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A previous paper was concerned with the injection of minority carriers into relaxation semiconductors without

traps. The present paper considers traps in their dual role as recombination centers and charge-storage
localities. It is shown that the presence of traps changes the boundary between majority-carrier depletion

(hn go) and the majority-carrier augmentation (hn & 0), moving the system more towards the latter,
compared with expectations based on the trap-free case. Trapping of injected minority carriers also leads to an

increase of majority-carrier diffusion in opposition to the current, and the containment of this diffusion calls
for higher-than-normal electric fields. As a consequence, the injection region can have a higher-than-normal

resistance, qualitatively as predicted by Van Roosbroeck, but for quite different reasons. Computed contours
show the corresponding charge concentration and field profiles. The resistance enhancement effect is expected
to be most prominent in lifetime semiconductors of high trap density; conditions for its appearance (if any) in

relaxation semiconductors are discussed. Questions relating to the definition of relaxation semiconductors are
also discussed.

I. INTRODUCTION

A previous paper on relaxation semiconductors'
(i.e. , materials for which the dielectric relaxation
time exceeds the minority-carrier lifetime)
showed that the injection of minority carriers
leads to majority-carrier depletion, as originally
predicted by Van Roosbroeck, ' and, for sufficiently
high currents, to a recombination front. Contrary
to original expectations, majority- carrier deple-
tion did not lead to higher-than-normal resistances,
nor to a prominent sublinearity of the current-
voltage relationship. For simplicity, all these
conclusions were derived specifically for a mate-
rial free of traps and recombination centers; re-
combination was therefore bimolecular, and asso-
ciated with a carrier lifetime independent of in-
jection level. Such a model accounts for many es-
sential features of the system, but there are two
reasons why the analysis should be extended to
more general cases: (a) real materials of high
resistivity do contain traps and recombination cen-
ters, and their effect on the injection situation
calls for qua1. itative and quantitative assessment;
and (b) there are in the literature results obtained
on gallium arsenide, 2 4 which indicated that injec-
tion does, in fact, increase the resistance of the
sample, against normal expectations concerning
injection.

In the discussion which follows, the original
limitations will be relaxed. This involves two as-
pects, those associated with the recombination
mechanism, and those associated with spaee-
charge storage in traps. It will be shown that the
second is actually the more potent factor. The in-
troduction of a recombination lifetime which de-
pends on injection level leads only to quantitative

changes in the original picture. In contrast,
charge storage in traps leads to a completely new
situation, and quite different expectations in terms
of total resistance.

The previous calculations' have shown that,
whatever the injection level, qualitative changes
in the behavior of the solutions appear when a cer-
tain boundary condition is crossed, for which the
neutralization rate equals the recombination rate.
For the trap-free case (only), this boundary is
given by the condition A =1, where

A = re„/r, (1+P,/n, )

rD =e/e&n"e.

va„may be considered the dielectric relaxation
time arising from majority carriers alone. 70 is
the carrier lifetime, and p„n, are the equilibrium
carrier concentrations. In that sense, one could
distinguish between materials for which 4 & 1
(lifetime semiconductors) and those for which
A & l (relaxation semiconductors), as Van
Hoosbroeck' has done. However, in the presence
of traps, the boundary condition will be shown to
change. The boundary itself is marked by the on-
set of majority carrier depletion, and the term
"relaxation regime" is used below only in that
sense, i.e. , for operational conditions under which
majority-carrier depletion appears under the in-
jection conditions here envisaged. Conversely,
the term "lifetime regime" is used only for the
operational conditions which imply majority car-
rier augmentation. Neither term is intended as an
ultimate criterion for the elassifieation of mate-
rials as such. By the extension of our previous
model to the case with traps, it will be shown be-
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low that the increase in specimen resistance can
take place without offending against the demands of
current continuity.

The new analysis suggests that virtually every
kind of electronic, photoelectric, and galvanomag-
netic measurement procedure on semi-insulators
is due for reexamination. This may lead to new
applications as well as to a new understanding of
trRnsport processes.

