. 2 with six new atoms (and the
same for the 4 equivalent sets of three atoms).
This cluster contains up to the fourth-nearest-neigh-
bor atom of the central atom. The densities of
states corresponding to these clusters are drawn
in Figs. 4(b) and 4(c). If we compare Fig. 2 with
Fig. 4 we see how the cluster calculation converges
to the crystal density of states as the size of clus-
ters increases. We notice that not only the position
and the shape of the longitudinal peaks is improved
with respect to the crystal density of states, as
the size of the cluster increases, but also the
structure of the transverse part of the spectrum is
fairly well approximated by the clusters of 35 and
59 atoms. In addition, the spurious peaks at the
edges of the spectrum of the 29-atom cluster are
no longer present in the spectrum of the 59-atom
cluster. One can be tempted to associate the long-
itudinal peaks in Fig. 4(a) with the eigenvalues of
isolated sixfold rings of bonds as in the electronic
case. ' To check this we have calculated the eigen-
values of an isolated sixfold ring of bonds in the
diamond structure. The eigenvalues we have ob-
tained by no means can be identified with the struc-
ture in the spectrum of Fig. 4(a). This identifica-
tion of the structure in the density of states with
the presence of rings of bonds in the structure is
to some extent meaningless in the case of lattice
vibrations. Since the potential (1) depends on both
bond angle and bond length, it is possible to build
clusters of atoms with the same number and kind
of rings of bonds but with different topologies,
i.e. , different bond angles and bond lengths, and
consequently the corresponding densities of states
are different. Another reason why the identifica-
tion of the peaks in the spectrum with the eigen-
values of isolated rings of bonds is useless is be-
cause the lattice vibrations of the small unit are
extremely sensitive to the boundary condition at
the surface of such unit. To show this we have
calculated the density of states at the central atom
of the bare 29-atom cluster of Fig. 3. To do this

0.3

I—
(r) 0.2—

0
I—0.1—

0
0

I I I I I I I I I I

0.2 0.4 0.6 0.8
d/4 max

1.0

FIG. 5. Local density of states at atom labelled 0 of
the bare 29-atom cluster of Fig. 3. The straight lines
represent 6 functions. The height of the straight lines is
proportional to the weight of the corresponding 6 function.

we just take t, =t, =O in Eq. (17). The result is
shown in Fig. 5. If we now compare this spectrum
with the spectrum in Fig. 4(a), we notice that they
are very different. We cannot find any correlation
between them. The two 5 functions close to 0.7 in
Fig. 5 are too close to support the existence of
two well-separated peaks in the actual density of
states of the diamond structure, whereas the den-
sity of the cluster-Bethe-lattice system [Fig. 4(a)]
gives two well- separated peaks. This stresses
again the need of a good boundary condition when

dealing with not very large clusters of atoms.
As a consequence, although we cannot identify

the longitudinal peaks with rings of bonds, as in
the electronic case, ' we can however assess that
they are due to short-range topologies and not to
longer range structural correlations as it has been
suggested io. i8

IV. CONCLUSIONS

The main conclusion that can be drawn from the
above discussed results is that the salient features
of the vibrational density of states of crystalline
diamondlike semiconductors are due to short-
range order. In particular, we can assess that
the peaks in the spectrum corresponding to trans-
verse modes are due to the tetrahedral coordina-
tion of these semiconductors. On the other hand,
the peaks corresponding to the longitudinal modes
are due to short-range correlations such as the
presence of closed rings of bonds.

The results of our calculations show clearly that
when dealing with clusters of atoms, the boundary
condition at the surface of the cluster is very im-
portant in order to get a reliable spectrum of the
lattice vibrations. The Bethe- Peierls approxima-
tion provides us with a good physical boundary
condition.

The method we have developed can be easily ex-
tended to study densities of states of noncrystalline
phases of group-IV semiconductors. A systemmat-
ic study of the density of states of continuous ran-
dom networds is underway and will be reported in
a future publication. At the moment, we have
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studied the effects of bond angle variations in the
density of states of the Bethe lattice only. The
shape of the transverse peaks [see Fig. 2(a)] is
rather sensitive to bond angle variation, whereas
the changes of the featureless longitudinal part of
the spectrum are of the order of 1(P/q for deviations
of the perfect tetrahedral angle of the order of 10 .
Since the peaks corresponding to longitudinal
modes in Fig. 4 are not very pronounced and a
perfect coherence in the phase of the wave func-

tion is needed to see the effects of the presence
of rings of bonds, "we expect that in the amorphous
phase the dip between the two peaks might be filled
up, giving rise to a single peak structure.
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