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Some particular cases of the x-ray edge and recoil problems are examined. The usual independent-particle
theory is evaluated exactly for the case in which the excitation introduces a full virtual level into the
conduction band. These results make contact with studies of rare-gas pair absorption in metals and also afford
a comparison wih earlier theories. Some aspects of the difficulties introduced by the electron-electron

interactions in real metals are also discussed.

[. INTRODUCTION

During the course of the work described in the
preceding four papers'™ a number of points have
emerged concerning the theoretical description of
local excitations in metals. These pertain both to
the recoil problem, and the optical problem. In
the recoil problem the metal adjusts to a suddenly
applied local perturbation and creates electron-
hole pairs in the process. In the analogous optical
processes the metal absorbs a photon to create a
core hole and leave the solid both locally excited
and with the addition of propagating electron-hole
pairs. It is the latter process that has direct
relevance to the experimental studies of optical
absorption by impurities in metals reported above.
An approximation to the recoil problem arises in
practice when a transition takes place within one
core, and the electron gas suddenly experiences
a modified local potential in that region. One
principal effect of a local optical excitation is also
to introduce a local potential due to the localized
hole and its screen. Therefore the recoil problem
is often regarded as a prototype problem and dis-
cussed at the same time as the optical process.

There are at present available in the literature
the following predictions for the profile f(E) of
final states of energy E (above the threshold E,)
reached by recoil and by optical-excitation pro-
cesses. For the recoil problem the predicted pro-
file is®

f(E)=B(E -E)*, (E>E), (1)
with
B=>" 2(21'+1)<(~%’>2_1 ()
—

and B constant. For the optical process the pre-
diction for transition to the [/ partial wave of the
distorted band function is%”’

FE)=AE)E-E)™, (E>E,), 3)

s

with

a,:zwﬁ -3 2(27'+1)<6ﬂi>2 (4)
-

and A, (E) proportional to an energy-dependent
one-particle optical matrix element. In each of
these formulas the 0,, are changes in 1’ wave
phase shift at E; induced by the transition from
the initial to the final state. The factor 2 multi-
plying &,, in Egs. (2) and (4) is replaced by a sum
over spin in spin-dependent cases. The value of
[ in the optical process indicates the partial wave
to which the optical operator couples the initially
occupied core orbital.

The formulas (1)—(4) are derived for conduction-
band particles that interact only with core holes
[or the applied perturbation for Egs. (1) and (2)].
These are in effect ASCF calculation [the thresh-
old energy is taken as the difference in total ener-
gies of two self-consistent-field (SCF) calcula-
tions], as exhibited explicitly in the work of Com-
bescot and Noziéres, and of Friedel.® The profile
described by Egs. (1) and (2) arises wholly from
orthogonality effects of the type discussed by
Anderson and Hopfield.® An infinite density of
low-energy electron-hole pairs are said to be
created by excitations near threshold.

Some success has been achieved in attempts to
explain experimental results using Eqs. (1)-(4).
X-ray photoemission data from metals do often
possess asymmetric profiles that can be fitted
very accurately over several eV by convolutions
of apparatus, lifetime, and phonon-broadening func-
tions with Eq. (1) for some fitted value of 8.%° The
accord seems less satisfactory in the comparison
of experimental photon absorption and emission
data with theory. Maxima observed near the L,,
absorption thresholds of Na, Mg, Al have been
ascribed to the lifetime broadened profile of Eq.
(3) with a positive.'® However, Dow and co-work-
ers'!™!® have argued in a way we find convincing
that a self-consistent fit between theory and all
available experiments determining phase shifts is
lacking in these cases. The absence of an explica-
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ble dependence of profile on momentum transfer in
electron-scattering experiments! has been in-
terpreted as further experimental evidence against
the theory. In our own work, reported in the pre-
ceding papers, the theory fails to describe the ab-
sorption profile of rare-gas excitations in metals'®
in situations where the parameters relevant to the
theory are rather well established.