-A(NP- P )6t p,„5X
' A(NP-P, ), (4)

II. MAJORITY-CARRIER DKPI.KTION BOUNDARY FOR
DIFFERENT RECOMBINATION MKCHAMSMS

It was shown in the previous paper' that the
transport eguRtions can be wiitten ln R normalized
forIQ Rs

5N 5(NE) 5 N
A(NP P ) 5J„A(NP

M 5X F2 ' 5X

the injection level, the recombination can still be
written in the form A(NP- P,), but the parameter
A becomes a function of injection level. For low-
injection levels v, becomes constant; accordingly
A is also constant and its value can likewise be
denoted by A, .

In the simple case discussed in the previous
papers, A =A, = 1 corresponds to AN =X—N, = 0
everywhere, whatever the value of ~P=P —P,. In
that situation, there was an exact balance between
the rate at which the majority carrier concentra-
tion tended to increase in order to ensure neutral-
ity, and the rate at which it tended to decrease due
to recombination. Departures from A =1 led either
to excess majority carriers (A &1;4N&0), or to
their depletion (A & 1; AN & 0). When A is noncon-
stant, it cannot be used directly to characterize
the response of a material to minority carrier in-
jection. Nevertheless, a situation for which
AN=0 can still be envisaged, and be regarded as
a new depletion boundary, as long as the injection
level is reasonably low (n.P&1). Thus, Eq. (3)
can be rewritten in terms of the departures AN

and AP from the equilibrium concentrations and,
together with Eq. (5), this yields

—=(P-P,) (N 1),

where N is the electron concentration normalized
to n„N, =1; P is the hole concentration normal-
ized to n„P,= p,/n„E is the electric field nor-
malized to kT/eL~ (voltage normalized to kT/e);
X is the spatial coordinate normalized to J ~„; J„
Rnd J~ are the electron and hole currents normal-
ized to eD„n,/Ln„; and t is the time normalized to
v~, with

Ln„= (AT&/e'n, )'~'.

= (1+W)(n P dN)+ E-
M 5X

6 AN
+ 5~2

—A(nP+ P,dÃ+ 5 PhN) .

For the special case of A=1, this equation be-
comes

5AN ~ (~)2 5AN 5 AN
5t

+
6X '5X

This normalization for currents is somewhat dif-
ferent from that used in the previous paper, ' and
more conveniently adapted to the structure of the
equations. Thus current densities are now nor-
malized with respect to eD„n,/L~ instead of
eD~P, /L~ as previously used, L~ being the diffusion
length of holes. This change simplifies the equa-
tions but does not affect the solutions.

The parameter A. resulted directly from a re-
combination term (common for electrons and
holes) of the form

E =(np-n, P,)/r, (n. +P,),
in which the lifetime 7., was considered constant
(roo), i.e. , independent of departures from equilib-
rium. As a result, A was also constant (A,). ln
real cases, this is no longer true. It will be
shown below that, when vo becomes a function of

which is compatible with the solution AN= 0 for all
values of x and t, as discussed in the previous
paper. ' For the case with trays, we know now
that A is no longer a constant. However, if its
low-injection value (A,) is unity, then the equality
A =-1 represents a satisfactory approximation
which ensures, for all but very high values of &P,
that AN-=0. Thus AD=1 is still an approximate
boundary which characterizes the response of the
system to minority carrier injection.

Bearing in mind that the principal interest at-
taches to steady state conditions, the form of Eq.
(7) can be maintained, but r, will depend on the
nature of the recombination process. By way of
example, Shockley-Head recombination (density
of recombination centers so low that their space
charge can be neglected) will be considered in
some detail.
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III. STEADY-STATE SOLUTIONS FOR SHOCKLEY-READ
RECOMBINATION

For Shockley-Bead recombination, we have a
recombination rate of the form

tip Sg pg 5p Sg p
r, (n, + p, ) r~, (n+n, )+ r~(p+ p, )

'

where 7.~, 7~„n„and p, have their usual meaning
for this model. ' For small departures from equi-
libxium, this becomes

—"p-" p = "p-" p
T~(n, + p, ) r~(n, +n, )+ 7„,(p, + p, )

