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Current three-dimensional formulations of field emission of (noninteracting) electrons are critically examined
and compared. It is shown that the kinetic-theory description for the energy distribution of field-emitted
electrons (FEED) can be brought into a complete formal agreement with the theory of Penn and Plummer

(PP). The reinterpretations of the parameters in the PP theory enable us to demonstrate its relationship to a
nearly-free-electron theory. It is shown that the claim that FEED measures the "one-dimensional local density
of states" as defined by PP is an approximation which may neglect some possibly significant band-structure
eA'ects in transition metals. In FEED these manifest themselves in the contribution of states with reduced two-

dimensional wave vectors differing from zero. The rdationship between Penn and Plummer's theory and a
recent, more exact application of Appelbaum and Brinkman's transfer-Hamiltonian formalism, by Nicolaou
and Modinos is discussed. A new expression for FEED is derived from Feuchtwang's many-body theory of
tunneling. The limitations of the kinetic formulation are contrasted with a complete transfer-Hamiltonian
formulation such as Nicolaou and Modinos's and a more exact tunneling theory by Feuchtwang. It is shown

that the kinetic theory does not allow for either inelastic tunneling or surface-band-structure eA'ects, It is also
shown that the kinetic formulation of FEED involves a "coarse average" over an appropriate "surface" plane
of the local density of states in contrast to the more complete theories in which the FEED depends on the full

spectral density.

I. INTRODUCTION

In the past fifteen years, a considerable amount
of effort has gone into the examination of the in-
fluence of the bulk electronic energy-band struc-
ture and many-body effects on tunneling in "metal-
insulator-metal" junctions, ' and on the "field
emission energy distribution" (FEED) of electrons
from metals. ' " Some of these analyses were
based on the early version of the transfer-Hamil-
tonian formalism, which was introduced first by
Bardeen" and Cohen, Falicov, and Phillips, "and
then adapted by Harrison. ' Most, however, were
based on the more elementary kinetic formulation
of tunneling for noninteracting systems. '

It has recently been suggested that the tunneling
current' and FEED are sensitive to, and hence
can probe the "one-dimensional (local) density of
states" at some appropriate reference plane. ""
This conclusion is based on an adaptation, by
Penn et al. ,

"of the reformulation of the transfer-
Hamiltonian formalism by Appelbaum and Brink-
man. '4

Proceeding from Keldysh's" perturbation theory
for nonequilibrium processes in many-body sys-
tems, Caroli et al. reached a somewhat similar
conclusion. " In a series of papers they show that
the tunneling current depends on the mixed second
derivative of appropriately defined spectral den-
sities for the uncoupled electrodes, evaluated at
an appropriate reference plane. " It should be
mentioned that Caroli et al."differ with Penn
et a/. ,

"" in some important details. The former

find the tunneling current depends on the deriva-
tives of the spectral density, rather than simply
on the local density of states, which (within a fac-
tor of 2s) is the spectral density with both position
variables equal.

Feuchtwang" used Keldysh's perturbation theory
in a significantly different approach and corrob-
orated the Caroli et al. findings. He also demon-
strated that the dependence of the tunneling cur-
rent on the mixed second derivative of the spec-
tral densities, found by Caroli et aE. , was an arti-
fact of their particular convention in defining the
spectxal densities. Feuchtwang showed that, in a
strictly one-dimensional theory, the tunneling
current can be expressed in terms of the local
densities of states at appropriate reference planes
provided that a different convention for the spec-
tral densities of the uncoupled electrodes is adop-
ted, i.e. , provided the wave functions of the un-
coupled electrodes satisfy Neumann rather than
Dirichlet boundary conditions at the surface. Both
Caroli et al. and Feuchtwang's theories differ
from those invoking the transfer-Hamiltonian for-
malism in that the tunneling "matrix element" is
replaced by a functional of the full single-particle
Green's function of the system, which in the one-
dimensional theories is an explicit function of the
corresponding Green's functions of the uncoupled
electrodes. It is not clear under what restrictions
the two theories assume their respective "trans-
fer-Hamiltonian-like" form for realistic models
of interacting systems —if such representation is
at all possiblet The difficulty, as pointed out by
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Caroli et al. ,
"is not a limitation of the basic

formulation, but rather formal, viz. the proper
definition of the "uncoupled" electrodes in the
presence of an interaction (such as the electron-
electron and/or electron-phonon interactions)
represented by a nonlocal self-energy operator. "

Most workers treat the tunneling problem for
(i) a planar junction, subject to the assumption
that the tunneling barrier is one dimensional, and

(ii) a separable effective single-particle potential
characterizing the "uncoupled" electrodes. Both
of these assumptions are necessary if tunneling
in a three-dimensional junction is to be reduced
to an effective one-dimensional problem. In the
kinetic formulations, the usual procedure is to
invoke an effective-mass approximation" and to
assume the normal to the junction plane coincides
with a principal axis of the effective-mass tensor. "
The transfer-Hamiltonian formulations often as-
sume the system to be translationally invariant in
the plane of the junction. " The same assumption
was made by Caroli et al. in most of their work. "
A general expression for FEED from an arbitrary
noninteracting metal was given by Caroli et al. ,
without detailed derivation"; another, presumably
equally general expression for the tunneling cur-
rent based on the transfer-Hamiltonian formalism,
is given by Appelbaum and Brinkman. " Feucht-
wang considered the general case of a nonplanar
junction as well as the ordered planar junction. "'"
While the explicit expressions for the tunneling
current derived by these three groups differ in
detail, they all predict the current to depend on a
weighted average, over the interface, of the prod-
uct of the spectral densities of the uncoupled elec-
trodes.

At this point three obvious questions suggest
themselves:

(a) What if any is the relation between the
four formulations of tunneling? Specifically,
is there any physical content in the theories based
on the transfer-Hamiltonian formalism which is
not accounted for by the kinetic formulation of
tunneling?

(b) Is Penn et al. 's formulation completely equiv-
alent to Appelbaum and Brinkman's?

(c) How is the latter formulation related to the
theories of Caroli et al. and of Feuchtwang, and
how are these two related?

The answer to the first two questions constitutes
the substance of this paper. The remaining ques-
tion has been dealt with in previous publications:
Appelbaum and Brinkman's tunneling theory,
based on their reformulation of the transfer-Ham-
iltonian formalism, has been shown to correspond
physically to a "thick-barrier approximation" of
Feuchtwang's"'" theory. The relation between

the theories of Caroli et al. and Feuchtwang has
been discussed in Ref. 27 and further elaborated
in a recent publication. "

In Sec. II, we shall discuss the relation between
Penn et al. 's theory and the simplified kinetic
theory. A new expression for FEED is derived
from Feuchtwang's many-body tunneling theory
and is contrasted with the other theories. In Sec.
DI, we compare the more complete kinetic theory
of Nicolaou and Modinos" with the theories of
Penn et al. , Appelbaum and Brinkman, and Feucht-
wang.

In Sec. IV, we summarize our analysis of the
inter-relations of the different formulations of
field emission. We also consider the relationship
between current and earlier treatments of field
emission from the d bands of transitions metals.
Finally we discuss critically, and elaborate on,
the physical significance of the "one-dimensional
local density of states. "

II. RELATION BETWEEN PENN'S AND THE KINETIC
FORMULATION OF FIELD EMISSION

A. Derivation of the simplified kinetic formulation

1. Basic assumptions and procedures

In this section, we develop a simplified kinetic
formulation of field emission, which, however, is
significantly more general than the Fowler-Nord-
heim theory. The purpose of this discussion is to
elucidate the weakest set of assumptions and con-
sequent limitations of the traditional formulation
of field emission. A more complete kinetic formu-
lation which overcomes some of these limitations
will be considered in the next section.