The reason for these difficulties is not at pres-
ent understood, since the experimental materials
seem to conform as well as could be hoped in the
constraints on the theory. One interesting point
for further study is the complicated role of the
electronic charge in the optical problem.'® Thus,
e enters both into the coupling of the initial orbital
to the radiation field and into the correlation pro-
cesses of the electron liquid. At the same time
it determines the short-range electrostatic per-
turbation on the conduction states in the excited
configuration, in addition to the charge shift re-
quired to achieve long-range electrical neutrality.
It is far from self-evident that the several static
and dynamical Coulomb correlation effects that
are intrinsic to the local optical problem can pos-
sibly be simulated in detail by the ASCF method.

In the comments that follow we shall nof provide
exact solutions of either the recoil or optical
problems for metals. We shall, however, present
some exact results for the recoil problem that
allow the recoil profile to be determined once the
many-body ground-state wave function of the elec-
tron liquid is known. The profile apparently de-
pends explicitly on the many-particle correlation
functions of the conduction electron liquid, so that
theories lacking Coulomb correlation effects can-
not reproduce these effects exactly. There is no
indication, however, that the corrections are
large. These, and other comments related to the
role of electron-electron interactions, are pre-
sented in Sec. III. The comments of Sec. II that
follow immediately concern the special case of
the ASCF approximation. In particular, some
cases are examined for which the theory may be
evaluated in a sensibly exact manner to yield a
detailed insight into the meaning of the results.
The important limit in which the coupling between
the excited center and the conduction band tends
to zero is also analyzed.

II. CASE OF INDEPENDENT PARTICLES

All the results of this section are obtained for
the particular case in which the initial- and final-
state wave functions of the solid are represented
by Slater determinants of one-particle orbitals
and the interactions among particles otherwise
ignored. The orbitals in the initial state determi-

nant are eigenfunctions of a Hamiltonian different
from that of the excited-state orbitals. This is
appropriate for the ASCF approximation in which
Egs. (1)-(4) are derived, the different Hamilton-
ians being a consequence of the local perturbation.

By neglecting all other effects of interaction
among particles in the present section we employ
precisely the model adopted in the early work
of Friedel® and Anderson.® In this approach only
the wave functions are required; model Hamilton-
ians that may reproduce the wave functions in
various approximations are irrelevant. Qur con-
tribution is to evaluate the optical and recoil ma-
trix elements exac(ly for model wave functions
that conform closely to an important class of local
perturbations. As recognized in much earlier
work, the determinantal wave functions are de-
termined by the phase shifts suffered by various
orbitals scattering off the local center, presumed
isotropic. To be specific, we need to identify the
phase shifts as functions of energy for all relevant
orbitals of both the ground and excited configura-
tion.

The new results presented below are restricted
to the case in which one phase shift increases by 7
at E in passing from the initial to the final con-
figuration. It turns out that this restricted case
not only provides exact predictions for comparison
with Egs. (1)-(4) but also has considerable rele-
vance to two physical problems discussed in the
experimental studies reported above. These are,
respectively, (a) the optical absorption of molecu-
lar centers having magnetic excited states, and
(b) the transition from band to localized orbitals
in metallic systems.

A final point is that Egs. (1)-(4) can be general-
ized beyond the isotropic sphere model used in
their derivation. One merely replaces ! by other
quantum numbers that appropriately specify the
symmetry groups of the one-particle orbitals in the
particular problems. Spin-orbit coupling in the
perturbed cell, or tetragonalities associated with
core hole asymmetry, are, for example, easily
accommodated by the use of correct channel labels.
As a crude model of surface excitations, Fig. 1(b)
shows the active site at the center of the circular
face of a hemispherical piece of metal. For the
usual boundary condition ¥ =0 at the metal “sur-
face” the one-electron eigenfunctions for this prob-
lem remain those of the spherical problem but
restricted now to spherical harmonics Y;,, main-
taining a node on the circular face. The excita-
tion still introduces phase shifts in these orbitals,
and the formulas for the spherical problem hold
for the surface problem but with summations ex-
tending over odd (I +m) only. Note that the optical
properties now have axial symmetry.
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FIG. 1. Usual spherical model of a metal with a per-
turbation at its center may be modified as shown in (b)
to give a model of surface absorption with no substantial
change in the theory. A variety of alternative geometries
are accessible.