A strict kinetic formulation of field emission
involves the factorization of the flux, or current
density, into a product of a (group) velocity and
a particle (or probability) density. " This factor-
ization is exact only for eigenstates of the mo-
mentum. " It retains a limited validity, to be
elaborated below, for Bloch states in a periodic
potential. We therefore restrict ourselves to a
semi-infinite emitter bounded by a single planar
surface.

The following additional assumptions are al.so
essential: (i) The electrons can be represented
as a system of noninteracting quasiparticles, {ii)
the electrons experience a static potential, and
(iii) the electrons encounter an "effectively one-
dimensional" tunneling barrier.

By "effectively" we mean that the barrier may
exhibit a dependence on the two transverse coor-
dinates in the plane of the surface, provided this
dependence has a period which is commensurate
with that of bulk lattice planes parallel to the sur-
face.
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Additional assumptions will be invoked in our
derivation of the kinetic formulations. These will
be numbered consecutively.

Clearly the crystal potential spoils the separa-
bility of the single-particle Hamiltonian. How-
ever, a reduction to an essentially one-dimension-
al problem can still be achieved by two different
procedures:

(a)The first involves the effective mass method
as discussed, for example, by Duke. " This ap-
proach is implicit in all of the early theoretical
analysis of field emission, ' ' all of which assume
a strictly one-dimensional barrier.

(b) The alternative procedure takes advantage
of the residual, two-dimensional periodicity of
the problem, and of the consequent conservation of
the reduced two-dimensional wave vector k, : The
three-dimensional partial differential Schrodinger
equation is transformed into a system of coupled
one -dimensional ordinary differential equations.
This procedure has both conceptual and practical
advantages. In fact, it is the basis of a systematic
approximation scheme to calculate the elastically
back-scattered intensity of a low-energy electron
beam incident at the surface from the outside. "'"
It is also the basis of more complete kinetic ana-
lyses of field emission first formulated by Its-
kovitch, ' and Politzer and (utler, "and more re-
cently by Nicolaou and Modinos. "

lim 0"(r; k„E;k~)
ga m ozz

—g""(r k E k')

+ QR„„(k, , E)P zs" z(zr;k„E;k",), (2.1)

lim41" (r; k„E;k;)
gM zzO

= g e""~' ~g'~ TR(k„;Ek~) @(z;k„E;K„).

K = 2zz(mzbz+ m,b,);

(2.2)

m=—(m„m, ), zzz„m2 integers, (2.3)

is a vector in the two-dimensional lattice recipro-
cal to the two-dimensional lattice defined by the

2. Definition of basis set

It is now convenient to introduce the basis set
for the semi-infinite lattice to which we shall re-
fer throughout our discussion. There exists a
complete orthonormal set of single-particle "out-
going scattering states" for the semi-infinite solid
extending over the half space z —0, which satisfies
the asymptotic boundary conditions

surface plane, and spanned by the primitive basis
vectors (a„ag. That is

a, b&=5, , ; i,j=1,2. (2 4)

The functions ft) satisfy the asymptotic condition

d
lim —i Q*—P ——(Q*)@ ~ 0,

dz dz
(2.5)

E —e(k„k,) = 0, (2.7)

whose branches are labeled by n. The superscript
in (out) denotes that the z component of the group
velocity in these states is positive (negative).
That is, the sum over p, includes all of the real-
valued roots of Eq. (2.7) such that

v~, (k„k,= k,";E)= — (k„k, ; E) —0.88k,
(2.8)

The quantum numbers (k„E) specify a finite set
of linearly independent (and hence orthogonalize-
able) functions qI" whose elements we label by the
index k," or p for short. Here we emphasize that
while 0, is a convenient label it does not corre-
spond to a conserved quantity in the states +",
which are not eigenstates of the lattice translation
operator normal to the surface plane. 44

4" may be interpreted as the complete field
associated with a single incoming Bloch state
Pzz"", with the (back) scattering at the surface re-
gion properly accounted for. It is well known that4" can be expanded in terms of so-called gener-
alized Bloch functions. "'" It is important to real-
ize that the incoming component of 4'~' is multi-
plied by a, position dependent amplitude ~A(z;k, E)

~

& 1 which only tends to unity as z - —~. This am-
plitude accounts for intensity scattered out of the
asymptotic incident wave component, P~"', by the
long-range deviations from perfect periodicity of
the crystalline potential in the region to the left
of z, due to the surface at z = 0. We shall denote
the incoming component of 4" by P'"z(r;k„E;k,").
This Partial field is an approximate solution of the

In the absence of any external field and neglecting
the classical image charge potential

y(z;k„E;K ) = exp' [(2mlIf2)E —(k, + K )2]z "z).
(2.6)

The functions P~ are the Bloch functions normally
labeled by the reduced three-dimensional wave
vector k and the band index n. Here however they
are labeled by the two-dimensional reduced wave-
vector k„ the energy E, and the index p. . This
index labels the branches of the multivalued func-
tion k,(k„E), which is the inverse of the multi-
valued energy dispersion relation
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wave equation which tends to the exact solution
(}(z"' deep inside the metal as z - —~ . As z tends
to the surface, the deviation of the potential from
perfect periodicity gives rise to a scattered field
which is not included in P{"'. Furthermore, P{'"
does not satisfy the boundary conditions imposed
on the complete field (1"' at z = 0. The (partial)
current carried by g"" has therefore a diver-
gence, though it tends to a divergenceless limit
as z- —~. We shall write,

y&"&(r k E k }=a(z k E k")

x Pz~"'(r; k„E;k,"}, (2.9}

la(z;k„E;k,")I'=
I

I
y&"'(r;k„E;k",) I'd

~QO{g)

(j., (k„E;k",)&

= He — Pg(r;k„E; k,")
g=go

x . (I, (r;ic„E;a",) &Ps) (2.(2)

is independent of z,." Therefore,

S(j, z(k„E;k,"})= v~ (kp, E;k,"}

x IL,-'"N(k„E;k,")I', (2.13)

where SL = 0 is the normalization volume of the
81.och functions whose normalization constant is

¹ The discussion in See. II, of the s1.ow varia-
tion of the "local" periodic potential implies that
the z dependence of jg" can be accounted for by
the amplitude factor A [of Eq. (2.10)] which ex-
hibits a correspondingly weak z dependence.
Therefore

(2.10)

Here Q, is the nonprimitive unit cell defined by
the vectors Pa„a,) in the plane of the surface and
the basis vector a, normal to this plane. Q,(z)
signifies that the integral is to be taken over a
unit cell located at z.

An alternative treatment of this effect is to mod-
ify the Bloch functions to account for the z depen-
dence of the "local" periodic potential. " We shall
assume this position dependence —and hence also
that of A —to be negligible over distances of the
order of the nonprimitive basis vector

I a, I.
Within the effective-mass method, and for a

strictly one-dimensional barrier the sum in Eq.
(2.1) is approximated by the single term for which

a,"= -u.".

3. Definition of transmission probability

We now define the two-dimensional space aver-
age, over a plane parallel to the surface, of the
normal or z component of the partial current, j",
carried by the g'"" component of 4":

j '(r;kp, E;k,"} ds=—(j,"(z;k,E;k,")).8

(2.11)

S(j,' (;k„E;k,"))=SIX(z;k„E;k,")I'(j, (k„E;k",))

=v, (k„E;k,")lf. '"A(z-;k„E;k",)X(k„E;k,)I'
=-., (k„E,k.}l~- ~ ~(k-„E;k.;z)

I
. (2.14}

Outside the surface plane, conservation of cur-
rent ensures that the net average z component of
the flux

S(jg(kp, E; kg))

x, io"(i;ic„z;(,"( ~ dI)

(2.15)

is independent of z,. Here Eels. (2.2)-(2.5) guaran-
tee that this flux is equal to the transmitted or
outgoing average normal flux as z - + ~. Equa-
tions (2.13)-(2.15) represent implicitly the start-
ing point of any kinetic theory of field emission.

We now can define the "transmission probability"
across the region bounded by the planes z =z„z,
by the ratio of the average transmitted normal
flux, incident at z„ to the average incident nor-
mal flux, incident at z =z, :

(- „(j."(z = z „k„E;k,"))
(( g P9 9 (( ( '1(((z z .~» E.kP))

S is the cross-sectional area of the emitter, and
is an integral multiple of the area "A" of the two-
dimensional unit cell in the surface plane. In the
following the angular brackets denote an average
over the plane z = const.

We note that for a Bloch state conservation of
current ensures that the quantity

and

for z„z,(0 (2.15)

(j, (k„E;k,"))
(j"(z=;k,E;k,"))

for z, &0&z,. (2.lf)
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If the planes z =z„z, enclose the "physical" sur-
face barrier, then the definition stated by Eq.
(2.17) agrees with the usual barrier transmission
coefficient calculated within the effective-mass
method. However, it should be emphasized that
this requires the effective-mass envelope func-
tion f and the quantity (llns~)(dfldz) to be can-
tinuous across a plane of discontinuity of m*, such
as the surface plane. " If, in particular, the
planes z'=z] z2 are located at the classical turning
point of the one-dimensional field emission bar-
rier, as shown in Fig. 1, then the transmission
probability D, , (k„Ek,") is reasonably approxi-
mated by the usual %KB-type exponential, "

2
exp —2 z,"(z)dz

gg

4. Field-emitted energy distribution

The small value of the transmission probability
for field-emitted electrons at the Fermi energy
suggests that the steady-state tunneling current
into the vacuum do not significantly disturb the
thermal equilibrium of the electrons in the semi-
infinite solid. '"" %e therefore assume:

(iv) The electrons in the emitter are weakly
coupled to the vacuum. The equilibrium Fermi
distribution function characterizes the distribution
of electrons incident at the surface.

This assumption is equivalent to the thick-bar-
rier -approximation underlying Appelbaum and
Brinkman's theory. '4 It also corresponds to the
"rigid-occupancy" approximation invoked by Duke,

=(j,"(z„k;n)) 0. (2.19)

There is no simple relation between the two dis-
crete indices v and n. The former labels the
branches of the function k, = k,(k„E), while n la-
bels the branches of the inverse function
E= e(k„k,). The averaged energy density of field

Kleiman, and Stakelon in their many-body theory
of tunneling. " The total field emitted current can
now be expressed with the help of Eqs. (2.14) and
(2 17) 4eloll

S(j.(z,))= g (j,"(z„k,n))
BZ 1 j2BZ n

&& D...,(k, n; F)f(e„(k))d'k,

(2.18)

where f(e„(k)) is the Fermi distribution
(1 —exP[(e —P. )/ks T]) '; QBz is the volume of the Bril-
louin zone and n is the "band index" introduced in Eq
(2.7). The integral extends only over that half of
the Brillouin zone labeling states for which
v (k, n) ~ 0. The argument F of D, , denotes the
dependence of the transmission probability on the
applied electric field. In writing Eq. (2.18), we
used the multivalued energy dispersion relation
of the periodic solid, Eq. (2.7), to perform a
transformation of variables E —k, . Following
standard procedures we define

Dg, (kp, E;k,";F)=D, , (kp, k",(kp, E);F)
—= D...,(k; n; F)

and

(j,"(z„k,E;k,"))=(j,"(z, ; k„k,"(k„E)))
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FIG. l. Schematic illus-
tration of field emission.
The periodic potential with
a unit vector a, is indicated
with the effective surface
barrier. The conduction
electrons occupy the states
from the bottom of the band
atE =0 to the Fermi level
E =Ez. The classical turn-
ing points, z

&
and z2, for

the state of energy E are in-
dicated, as well as the
"surface" plane in our con-
vention. Finally, a typical
free electron, and Bloch
electron in a higher angular
momentum state are
sketched to illustrate the
reduced local density of
states for the latter at the
"surface, " discussed in
Sec. IV.
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emitted electrons is

P 6(E —e„(k))(j,(z„.k;n)}
BZ 1 /2BZ n

Although both sets of assumptions lead to formally
identical expressions for j (E), the quantity k, has
different meaning in each.

Assumptions (v) and (vi) lead to the interpreta-
tion of k, as a semiclassical wave vector,

x D, , (k;n;E}f(e„(k))d'k. (2.20)
(2.24)

Substituting Eq. (2.14) into Eq. (2.20), we obtain where the normal energy W is given by

W= E —(Kkp)/2m. (2.25}

x —v (k, n)iL 't'X(k, n;z, )i' D, , (k;n;E).

(2.21)

In Eq. (2.21) the factor of 2 represents a sum over
spins. We have also replaced the integration over
half the Brillouin zone by a correspondingly re-
stricted sum designated by a prime. To obtain
the "free-electron-like" or Fowler-Northeim ex-
pression for j '(E), it is necessary to use either
of the following two approximations; consisting of
approximations (v} and (vi) or approximation (vii),
respectively.

(v) The effective mass approximation, providing
that the z axis coincides with a principal axis of
the effective-mass tensor. Note that the effective
mass approximation did not have to be invoked in
deriving Eq. (2.20).

(vi) The application of the WEB approximation
for the solution of the one-dimensional effective-
mass equation for the z dependence.

These two steps lead to the usual Fowler-Nord-
heim field emission equation.

The alternative procedure it to invoke the well-
known result from the "k p" perturbation theory, "
(vii)

3

(n, k
i p; i n, k) = 8 P k

& „=mv (k, n),
m„

(2.22)

where the index j=1,2, 3 represent x, y, z. If the
z axis is a principal axis of the effective-mass
tensor m„*, we obtain

x k, iL ' X(k, n;z, )i' D, , (k;n;E).
mn* zg

(2.23)

Here V(z) is the barrier potential in the effective-
mass equation as implied in assumption (v), k,
is an ordinary (i.e. , not a reduced) two-dimen-
sional wave vector. On the other hand, the k vec-
tor introduced by Eq. (2.22) is the z component of
the reduced Bloch wave vector characterizing +".
It is furthermore customary, though not really
essential, to invoke the following simplifying as-
sumption suggested by the free-electron model.

(viii) The transmission probability depends only
on the normal energy defined in Eq. (2.25),

D, , (k, k,"(k,E);E) =D...,( W; v—; E) (2.26)

Furthermore, the dependence of the transmission
probability on the energy W, dominates any energy
dependence of the factors in square braces in Eqs.
(2.21) and (2.23), so that these can be pulled out of
the sum. This assumption, although widely used,
is of limited validity and several examples where
it fails are discussed in the literature. "'"'"

B. Comparison with Penn et al. 's theory

1. Penn 's formalism in terms of kinetic theory

In the preceding section, we derived a general-
ization of the usual expression for the averaged
energy distribution of field emitted electrons in
the three-dimensional independent-particle model.
We listed all the assumptions necessary to obtain
Eq. (2.23) to determine the dependence of the re-
sult on the validity of the WKB approximation. It
is important to emphasize that Eq. (2.23) could be
derived independently of the WKB approximation
though this still required a weak-coupling assump-
tion (iv).