A. Virtual level in the x-ray edge problem

The optical absorption takes a particularly sim-
ple form in the case for which the excitation has
no effect other than to introduce a full virtual
level into the conduction band. We show in what
follows that the spectrum is a & function for this
case. To simplify the problem to its essentials
and to make maximum contact with the experimen-
tal results presented above we shall specify the
structures, and hence the phase shifts, for the
ground and excited configurations, rather closely.

Figure 2(a) shows as a function of energy the
phase shift of the one-electron s-wave orbitals
in our chosen model ground configuration. Figure
2(b) shows the differing spin-up and spin-down
s-wave phase shifts of the chosen excited configu-
ration in which the spin-up subband is changed by
the introduction of a virtual level. We shall pre-
sume that other partial waves remain unperturbed
by the excitation, so that Fig. 2 contains all
changes introduced by the optical process. The
particular form chosen for the ground configuration
of Fig. 2(a) shows s-wave charge repelled from the
central cell, and the value 7,=— 37 at E, for both
spin senses indicates from the Friedel sum rule
that one electronic charge is removed from this
location (i.e., 2n,/m=-1). This condition shows
that Fig. 2(a) provides a satisfactory if crude
model of an unrelaxed vacancy in metallic H or
substitutional rare-gas impurity in the neighboring
monovalent metal. The spin-down phase shift 71y,
of the model excited configuration shown in 2(b)
are unchanged from 2(a). However, the spin-up
phase shift 77 increases by an increment of 7
near the energy E, of the virtual-bound state, and
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FIG. 2. (a) Phase shifts for spin-up and spin-down s
waves at an empty cell screened only by s waves in a
monovalent metal. (b) Same as (a) but with a full spin-up
virtual level in the band at E,; this represents the ex-
cited configuration discussed in Sec. ITA.

remains larger than n;, by 7 at all E>E_. This
change of ngy at E is required by the Friedel
sum rule to screen the extra positive charge

of a core hole in the excited configuration. Thus,
the optical process has been simplified until its
only effect is to create a core hole and to intro-
duce a spin-up full virtual level at E,<E.. All
phase shifts other than the spin-up s wave re-
main unchanged at E, and the latter changes

by 8,4 =144 —1,4 =7. Note that multiples of 7 in
the definition of n are assigned by counting the
radial nodes in the orbital from »=0 to a radius
outside the impurity, and comparing the result
with that in the pure host for the same orbital en-
ergy. Thus K in Cs has n,= - 27 since it lacks
two radial nodes.

The effect of these changes on the one-electron
s orbitals is clarified by Fig. 3. The orbitals of
the ground configuration are indicated in Fig. 3(a),
with those occupied in the state of lowest total en-
ergy marked by full circles. The full virtual level
lowers by exactly the level spacing those orbitals
at E>E in the excited configuration. The excited
configuration of least total energy is shown in
Fig. 3(b), with all one-particle orbitals having
E<Efull. A state of higher total energy contain-
ing one electron-hole pair excitation is shown in
Fig. 3(c). Our objective in what follows is to show
that the optical transition from a p-like core orbi-
tal in 3(a) to excited configurations of the type
3(b), 3(c), ... has a nonzero amplitude only to
3(b). The excitation spectrum is therefore a &
function, and added electron-hole pair creation
processes are completely suppressed.

The proof is very simple: one need only realize
that the orbitals near to and above E are identical
in the ground and excited configurations. With
b =m, the one-electron spin-up levels above the
resonance are lowered in energy by the level
spacing but the added electron fills the band exac!-
Iy back to E,. The orbitals of the two configura-
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FIG. 3. One-particle spin-up energy levels (a) in the
ground configuration; (b) in the excited configuration
[see Fig. 2(b)]; (c) same as (b) but with a pair excita-
tion.

tions near to and above E have equal energies
and are identical outside the impurity cell. It has
been the practice in all previous treatments to ne-
glect central cell corrections in the calculation of
matrix elements. This neglect is particularly
well justified in the present case because all orbi-
tals above the virtual level have almost zero am-
plitudes in the central cell in both the ground and
excited configuration.