In order to make contact with the recent formu-
lations of field emission in terms of the local den-
sity of states (i.e. , Penn et al.20 and others"), we
use Eq. (2.14) to eliminate Ol' from Eqs. (2.21) and
(2.23),
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~I, 'm(k n z )~'

1 {{""(;kz.;,), ){".d 'v)'
Qo(g~ )

2' — + r;k~, E;k", 2ds.
e g~

(2.27a)

Substituting Eq (2.27a) into Eq. (2.21) or (2.23), we obtain a reformulation of the kinetic theory which does
not necessarily depend on the effective-mass method:

(
~l ~ m—Sf(E) j'(E) = g @

u—, (k„E;0,")

P"" r.k„E 4" 'd y
Qo

x&(E -«„(k))~(e(z„k„E;0,"))~'.

ie(r; k„E;a,")i'ds D,,„(k,n;r)
1

(2.27b)

This equation should be compared with a corre-
sponding expression derived by Penn and Plum-
mer, "and written below,

Sf(E) j—'( )E=A. '(E)QD(W)~()t (z,)~'5(E —«).(
2e

(2.28)

In Penn's expression, m labels the electronic

states of the metal (emitter), and D(W) is the
transmission probability, assumed to depend only
on the normal energy W. The quantities X '(E)
and

~

l() (z, ) ~' introduced by Penn can be identified
respectively with the factor enclosed by square
braces on the right of Eq. ( 2.27b), and an appro-
priate rms value of the wave function)i{(r;k„E;{I,,").

Using (2.9)-(2.13) and (2.27) we can obtain an
equivalent and simpler definition of X ':

J {~I'd ) (2.29)

It is important to note that in this formulation, the
function q in Eqs. (2.27a)-(2.29) can be chosen
for convenience. Furthermore, g is an incom-
pletely defined state, because its behavior at
z = 0 is not, and does not have to be, specified.

Substituting Eq. (2.29) into Eq. (2.27b) we obtain

h.
2

j'(E) f(z) E X*{z=ic„):)B .—(W, ;E,)). ", .8'
gp &P&v

a three-dimensional junction' is easily specialized
to a field-emission configuration. Before we dis-
cuss this we shall summarize the pertinent results
of the tunneling theory. "

The average of the tunneling current over the
plane of the junction located at z =z, is expressed
as an integral with respect to energy,

x[8(E «(k))S~(~(z„.k„E;e))~ ]. J j r ds=S j =5 j'E dE.
g-gg a Co

(2.31)

Equation (2.30) is formally identical with Eq.
(2.28) derived by Penn and Plummer. " However
the two expressions for j'(E) require different
interpretations of corresponding quantities. We
shall return to this point in Sec. III.

2. Relation of Feuchtwang 's formulation of field emission to
the kinetic theory

a. Derivation of new many body formulation of-
field emission. Feuchtwang's tunneling theory for

j is to be interpreted as the ensemble average of
the current density operator. In Eq. (2.32), be-
low, we express the energy density, j'(E), in
terms of the "partial" spectral densities,
p, (r, r';E, v);i=1, 2, of the two uncoupled elec-
trodes. " These fundamental quantities are dis-
cussed in Appendix A. Here we wish only to note
that the spectral density with both spatial variables
set equal defines the so-called local density of
states.



ski'(E)k (f,(E) f.(E-)l 'E(k.}

r Ekrt p Ep'*E"p(,';E, , ,)p, ( ",p;E, ,) I'"( ', ';E)I I", ;El
P ~ V g gy g gy g -gy g

(2.32)

Here (Ref. 57) f;{E);()=1,2 are the Fermi distri-
b«ious, [exp[(& —if, ,)p]+ I}', characterizing the
thermal equilibriuln of the uncoupled electl odes.
The trRnsfer matrices I ax'e defined by the 1elR-
tion,

dsds'I'""(r, r', E)2&l g g gl g1

E;"(", ";E, ,) ZE." (",";E, .)) =k..-.

An integral representation of t e Green's rune-
t1ons, g,"',» of the uncoupled electrodes 1s

rp&~ E(r rp. E p ) Ii~ pk (trl' IE IV i) dE
E' -E+N 2m

=[gi"(r, r', &, i;)]', i=1,2.

(2.34b)

For the ordered junction, "we can simplify Eqs.
(2.32)-(2.34) with the help of a two-dimensional
lattice Fourier-expansion of the spectral densities.
Using the notation introduced by Eqs. (2.2)-(2.4)
%'e obtain»

p('P 'P .E p) Q Q ie(R E»Ii PE)2
»»t, n

xe'"p'i»i »2)p (z z k E ()

m =(m„m, ), n=(n„n, ).

g,""(r,r';E) = g g;(r„r';Z, if,.),
Vg

{2.34a) The coefficients p „can be interpreted as the (mn)
element of the matrix p, and it is easily verified
that Eq. (2.32) reduced to Eq. (2.36),

=Tp E ( p„k, ; k; k)E(p I"( „'kk; )rpE(„*„k,;,E, p)1' (k„„k;E)) . (I.M)

In Eq. (2.36) we interpret the products of the quan-
tities I' and p as matrix products. Similarly, me
find that Eq. (2.33) reduces to Eq. (2.37),

magnitude of an effecfive matrix element, i.e. ,

M '„Z„gl;k;E, P', F

(2.37)

Equations (2.36) and (2.37) can now be a.pplied to a
field emission configuration. %e only have to re-
call that the second "electrode" of the junction now

is the vacuum. In the absence of any tunneling, the
chemical potential of the vacuum is obviously equal
to -~. Thus %e shall %rite 1n the follo%ing

P2—= Pf»» P 2 ~» Pl —=P-

It 1s convenient to cons1del the factox' ln squax'e
brackets on the right of Eq. (2.36) as the squared

(2.39)

Here me have indicated, through the axgument F,
the explicit electric fieM dependence of the sever'al
quantities in Eq. (2.39). We note that Eq. (2.37)
and (2.39) imply that )&l~' does not depend explicit-
ly on the index v, which @re shall continue to in-
dicate as an arguInent of the square effective ma-
tX'1X.

Substituting Eqs. (2,38) and (2.39) into Eq. (2.36),
me obtain the following expxession for the FEED,
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h . f(z)
2 j {Z)= 2» S 'p(z„z„;k;Z, v) ~M~'(z„z, ;k; Z, v; F). (2.40)

In the coordinate representation Eq. (2.40) becomes

—r'(z)= F ". s 'p(F, r"; a, )~~sr~~*(r", r';a, ssss")as'.I . , f(z)
2 2F z~ z a

gtc g 1

(2.41)

Equations (2.40), (2.39), (2.37), and (2.34) consti-
tute our formulation of field emission in terms of
the spectral density function of the emitter. (See
Appendix A. ) This formulation depends explicitly
on the convention that at z =z, the Green's function
for the "uncoupled" emitter, g(r, r', Z) satisfies
Neumann conditions at the "surfa, ce plane" z =z, .
The sensitivity of Feuchtwang'8 tunneling theory
to these boundary coDdltlons Rnd its slgnlflcRDce
Rre discussed, 1D detail, ln I-IV

b. ComParison uith kinetic formulation. We
shRll Qow demonstrate thRt the k1netlc formulation
of field emission corresponds to a fairly obvious

approximation of our more complete many-body
formulation Specifically ln the klnet1c formula-
tion one replaces the two factors in the integrand
of Eq. (2.41) by their "coarse-grain" average over
the plane z =z

This may be intexpreted as approximating the
"product'* in the integrand with respect to the
primed va, riable, which is averaged over the plane
z'=z„by the "product" of appropriate (i.e.,
coRI'se- gI'Rill) Rvel'Rges. Tile CORI'se-gl'Rill Rvel'-

age, defined below, depends on the coordinates p,
and p, only through their difference, i.e.,

{P{rrsrar Zr v)) coarse =P =P(zlrzrr pr —pa; Z, v) = Trp(zrrzr', k; Z, v)e a

kp

P(r r 'Zv)e ' s' ' " ' 'ds"ds' e'"~''" »' (2.42)
1
8 z'=e err =sj

kp

Equation (2.42) is not an ordinary two-dimensional
courier expansion, because the spectral density
depends separately on the variables p„p, and not
just on their difference, p, —p, .