To use Hartree-Fock theory we construct the
determinant ®J of the N lowest conduction orbitals
of the ground configuration [ Fig. 3(a)] together
with the relevant core orbital ¥3. Similarly, we
construct the determinant &{¢q,», ...;s,{...) of
N +1 orbitals from the excited configuration in
which orbital ¢, 7, ..., with E=E; are empty and

s,t, ..., with E>E, are occupied. Then
(®%|®(g,¥...;5,t...))=0 whenever s,{, ... exist
since s,t, ... belong also to the ground configura-

tion and are therefore orthogonal to all occupied
orbitals of ®J. Thus ®J is orthogonal to all ¢ ex-
cept the lowest member &,.

To study more generally the matrix elements of
operators connecting ®J to the & we note that the
N occupied band orbitals of 3 can be synthesized
from the N +1 occupied orbitals of ¢,. This hap-
pens because the ground and excited configurations
give rise to different complete sets of band orbit-
als 99, i=1,2..., and ¥, j=0,1,2..., whose
members uroccupied in ®J and &,, being common
to the two sets, cannot enter into a description of

®J. By unitary transformation that leaves its
value unchanged &, may therefore be rotated into
the determinant of the N band orbitals of &J to-
gether with a final orbital ¥; which must, from
the exclusion principle, be quasilocalized. To
supplement the preceding demonstration that &9
is orthogonal to all except the lowest & we may
now write down the result

(@3] &y = Wyl =0, (5)

to indicate that the necessary exac! orthogonality
of the two configurations &3 and &, arises from
the orthogonality of the local orbitals ¢, and ¥, ;
the overlap in the electrvon gas is unity.

In an analogous manner we find the matrix ele-
ments of the optical operator to be zero for all
except the lowest excited configuration, for which
the 8 -function absorption amplitude is

<¢8I Z Vs|‘1’o>=<¢3|V|wL>~ (6)

Of course, the optical operator also couples ex-
cited states of ° to 3, but these do not belong

to the configuration &; they are instead the carrier
excitations of the ground configuration.

It is worth noting here that the condition & =7
cannot, in practice, be maintained for all E>E,
as presumed above, since 1, ' =0 as E—~ « by
definition. This has no effect on the threshold 6
function but does mean that other, diffuse, absorp-
tion must occur at higher energy by the excitation
of members of & containing orbitals § no! phase
shifted from ground-state orbitals ¢° by 7.

In summarizing these results we note that an ex-
citation whose only effect is to introduce a full
virtual level has a §-function absorption spectrum.
This is the result employed in the preceding papers
to interpret the molecular spectra of rare-gas
pairs in metals.>»* We note that for this particular
case of a virtual level the spin-dependent analogs
of Egs. (3) and (4) predict for a p~ s transition the
exponent

0,=28,4/m = (8,4/7)%=1,
so that
FE)=A(E-E)" (E>E,). (M)

A similar E™! divergence of Eq. (1), in the recoil
problem for B—~1, has previously been shown to
represent a 0 function,'” and the identical result
holds in the interpretation of Eq. (7) from the pro-
portionality of absorption to Im(w — E, —i6)"* (see
Ref. 6). The present derivation provides, in addi-
tion, the constant of proportionality and includes
explicitly an energy dependence of the phase shifts.
The result supports our assignment of the pair
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spectra reported in Paper II to a sharp virtual
level, and confirms through Eq. (6) that the ex-
pected oscillator strength should be comparable
with that of the atomic and molecular resonance
lines.

B. Weak-coupling limit

There is no reason to suppose that a local center
in a metal can support excited configurations of
one type, say &, alone. Indeed there exists a
compelling reason, in some cases, to believe
that a center can occupy any of an indefinitely large
set &, ®’,®”, ... of different families of excited
configurations. The configurations &', ", ...
differ from & in that they contain localized orbit-
als ¢, 97, ... (or possibly several) that differ
from @, and are orthogonal to it. The reason that
this must be so is that the atomic excitation spec-
trum of an atomic center must eventually be re-
covered as its coupling to the electron gas is re-
duced. In this limit the ¥ tend towards the atomic
orbitals of the central atom. A particular family,
say @', of composite states of the metal plus atom
thus comprises the atom with ¥’ interacting with
the metal ground state, and similar composite
states derived from this by the excitation of quasi-
particle in the metal.

Questions related to the excited configurational
lifetime enter at this point. Clearly, the notion
of discrete families of excitations, each built from
a separate basic configuration of the atom plus
ground state metal by the excitation of electron-
hole pairs, loses its meaning when the excited
state lifetimes become so short that the different
families can no longer be distinguished. The
demonstration in a preceding paper? that d-like
structure remains in the Xe spectrum at dilution
in K provides a first example of distinct excitation
families for simple impurities in metals.

It is interesting to speculate on the way an ex-
citation spectrum must mutate as the center is
brought into increasingly strong contact with a
Fermi liquid. In the weak-coupling limit there
must occur the analog of Wigner localization in
which Coulomb correlations prevent hybridization
as the local state remains spatially separated from
the host band states. With increased coupling the
atomic levels must exchange electrons with the
Fermi ball reservoir but, since Coulomb correla-
tions remains strong, each local orbital probably
exists as a virtual bound state. Up to this point the
excitation spectrum maintains a d-function form
in accordance with Sec. II A. This character is
lost, in general, when the atomic couplings break
down and the different atomic configurations mix.
Finally, in the strong coupling limit, the spin

magnetism induced by the difference of the spin-
parallel and spin-antiparallel correlation energies
breaks down.

C. Virtual level in the recoil problem

It is equally simple to carry through the recoil
problem for the case in which the local potential
introduces a virtual level into the excited configu-
ration. The added electron contributed by the
optical process considered in Sec. IIA is now
lacking and @/l members of the excited configura-
tion are now orthogonal to the initial configuration.
The recoil spectrum thus extends with zero ampli-
tude from threshold up to infinite energy. In prac-
tice, a diffuse absorption must occur well above
threshold, as in Sec. II A, because 6 necessarily
departs from7 at sufficiently large one-particle en-
ergies. Figure 4 shows the configurations.

Note finally that Eqs. (1) and (2) predict for this
particular process that =0, so that f(E) takes
the constant value

f(E)=B (E>E,). (8)

This has often been understood to mean that the
spectrum has a step-function threshold at E,. Our
example, to the contrary, identifies the value of
B as zero. It will be equally evident that this
exact orthogonality prevails whenever the phase
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FIG. 4. When the ground state (a) is modified by the
creation of a virtual level (b) the recoil profile has zero
amplitude near threshold because an orbital occupied in
the unperturbed system must be unoccupied in the per-
turbed configuration.
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shift at E, changes by a nonzero multiple of m. It
has previously been recognized that B tends to
zero in the special case for which the conduction
electron density is vanishingly small.®

III. INFLUENCE OF ELECTRON-ELECTRON
INTERACTIONS

When Coulombic interactions are added to the
independent particle model discussed above, the
theory becomes much more complex and in fact
the problem of predicting profiles has remained
largely unsolved. Whatever the influence of Cou-
lomb correlations on the x-ray and recoil profiles
may be, it is certain that the effect on the thresh-
old energy E, is large compared with the typical
energies ~1 eV of solid state chemistry. This is
so much the case that atomic ideas yield a far
better account of the threshold energy than that
provided by one-electron band-structure ideas.
The problem is not that one-electron theory, when
used correctly, is inadequate, for Hartree-Fock
methods are able to predict deep core thresholds
to ~2% in some cases.'® Rather, it is the Koop-
mans theorem that fails, so that the band structure
of the perfect crystal becomes largely irrelevant
to the energy of the excited configuration. In what
follows we discuss these effects briefly before
turning to questions involving the profile above
threshold.