Comparing Eqs. (2.35) and (2.42), we note that
if the two arguments p„p, a.re set equal in a
coarse-grain average, the effect is to eliminate
the genex'Rlly 1apld spRtlR1 VRx'1atlon of the 011glnRl
fuQctlon of p, =p =p2 ovex' the two-dimensional unit
celL Thus, using Eq. (2.42), we find for the local
density of states, defined as (2v) 'p(r, r; Z, v),

2s{p(r, ; z, v)),.„„=-(p (r„r„z,v)),.„„
=1 Trp(z»z, ;k; Z, v).

kp

It should be noted that the coarse-grain average
local density of states is defined by equating the
arguments in the corresponding average spectral
density after the average [defined by Eq. (2.42)]
divas performed.

Equation (2.43) corresponds to the approximation
of the p dependence of the Bloch function by a plane
wave in p, in which (gs~ is represented by its rms
value over the plane z =z„

l)s {r;k,n) =e'"'S '~'
+,~ =~1

112
iu(r; k, n) i'ds

(2.44)

Approximating the factors in Eq. (2.41) by their
coarse-grain averages, as defined by Eq. (2.42),
%6 obtRln

j'(Z) =f(Z) g—S-'—
Trp (z„z,;k„.Z, v)

kp~P

x TriMi'( z„z,; k; Zv;E).

We conclude that in the kinetic formulation of
FEED the right side of Eq. (2.40) is replaced, or
rather approximated by the right side of Eq. (2.45).

(2.45)

It is shown in Appendix 8 that

5(Z —e (R))S((e(z,; k„Z; h, )) ('-=—Trp(z„z„k, ; Z, v);

(2.46)

so that the right sides of Eqs. (2.30) and (2.45) a.re
formally identical and
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3. Discussion

Our derivation of Eq. (2.30) indicated that the
many-body formalism of Penn and Plummer, when

applied to a noninteracting system is equivalent to
the kinetic formulation of field emission. Both
theories explicitly depend on assumptions (i)-(iv).
However, Penn's analysis relies strongly on an
explicit application of the WEB approximation, and
does not distinguish between the consequences of
this pa.rticular approximation and general features
of the theory. For example, the factor ~g (x )('
in Eq. (2.28) is identified as the squared magnitude
of the single-particle state g, while our analysis
identifies it properly as the surface average of
this quantity. The difference in interpretation oc-
curs because Penn et al. replace the three-dimen-
sional metal potential by its planar average, with-
out however interpreting the resulting wave func-
tion as an appropriate planar average. In a sub-
sequent publication, Penn" considered this prob-
lem but did not completely resolve it, because his
modified expression for ~g )' still excluded band-
structure effects associated with the periodicity
in the surface or p plane. Nore recently, Penn
has correctly defined this term" by defining

l4.(i,)l'-=I '"
V, „(r)u . -(2.4s&

g =gj

According to Eqs. (2.35), (2.46), and (A.2) this im-
plies that the Penn-Plummer (PP) expression for
the field emitted energy density, j'(E), [Eq. (2.28)],
depends on the quantity

5(E —e(k))S~!/i (z,)('=(2r} 'p„(z„z,;k;E,v)

(2.49)

As will be shown in Sec. IV, this quantity may be
interpreted as an average

(Partial)

local one-di-
mensional density of states.

Equations (2.48) and (2.28) correspond to an ap-
proximation used by Nicolaou and Modinos" in
their calculation of j'(E) applying Appelbaum and
Brinkman's transfer-Hamiltonian formalism, to
be discussed in Sec. IIIB.

Note added in manuscript. We wish to point out
that this most recent reformulation of the PP theo-
ry" is essentially equivalent to the direct treat-
ment by Nicolaou and Modinos. " It is to be em-
phasized that this "equivalence" is subject to cer-
tain qualifications which were first explicitly de-
rived in the present analysis and are referred to
in the "Note Added in Proof" at the end of Penn's
latest paper. "

It should be emphasized that the k~ & 0 contri-
bution to j'(E) may be very significant. This is
demonstrated by the explicit calculations of Politz-
er and Cutler" and Nicolaou and Modinos. "'"

The l.atter authors have developed a procedure
to be discussed in Sec. III fox dealing with a
strictly one-dimensional barrier without elimin-
ating the significant p dependence of the problem.

Returning to our discussion of Eqs. (2.28) and
(2.30), we note that PP" and Penn"'" assert that
the factor X ' depends only weakly on the energy
and not at all on kp. However on examining an
explicit calculation of X, which the authors out-
line, one finds a dependence on the normal. energy
W (and hence on E and k~). Furthermore, our
calculation [see Eqs. (2.27) and (2.29)] identifies
~ ' as proportional to the z component of the group
velocity, which exhibits a marked dependence
on both kp and & for any non-free-electron band.
In fact the k& dependence of A. 'D contradicts the
assertion that the transmission probability D(W)
always singles out the k~ =0 states. The depen-
dence of ~ ' on kz and E has another consequence.
It can make the identification of structure in FEED
with the local density of states at the surface more
complicated than indicated by PP. For example,
while Eqs. (2.30) and (2.45) seem to emphasize
the (coarse grain planar average of the) local
density of states at the "surface" (i.e., at z =z, ),
A,

' clearly contains bulk band-structure informa-
tion. To conclude, A

' cannot, in general, be
removed from the sum over w, indicated in Eq.
(2.28). However, if the PP theory is understood
to be represented by Eqs. (2.27b) and (2.30}, then
it becomes formally equivalent to Nicolaou and
Modino's formu lation.

The definition of X ' and ( ( 4') ~' given by Eqs.
(2.27a)-(2.29}, emphasizes the arbitrariness of
these quantities, which by themselves have no
unique physical significance, although their prod-
uct ~ 'I ( 0) I' has a unique physical meaning. In
particular, in any kinetic formulation, the pre-
cise boundary conditions to be imposed on 4 (at
8 =0) do not have to be spec1f led. Although this
ambiguity is similar to that encountered in
Feuchtwang's many-body theory of tunneling, he
selects a "convenient" set of boundary conditions,
by the requirement that the functional. dependence
of FEED on the "local density" of states be given
by Eq. (2.41). Here a formal difference between
Eqs. (2.28), (2.30), and (2.41) should be pointed
out: In Eq. (2.28), PP chose z, to be the (energy
dependent) classical turning point in the effective
barrier potential. In Eq. (2.41), z, is the surface
plane at which the wave functions satisfy Neumann
conditions. " While neither the kinetic theory
[Eq. (2.30)] nor Penn ef al. 's analysis require

to be any par ticu lar point, " '
F euc htwang

' s
analysis singles out the interface and defines it
as the plane, located beyond the last atomic plane,
on which 4' satisfies Neumann conditions.
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Each of the three formulations of FEED dis-
cussed above involves a phenomenological pa-
rameter, i.e., the location of the plane on which
the local density of states is evaluated. This
parameter and the nature of the boundary con-
ditions to be imposed on the single particle states
of the semi-infinite solid are inherently "dis-
posable, " though they tend to be more restricted
the more formal the theory, as for example in
Feuchtwang' s analys is.

A final point that ought to be considered is the
role of surface states and (scattering) resonances.
The former enter Eq. (2.41) explicitly as isolated
singularities of the transfer matrix I'"(z„z, ~p +),
which do not fall onto one of the allowed energy
bands of the solid. These in turn would manifest
themselves in peaks of

~
M~' at values of k~ totally

unrelated to those for which the product v D(W)
2

peaks. " Similarly, surface resonances manifest
themselves in peaks of v D(W) which occur at
"unexpected" values of (kp &) Thus, the asser-
tion by Penn ef p). , concerning the «niqiie, sharp
Peak ofj '(E) for k~ =0, is valid for a nearly-free-
electron-band and in the absence of surface states
and, o~ resonances. The recent model calcula-
tion for field emission from tungsten by Modinos
and Nicolaou" provides an excellent illustration
of this point, which has been recently conceded
by Penn (see note added in proof). "

III. RELATION BETWEEN THE KINETIC FORMULATION

OF NICOLAOU AND MODINOS AND THE THEORIES
OF PENN ET A L. AND FEUCHTWANG

A. Comparison of calculation of Nicolaou and Modinos

and Penn et al. 's theory

Nicolaou and Modinos published a very complete
analysis of the total energy distribution of field
emitted electrons from tungsten, "within the
framework of the kinetic formulation developed in
Sec. II. Besides the basic assumptions (i)-(iv),
Nicolaou and Modinos make the following three
simplifying approximations in calculating the
states 4 "defined in Sec. IIA 2:

(ix) They restrict the basis set of the generalized
Bloch functions used in expanding 4" to a set of
2n functions, n incoming and n outgoing waves.
This approximation is closely related to approxi-
mation (x).