A. Threshold for core excitations

The difficulty with one-electron band schemes
is that the energy required to excite an electron
from one-electron energy E; to energy E, is not
always equal to Zw=E, - E;. Rather, the required
energy is the difference in lofal energy between
the two configurations, and the difficulty centers
on the fact that the total energy is not just a sum
of one-electron energies. This discrepancy is
often (somewhat obscurely) mentioned under the
name “final-state interactions” and the size of the
error regarded as the interaction between the ex-
cited state and the hole in the final configuration.
To the writer it appears that this language lacks
utility, as all one-electron levels are changed by
the excitation. Even in the case of atomic excita-
tions the one-electron energies serve only to pro-
vide crude estimates of the change in total energy
accompanying electron promotion. It is just the
same in crystals whenever the excited electron
becomes localized near the hole. The hole field
deforms the conduction band and so causes a vio-
lation of the Koopmans theorem. The true excita-
tion energies fall well below the relevant differ-
ences of one-electron energies that emerge from
band structure calculations.

The necessary calculations for the ground and
excited self-consistent configuration can be carried
out to yield core excitation energies in metals ac-
curate to a fraction of 1 eV for excitations requir-
ing ~100 eV.'® The energy contribution from the
“electron-hole interaction” arises in metals from
the fact that the conduction band deforms to screen
the localized hole; it amounts typically to 4-7 eV,
and this provides the principal measure of devia-
tions from the band structure picture.

We emphasize, however, that true “solid state”
effects on the excitation energy total to a much
smaller value, typically ~1 eV. This could be
demonstrated directly if the atomic transition en-
ergies were known, but this is often not the case.
We therefore present a simple method by which
atomic core hole energies may be estimated for
comparison with the excitation energy in solids.
Consider by way of example the atomic 1s°2522p®3s
—~ 15225%2p°3s? transition energy of Na. We first
ionize Na to 1s%2s%2p®, requiring energy 9,, and
then to 1s%2s2p®, requiring work 9,. But for
weakly bound states, the Na** core is almost equi-
valent to the Mg** 1s%2522p°® core, and the energy
required to place two 3s electrons on Na** is
-9! - g, in which primes indicate the ionization po-
tentials of Mg. The atomic excitation energy is
thus

nw(Na2p—~3s)= Y 09, 9)

i=1,2

with 84,=9, - g;. This prescription may be gen-
eralized to

nw=Y" 89;, (10)

with n — 1 the number of electrons in the ground
state with energy greater than that excited by the
transition, and 89, the difference in ith ionization
potential between the test atom and its neighbor
to the right in the Periodic Table.

Table I compares the prediction of this model
with some observed transition energies in crystals.
The ionization energies were obtained from stan-
dard sources.?® The close agreement measures
both the accuracy of this model of atomic excita-
tions and the rather small influences of solid state
effects on the transition energies. Figure 5 shows
how the residual solid state effects may be repre-
sented by cohesion shifts of the total energies of
the two configurations, e.g., of Mg and Na for the
case of Na 2p excitations on immersion in the re-
laxed solid, and finally an excited-state Stokes
shift. The first effect is unlikely to exceed ~1 eV,
and the second may dominate to produce somewhat
larger deviations of predictions to the small side
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TABLE 1. Observed threshold energies E; of some
metals compared with the predicted atomic-transition
energies given by 2,69 of Eq. (10).

Li Be Na Mg Al Si

9, 5.39 9.32 5.14 7.64 5.98 8.15
9, 75.62 18.21 47.29 15.03 18.82 16.34
R s [ 80.12 28.44 33.46
94 XX R ces ces 119.96 45.13

2,68 53.48 e+ 2975 49.55 70.13
E, 54.7 cer 30,7 49.6  72.9

.

of observation in cases where the excited state
misfit is large.

In summary we note that band-structure schemes
provide a poor starting point for a discussion of
core-hole thresholds. Solid state effects are in
fact small, typically ~1 eV, and the threshold can
be predicted to this accuracy using atomic ioniza-
tion potentials alone, with no reference to solid
state properties. The method outlined above ad-
mits obvious and useful extentions to the prediction
of energy differences among various observed
transitions of one species, and also to multiply
excited states of atoms in crystals.

B. Recoil profile

The recoil problem provides a prototype of local
perturbations on a Fermi liquid and is in some
degree tractable. In this problem, believed rele-
vant to transitions internal to one core of the lat-
tice, the mobile conduction electron system is
subject to a sudden perturbation that simulates its
modified interaction with the core that undergoes
the transition. The Hamiltonian of the N-particle
liquid is, as usual,**

Excited Configuration J
/

c
.2
~ =
5 N / 2
- o
= ~ / 2
g SN——— (-
2 T L2
- . ~ 5
Cohesion Stokes &

2 Shifts Shifts
€ h-)
o =
b A

—-.]

Ground Configuration

FIG. 5. Evolution of the threshold energy from the
atomic-transition energy, through cohesion shifts of the
ground- and excited-state energies and the excited-state
Stokes shift.

N L | e?
V, being the neutralizing background potential.
We shall write the perturbing potential suddenly
experienced by the liquid as V=Z)" V(T,) with the
index # running over all N electrons, with posi-
tions T,, in the N-electron band. V(T,) is evidently
a short-ranged potential, since the core charge re-
mains unchanged in the transition.

Suppose that the system initially occupies state
&% of the N-electron system (an eigenstate of 3C,),
and that the eigenstates of 3=3C;+ V in which the
system may finally be observed are ¢;. Then,
for a potential applied suddenly, the probability
P, that the system shall be found in state ®; is
P,=[(®9|,)|?. The spectrum of final state ener-
gies is therefore

f{E)=3 "PHE-E)
i
=Y @%@ [*(E-E), (11)

with
E,;=(®,[5,+V]®), (12)

Now it is often more convenient to calculate the
moments of f (E) than the function itself, and this
is the method by which we proceed. The pth mo-
ment is, by definition

(B =3 PE4=3 @3] 2)]

x(®,|@C,+V)*|@), (13)

which may be expanded as
E"=37% @2y
FRRT

X (@, (0C,+V)?| @) (@, |29,  (14)

since &;, ¢, are eigenstates of 3¢, +V, so that
finally

(E?) =(®3| 6, + V)*| 9 . (15)

The zeroth moment (p =0) is clearly unity as
should be the case for a normalized spectrum.
Equation (15) is exact for the precisely defined
recoil problem when the exact wave function and
Hamiltonian are used. One encounters customary
commutation difficulties for p =3, but for p =1 and
2 the evaluation is simplified by the fact that &%
is an eigenstate of 3¢;. The right-hand side be-
comes (&% (E?+V)?| 8% (p=1,2), so that the mo-
ments with respect to the energy E9= ($%|3¢°| %)
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of the initial state are
(E-E9? =(2%|V?| @) (p=0,1,2). (16)

All the moments of a function are required to
define the function fully, but turns out that the two
cases p =1 and 2 give much qualitative insight
into the recoil spectrum. Our objective in these
remarks is to present this insight rather than per-
forming detailed calculations for particular cases.

Consider first the case p=1. One finds that the
mean energy change (E ‘Ee> is exactly the first-
order perturbation expression for the energy
change E{", of the initial state ¢. This result is
to be expected, since at /=0+ the system finds it-
self in % with a perturbation V, as in well-known
theories of optical transitions in insulators. For
weak perturbations on the ground state i =0, with
E(‘,”zE“ and E, the threshold energy represented
by the lowest eigenstate of 3¢, + V, this result
shows that the recoil spectrum must be sharply
peaked near E, (see Fig. 6). There is no other
way in which the average energy can fall so near
E, when M, shows that f(E) extends past EY (see
below) ~V above threshold. For strong perturba-
tions, however, when first-order perturbation
theory provides a poor approximation to E,, the
spectrum still centers on E{" while the threshold
at E, lies at the much lower exact energy, E, of
®,. Inthis way the meaning of Anderson’s “ortho-
gonality catastrophe” becomes very clear: for
large perturbations the system has little or no
chance of exchanging exactly the correct energy
with the perturbing field to project from its initial
state to the ground state of 3¢+ V.