(x) The two-dimensional Fourier (plane wave)
expansion of the p dependence of 4" (and of the
generalized Bloch functions) can be truncated
after n terms. Finally, Nicolaou and Modinos
make an a.ssumption in (xi).

(xi) The long-range deviations from perfect

periodicity of the crystalline potential in the region
to the left of z =0 can be neglected. (The surface
plane, z = 0, is located half a lattice constant to the
right of the la.st a,tomic plane. )

The assumption of perfect periodicity up to the
surface plane implies that our factor A(z;k„E;k",)
is identically equal to unity, and hence, the factor
3l'(k„E; k,";z) in the right member of Eq. (2.14) is
independent of z; thus X reduces to

N(kp, E;k, ) = (LS)' '. (3.1)

The rest of their analysis is exact, i.e. , they
evaluate the transmission probability
D 0+(k„E;k,~;F) by ma. tching the logarithmic de-
rivative across the plane z = 0. They determine

j '(E) from Eq. (2.21), which now reduces to

j '(E) = g~ Do-o+ (k„E;k;;F) . (3.2)
2Sf (E)

kp

Here the sum over k, ranges over the projected
area of the constant energy surface into the k,
plane. The equivalence of Eqs. (2.21) and (3.2)
follows if one notes that the delta function in Eq.
(2.21) denotes the normalized single-particle
density of states which, in the continuum normal-
ization of Modinos and Nicolaou, is represented
by ~&,e„(k)

~

'. Thus Eq. (2.21) corresponds to an
integral over a constant energy surface, whereas
in Eq. (3.2) this integral is now replaced by an
integration over the projection of the constant
energy surface into the k, plane. "

It should be noted that Nicolaou and Modinos do
not invoke any of the assumptions (v) —(viii). Thus,
their calculation is only limited by the validity
of the basic assumptions of the kinetic formulation.
The avoidance of the unnecessary simplifying as-
sumptions (v)-(viii) paid off in providing a clear
counter example to the accepted "lore" that the
barrier transmission probability is only peaked
at k, = 0, so that the energy distribution of field
emitted electrons is almost completely determined
by the k, = 0 component of the (coarse averaged)
local density of states. It should be noted that
these results confirm those of Politzer and
Cutler. "

In assuming that the quantity X
' in Eq. (2.28)

depends only on energy, PP and penn do not ac-
count for the k, dependence of the group velocity
v, . This dependence is accounted for by Nicolaou

Z

and Modinos, who correctly omit the contributions
to the integral over k, from portions of the constant
energy surface that have no projection onto the

k, plane. Nicolaou and Modinos explicitly demon-
strate the existence of peaks of the transmission
probability at "unexpected" values of (k„E). The
identification of some of these peaks with surface
resonance (or quasisurface states) was proposed
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by Modinos and Nicolaou in a second paper utilizing
the transfer Hamiltonian. " These results con-
trast with the conclusion of PP and Penn, that the
energy distribution is primarily a measure of the
local normal or one-dimensional density of states.
The latter quantity, which they denote N'(E, E)p' (E)
is,"in our notation,

N'„(z, z)p.(z) -=„, l3f(k„z; k",;.,) l-„, , (3.3)

Nicolaou and Modinos conclude that Penn et al.
must have assumed the nearly free-electron model
for the emitter. " The same conclusion can be
derived as a consequence of the requirementof the
Applebaum and Brinkman theory that the "left"
and "right" states diagonalize the Hamiltonians
for the left and right half -sPaces: Penn and
Plummer denote the left states of Appelbaum and
Brinkman's theory by g . They chose the wave
functions P to be WEB- type free-electron- like
functions. This follows from the requirement that
at the plane z =z, which [in the notation of Eq.
(2.2)t corresponds to the turning point of
P(z;k„E;K =0) closest to the first atomic plane,

is represented by a single plane wave in p."
Comparison with our 4" demonstrates that func-
tions $ satisfying this requirement cannot di-
agonalize the Hamiltonian, with the potential
periodic in p, for the left half-space. Here it
should be noted that Penn" argues that the "normal-
ization constant" N (E) accounts for band-structure
effects (i.e. , deviations from the free-electron
model) such as found by Politzer and Cutler, "and
confirmed by Nicolaou and Modinos. "'" This
claim is neither substantiated by Penn, nor by
our analysis. Penn further argues that N (E)
could vanish along a symmetry line in the Bril-
louin zone. " Although our analysis" confirms
this, this is unexpected behavior for a normal-
ization constant, and it implies P is a pseudo-
wave function, required to vanish whenever the
normal component of the current fj,ds carried
by the corresponding state vanishes. This in turn
poses difficulties in interpreting N (E —E ) as an
(averaged) local density of states. " Recently Penn
generalized his formalism, "and redefined his
local (normal) density of states

B. Comparison of Nicolaou and Modinos' calculation with the

theories of Appelbaum and Brinkman, and of Feuchtwang

Nicolaou and Modinos" noted the significant dif-
ferences between their kinetic- theoretic calcula-
tion and Penn et al. 's analysis. This apparently
prompted them to apply their method of calcula-
ting 4"' to Appelbaum and Brinkman's version
of the transfer Hamiltonian formalism. They ob-
tained an expression for j '(E), which in our nota-
tion reduces to

—j'(E) =
2 p g S 'p .( ,0Ok„;E~)

"p~" m, m'

x liifl.,(k„z;.;F),
(3.5)

where

S ' p, (0, 0;k„E;v) =

C (k„E;k") -S 'i'

x C (k„E;k",)C*,(k„z;k,"),
(3.6)

C(r;k„z;k,")
=0=Zg

X e-i (km+kp) ~ P d~ (3.7)

noted in our discussion of Eq. (2.45), the sum
over m can include only the states with k, = 0.
This is evidently inconsistent with the previously
discussed claim that N, here identified as the
surface average of g (r), should account for band-
structure (i.e. , symmetry) effects which could
manifest themselves in pronounced contributions
of states with nonzero k, values to the field emitted
energy distribution. More recently Penn cor-
rected this defintion of the local (normal) density
of states, and replaced it by a quantity equivalent
to (2v) 'p«(z„z„k„z, v)." However, the k, de-
pendence of X

' is still not considered. Thus, the
latest version of the PP theory still does not fully
account for the above mentioned band-structure
effects.

2

p (E,z,) =—g t( (r)ds 6(E —E ), (3.4)
m z z

where the primed sum includes all "metal states
with momentum normal. to the metal surface. ""
Presumably it was meant to restrict the sum to
include only states such that v, &0. This definition
is strictly in accord with the kinetic formulation,
and does unnecessarily eliminate from the analysis
surface states, if these exist. " Furthermore, as

@2 1/2
=2 — (w w, )"4

X/2

Qe2F2

and

W =——e(k„k,")+ (k'/2m)(k, + K )'.

(3 6)

(3.9)
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In Eq. (3.5), k, is summed over the projection of
the constant energy surface into the k, plane. The
explicit form of the squared magnitude of the ef-
fective matrix element ~M

~' ., given by Eq.
(3.8), reflects the model considered by Modinos
and Nicolaou: an abruptly terminated pex iodie
potential and an external potential corresponding
'to a uniform electric field V(P) = 8'. On the
other hand, the fact that the matrix ~M ~' is diag-
onal in m is a general. feature of the transfer
Hamiltonian formalism used by Modinos and
Nicolaou. " Thus we see that Eqs. (2.40) and
(3.5) are formally identical. They differ, how-
ever, first in the formal definition of the squared
magnitude of the effective matrix and, second, in
the precise definition of the local density of
states.

The first difference is due to the fact that
Appelbaum and Brinkman's theory is equivalent
to a "thick-barrier- approximation" of
Feuchtwang's theory. Specifica1. ly, in Appelbaum
and Brinkman's theory the right side of Eq. (2.32)
assumes the form

ds ds 'p, (r, r', E)p, (r', r; E)

&& /r/'(r', r;E), (3.10}

where
~

T~' is essentially the normalized squared
magnitude of the "transition-current" of Bardeen. "
Equation (3.10} has been shown to be the thick-
barrier limit of Eq. (2.32)." The second differ-
ence between Eq. (2.40) and (3.5) is more subtle,
and is due to the different boundary conditions im-
posed by the two theories on the semi-infinite
solid in the absence of any tunneling cuxxent:
Appelbaum and Bxinkman require the states of
the semi-infinite solid to vanish infinitely far,
outside the solid; Feuehtwang requires them to
obey Neumann conditions at the boundary surface
z=z j 4

Nicolaou and Modinos do not discuss the char-
acteristic, formal difference between their kinetic
theoretical expression and their transfer-Hamil-
tonian analysis: The former involves only the
coarse average of the local density of states, i.e. ,
it involves f, , ~

~((' ds Trp. The latter, just like
the theory of Feuchtwang, involves the full matrix
p. ' This difference becomes unimportant in the
context of the calculation of Nicolaou and Modinos
because they assume that the contributions of all
but the (0, 0) matrix element of p are negligible.
In this approximation, t:he kinetic and the transfer-
Hamiltonian formulations reduce to identical forms.
Both„however, disagree with the PP and Penn
theory which as a,lxeady discussed befoxe, is iden-
tified as a nearly-free-electron formulation; as
mentioned before, this formulation does not con-

IV. CONCLUSION: BAND STRUCTURE REVISITED

In the preceding section we have examined the
basic approximations and consequent limitations
of four current formulations of field emission.

The "naive" kinetic theory is normally derived
subject to assumption (i)-(vi) and (viii), which
emphasize the simila. rity to the nearly-free elec-
tron model of s-electron emission. We have seen
that the more "exact" kinetic formulation invokes
only assumptions (i)-(iv). Both are thick-ba. rrier
approximations which do not account for either
inelastic field- emission or electronic surface-
band- structure effects. '~'6'

Hex e it is instructive to pursue the naive kinetic
theory further than was done i.n Sec. II. Using
Eqs. (2.21) and (2.23), we can describe the energy
distribution of field-emitted d electrons by the ex-
pression

Ugg(E, d)
) X(kp —0, kg(kp --0, E), d; z,) I

'
v~ (E s) iX(k =0 k, (k, =O, E)s z )I'

m*, ' X(k, = 0,k,(k, = 0, E), d; a,)
"'~,. Z(k, =O, k, (k, =O, E),s;a, )

(4.1)

) X(k, d; a, ) i
'

L ~e,(r;k, d) ~'ds, (4.2)

and s, d label electrons from the s, d bands.
In writing Eq. (4.1) we assumed that

sider the strong dependence of the spectral density
in transition metals (i.e. , of the d states' wave
functions in those metals) on k, .

Here it shouM be emphasized that the agreement
between the kinetic and transfer-Hamiltonian cal-
culations of Nicolaou and Modinos is accidental.
Even for the strictly noninteracting system con-
sidered by Nicolaou a,nd Modinos, the two theories
differ because the kinetic formulation cannot in-
clude the effect of strict surfa, ce bands, which axe
orthogonal to the scattering states 4'+'. '~ Qn the
other hand, the transfer-Hamiltonian theory, just
as the theory presented in Eqs. (2.34), (2.37),
(2.39), and (2.41) has no such limitation. Nicolaou
and Modinos' ealeulation did not seem to be af-
fected by this fact. They did not search for true
surface states, and thus their calculation did not
include their contribution to the FEED. Their re-
sults suggest that if surface states exist on the
(100) face of W, their contribution to FEED is un-
impor ta,nt.



D, , {W;v; F) can be calculated by the WEB ap-
proximation Rnd is thus the same for d and s
electrons. Furthermore, the factors v,,'X were
assumed to vary slowly with tV and thus were
evaluated at k, = 0 and taken out of the summation.

j,'(E) =j,'(E) is the standard, free-electron energy
distribution. Taking a phenomenological point of
view, we can interpret R,(E) as a measure of the
1educed transmission probability of d electrons
Rs compared to free ox' s electrons. This point of
view hRs been adopted by GRdzuk lIl Rn eRx'llel
analysis of d- electron emission.

In the sense that B„{E)is proportional to a sur-
ace average of &a at ~„ it is evidently a measure

of the local density of states. For s and d elec-
trons having the same energy, the effect of the
lattice potential is to localize an electron in the
nR1 row d bRnds closel' to the ion cores thRn R

nearly free electron in the broader s bands.
Then, assuming that the surface plane z =z, is
roughly half a lattice constant from the last
atomic plane, we find that ~5{(d)/5{{s)~' is signifi-
cantly smaller than unity. This effect is further
enhanced by the factor m*,/mf -mv~, /Kh„and
leads to Rz(E) «1.'"""Thus Gadzuk'8 earlier
calculation of a reduction of FEED from d bands
compared to s bands is seen to be confirmed.
(See Fig. 1.)

The transfer Hamiltonian formulation of Appel-
baum and Brinkman does not explicitly involve
Rsslllllptlolls (I) Rlld (il). Tlla't 18, while lt 18 R

thick barrier approximation, like the kinetic
formulation, it can describe many-body effects
such as inelastic field emission. Finally, unlike
the kinetic theoxy, the transfer-Hamiltonian
formalism can account for surface-band- structure
effects.

The Penn-Plummer adaptation of the transfer-

Hamiltonian formalism invokes, in addition to
assumptions (ii)-(iv), effectively the nearly free
electron model. This point has been amply dis-
cussed in Sec. III, and needs no further elaboxa-
tion.

Feuchtwang's tunneling theory does not invoke
R "weak coupling assumption, " so that his formu-
lation of field emission, given by Eqs. (2.40) and
(2.41), ls diffel'ell't fl'oln 'tile pl'ecedlllg till'ee by
being independent of assumption {iv), the so-
called thick barrier approximation. The theory
accounts explicitly for surface hand structure
which manifests itself in singularities of (i) the
transfer matrix I", and (ii) of the squared mag-
nitude of the effective matrix element

~

M ~', which
do not fall into one of the bulk energy bands. "

FlARlly R comment concerning the ubiquitous
"one-dimensional, local density of states. " Equa-
tion (2.41) shows that FEED dePends on a weighted
aoerage of the spectral density at the surface.
If we adopt the approximation, suggested by Nico-
laou and Modinos, of keeping only the (0, 0) ele-
ment in all matrices, then Eqs. (2.40) and (2.45)
show that FEED probes a u8ight8d coarse-grQin
average of the full local density of states. This
conc 1.usion may also be explained as follows; we
may interpret the quantity

(I/2 )pII»( „zzk Ev, v) =—
& p(z„.k~;E, v)) (4.3)

on an QD8IQg8, PQt'tiQl, locQl on8-dlm8nsionQl
d8nsitp of stQt88 probed by FEED. This expres-
sion is only a partial local density of states be-
cause it depends not only on the energy E but al.so
on the Rddltlonal varlRbles kp Rnd &. A sum ovel

k~ and v has to be performed in order to obtain
the corresponding full (average) local density
of states which is defined as a weighted surface
average of the spectral density Q„p(r', r"; E, v),

—gp(r' r" E v) e '"& ' ' ds'ds" =&p(z E)).
j

8 Q«t-««n
k

P
j.