The second moment p =2 gives further exact in-
sight into the spread of the distribution around
E!, The diagonal matrix elements of V?
=f2,, V(7n)]? contain two types of terms: E,,[V(r")]2
and 25, 24, ., V(r,)V(r,). Of these, the first is a
one-electron operator and the second a two-elec-
tron operator. It is the latter that first introduces
exchange and Coulomb correlations into a descrip-
tion of the recoil profile. Correlation tends to
prevent two particles from simultaneously occupy-
ing the volume of the local perturbation. There-
fore, correlation decreases the spread of the re-
coil spectrum as measured by the second moment
by decreasing the value of (V(r,)V(r,,)) for n#n’.
We note that in general the pth moment contains the
p-particle correlation functions that describe the
ground state i =0. It is therefore clear that the
recoil profile can only be reproduced accurately
for any perturbing potential by the use of wave
functions that contain the correct interparticle cor-
relations. Determinantal wave functions that lead
to Egs. (1)-(4) contain a substantial part of the cor-
relation between particles having parallel spins

f(E)

|
!
|
|
|
|
|
|
|
|
|
|
|

Il
E, £ EQ E

FIG. 6. Recoil spectrum for weak perturbations. The
profile centers on the first-order perturbation energy
ES“ of the ground-state wave function when exposed to
the perturbing potential, which must lie close to the
threshold E; when the perturbation is weak. However,
the second moment shows that the spectrum spreads
past the initial energy Eg , giving the line an asymmetri-
cal shape.

but ignore other correlations that arise from Cou-
lombic interactions.

A simple example will serve to illustrate the
content of Eq. (16). To the ground state of a uni-
form N-particle Fermi liquid of volume NQ we
shall suddenly apply a potential V that is uniform
over a spherical volume £’ and zero outside. The
moments of the recoil profile with respect to the
initial-state energy are, from Eq. (16),

My=1, M,=vQ'/Q,
M,=V2[(Q'/Q)+ 3 /Q)*(c+B8)] .

(17)

In M, the first term arises from one-particle
terms and the second from two-particle terms,
with

a=v=2 Z V@, )V )

n#n’

and

B=V2 Y V)V, )

n#n’

both unity when correlations are absent. Two
special cases may usefully be examined.

a. Q' =Q. Inthiscase the extent of the perturbing
field is comparable with the atomic cell size. The
first moment exactly cancels the one-particle con-
tribution to M, to leave the second moment with
respect to the mean, namely, M, given by

M}=3V3(S /Q)(a+B). (18)

Although all one-particle terms thus vanish from
M, for this case, the second moment is not radi-
cally modified by correlation. The Hartree ap-
proximation lacks correlation and gives M, =V 2.
Determinantal wave functions have 8=1, and « is
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readily calculated to be @ ~3 for Q' =Q, inde-
pendent of density, so M,=~3V?2. The Coulomb
correlations of charged electron liquids are densi-
ty dependent, butin the density range relevant to
real metals are much less effective than exchange
and lower M}, further by only some 10%. Thus, as
far as can be judged from the first three moments,
Coulomb correlations cause no gross changes in
the recoil spectrum for perturbations extending
over volumes comparable with Q. They merely
cause a small reduction of the second moment.
The changes of profile are, of course, not deter-
mined by these results.

b. Q' =0 with Q'V finite. This is the case studied
in many approaches that employ model Hamilton-
ians with & -function perturbations. We shall iden-
tify the nonphysical consequences that this parti-
cular form of perturbation produces. With A=VQ’
the integrated perturbation strength we find, from

Eq. (16),
My=1, M,=4/Q,

M= (a/Q2(Q/Q)+ (e +8-2)]. (19)

The second moment evidently diverges as ' -0,
owing to one-particle terms alone, and it is readi-
1y verified that a similar divergence occurs in all
higher moments. It is clear that one-particle
terms must indeed always dominate M, for €' <Q,
since |(a+B-2)|=1. However, M} indicates that
physically realistic potentials have recoil profiles
that cut off at E - E,~ A(Q'Q)™/2=V(Q/Q')'/?,
whereas the 6-function profile, if power law in
form, must fall off as E* or slower for large E.
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