(4 4)

Here we wish to note that our analysis introduced
four distinct quantities, each of which could be
referred to as a (surface average of a) local den-
sity of states, and each of which has an appropri-
ate physical. significance.

First we have the coarse-grain average of the
local density of states, introudced by Eq. (2.43).

=& p(r, E)&,.„„
1 ~

»p{zi~ zii k pi +i v) ~

kp, it

&p(r;E)&..., =+&p(r;E, v)&,.„. (4.5)
(4.6)

This quantity is in fact equal to the simpl8 suxfQC8
QD8YQg8 of the locQl d8nsEtp of stQt8s,

Equation (2.45) shows that in the kinetic formula-
tion the FEED depends on the partial density cor-
responding to & p(r, E)) „,i.e., on



(p(r, k;E, v))„„„=-(2iis) 'T rp(z„z, ; kq, E, v).

Second( we have the quantltles (P(&rl kpj Eg v))
and (p(z„E)) defined respectively as weighted
surface averages of the spectral. density by Eqs.
(4.3) and (4.4). We have seen that to a good ap-
proximation the analysis predicts that FEED ean
probe these qua. ntities.

Finally we have the simple surface average of
the spectral density, which using Eq. (4.3) can
be written

=g(p(z„k~ =0;E, v).

conveniently represented in terms of the complete
orthonormal set of singl. e particle states
Iit(r; E, v)I,

S+dZ
p(r„r, E v) dE =2m g+(r ~ E' v)g(r E' v)dE'

An. equivalent more eompaet notation is,

p(r„r, ;E', v)

2vtt*(r„E', )vg(r„E', v)5(E'(v) -E). (A2)

Here, v is a (discrete or continuous) index labeling
the set of states degenerate at the enexgy E. The
full spectral. density is obtained by summing over
v. Mox e generally me ha, ve,

It is the last quantity mhich mas called by Penn
and Plummer the "normal or one-dimensional
density of states. '"

It should be noted that the Penn-Plummer anal-
ysis may not be able to describe some experi-
mental band-structure effects because it is form-
ulated in terms of a pa. rameter, i.e., a local den-
sity of states, which is an inappropriate surface
average.

Each one of the above "l.ocal densities of states"
depends only on the z (or normal) coordinate, and
may be called a "one-dimensiona, l. density of
states. " This designation is obviously a mislead-
ing description of an appropriate surface average,
since a complete analysis of FEED always in-
volves functions of three spatial. variables. In
other works, the p dependence of the functions
(i.e., of the spectral density and the local density
of density of states) is eliminated by appropriate
integrations over the "surface" plane at z =z„
which define the corresponding weighted surface
averages.
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"p(r„r„.E', v) dE'

2 p (rii r2i E~ v),

where P denotes the Cauchy principa, l. part of the
integ ral.

The partial. local density of states is defined by
the following relations

p(r; E, v)
-=—(1/v) fmg"(r, r; E, v)

= (1/2v)p(r, r; E, v) ~ 0.

The l.ocal density of states is related to the usual
density of states

p(r; E, v) d'r =p(E).
~all space

APPENDIX 8: THE ROLE OF COARSE-GRAIN AVERAGING

IN THE KINETIC FORMULATION OF FEED: PROOF OF

EQ. (2.46j

Referring to Eq. (A&),
particl. e states mhich is appropriate to the two-
dimensional periodicity of the system, such as
defined by Eqs. (2.2)-(2.6). The degeneracy label
v of Eq. (A2) is now represented by the continuous
two-dimensional. wave vector %~ and the discrete
index k, . Thus,

In this Appendix me shall brief l,y summarize
some facts about the spectral density of states.

The complex partial. spectral density function„
p(r„r~;E, v) for a noninteracting system is most

p(r„r„.k~; E, v) ds. (Bl)

The periodicity of the system enables us to expand
the local density of states in a two-dimensional



lattice-Fourier series

&&
ei(Km-Krg') ' p (B2)

4 'ds (B4)

Substituting Eq. (B2} into Eq. (Bl) we obtain
Eq. (2.46), i.e.,
5(E —e(k)) Si ( 4(z, ; k~, E; k,"))i'

%'e may interpret the denominator as a normal. -
ization constant. The numerator reduces directly
to

= 2, pp .(~„~„t„&,~) (fls)

The identification of (5' jm)A. 'D with a trace such
as shown in Eq. (2.4'I) follows directly from Eqs.
(2.2), (2.15), (2.1 f), and (2.20). For,

This expression is manifesQy the trace of a ma-
trix. The explicit varification of Eq. (2.47) poses
no difficulties and is omitted.
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mn, se
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Z(% n z, )

= } '[ (4 (z &, kp, E;k;})~ .

Furthermore, A,
2 has the dimensions of inverse length.

See Eq. (31) in Ref. 20.
~6Equation (2.32) corresponds to Eq. [IV (3.19)) and Eq.

(2.36) to Eq. [IV (3.28)). To obtain Eq. (2.40) let
p2--~ in Eq. [IV (3.28}j. Furthermore, note the
changed convention concerning the total current: In IV

The field emitted current is always expressed as

(J) = dE) '(E).
YNote that in the analysis of the ordered junction in IV
we iMplicitly assumed and index p to assume only one

value. However, in the present case & labels (i) The
set of states 4' all of which have the same values of
(k&,E), and (ii) possible surface (band) states (k&,E)
having no incoming component gz and hence excluded
from the set of scattering states +{}.

58D. R. Penn, Phys. Rev. 14, 849 (1976). See, in particu-
lar, Eqs. (9) and (10), noting that in these equations
that the right side of Eq. (2.49) is denoted &(P~(~).
'The arbitrary nature of z~ in the PP theory is em-
phasized by the discussion in Sec. (b) of Ref. (58}.
Equation (3.2) is identical with Eq. (26) in Ref. 12. The
restriction, of the sum over Rp to the projected area of
the constant E-surface, is not stated by ¹icolaou and
Modinos. It is however a direct consequence of their
explicit representation of Se density of states
6(E —e(k}).
Equation (3.3) corresponds to Eq. (32} in Ref. 20.
'See Eqs. (16a) and (24a} in Ref. 20.
2This is the interpretation of %~~5 P -E~) required by
Eq. (23) in Ref. 20.

+See Ref. 21, the paragraph following Eq. (6). Equation
(3.4) is obtained by substituting Eq. (7) of Ref. 21 into
Eq. (6) of Ref. 21.

~41n a strictly noninteracting system, surface states
cannot contribute to Se steady-state field emission
current, since once they are emptied, they cannot be
repopulated. Our "weak-coupling" assumption corrects
this deficiency, for it implies that the surface states
have at all times their equilibrium oeeupancy, hence
they could contribute a steady current. However, this
contribution to the current cannot be described within
a kinetic theory since in a surface state ~~, =0 (i.e., no
current is incident from z =-~). We wish to thank
J. W. Gadzuk for his comments and insight regarding
these points.

6 Equations (3.5}-(3.9) are identical to Eqs. (37}, (32),
and (14a) of Ref. 13.
A more complete discussion of this point is found in
Sec. IV of IV,

~This point is partly obscured by the fact that in the
transfer-Hamiltonian formalism only the diagonal ele-
ments of p contribute to j' P), because of the diagonal
structure of the effective (squared) matrix element
(see Eq. (3.8).

68This limitation on the equivalence of the kinetic theory
and Feuchtwang's theory of tunneling for noninteracting
systems has not been indicated in III.

~ Note that this is the case even in the latest interpreta-
tion of the PP theory mentioned in Ref. 58.