Consequently, via Eq. (6), we obtain

n, +n, + (7„,/7~, )( p, +p, )' n+n, + (r~/r~)(p+ p, )

1+%,+ (v„,/T~, )(P, + P,)
'++X,+(r /r„)(P+P, )

'

Dn Dff

zoo(1+P,) v~(1+X,)+ r„,(P, +P,)

and N„P, are the normalized (with respect to n, )
values of n, and P, . We see from Eq. (11) that A
decreases when N and P increase. If, therefore,
we are in a relaxation regime, with majority car-
rier depletion, the value of A changes so as to en-
hance the depletion. V?hether this has significant
consequences can be assessed only by reference
to the complete solutions, i.e. , computed concen-

tration, field, Rnd recombination rate contours.
Such contours have been obtained (for semi-infinite
systems) under moderate and deep relaxation con-
ditions. In order to address a concrete example,
it was assumed that r„,/r~, = 1 and that the recom-
bination centers are in the middle of the band,
making N, = P, =N, . For the moderate relaxation
case, the changes resulting fxom 7017~ are gen-
erally insignificant. Majority- carrier depletion is
slightly deepened. For the deep relaxation case
the changes are also small as regards concentra;
tion contours Rnd field, but significant as regards
the recombination front. This can be seen on Fig.

The recombination front is sharpened.

IV. TRANSPORT EQUATIONS IN THE PRESENCE OF A
HIGH DENSITY OF RECOMBINATION CENTERS

The Shockley- Read recombination rate refers
explicitly to low densities of recombination cen-
ters; for high densities the equations have to be
used in their general form. ' In particular, the
time-dependent equations for electrons and holes
do not necessarily involve the same recombination
term. Also, R spRee charge ls trRpped in the re-
combination centers, Rnd because the concentra-
tion of such centers is now substantial, the space
charge in them can no longer be neglected.

In the presence of a single, monovalent trapping
level at the energy E„ the conventional transport
equations can be written as follows, using normal-
ization procedures similar to those above:

o ~0.0-xlQ-
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FIG. 1. Effect of injection-level. -dependent lifetime on recombination contours. Tp/7'~„= 10, corresponding to A- 991; n-type material; p, /4, =10; p, „=@~;J =410. Recombination rate proportional to (NP-N, I',}g/Ap). (a) Life-
time independent of injection level (7 p='Ppp' A =Ap} (b) Lifetime dependent on injection level according to Shockley-
Bead model. In this and subsequent figures, the abscissa X is normal. ized to L~, the dielectric relaxation time aris-
ing from electrons {only}. Thus X =x/L, D„, which means that the abscissae are here given in mul. tiples of the diffusion
length I p.
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5N 5(NE) 5'N t M
6t 5X 5X' " M, M, '.

in terms of the separation of the trapping level E,
and the Fermi level E~:

= —"-A N 1-———N
gJ'„M M

n (13)
N, =n, /n, = exp[-(E~- E,)/kT].

As usua, l, me have

P, =N', /N, ,

(16)

(19)

QJp M M
A P— 1 —PP M M

=A„N 1-———N,

(14)

where N, is the normalized intrinsic carrier con-
centration;

N,.= exp[ {Z, E„.)/-f T'],

in which

E,„=(E,+E.)/2+} rln(N, /N„)"' (21)

A, P— 1 (15)

—=(P P,) (N 1) (M M,), {16)

where 7„, and v~ are the trapping time-constants
for electrons and holes respectively, with their
usual definitions. The concentration N, is given

where the nem symbols are M„ the total concen-
tration of traps; M, the concentration of traps
filled with electrons; M, the equilibrium value of
M, all normalized to n, . Instead of a single A, we
nom have

is the Fermi level for the intrinsic material. In
the steady state, the recombination terms in Eqs.
(13) and (14) become equal; they thus have the
same form as in the case of zero trapping and can
be written as A{NP- N,P,), where A is given by
Eqs. (11) and {12). Under such conditions,
Poisson's equation becomes

where nQ, (=M, —M} stands for the excess positive
charge stored in traps, which is in fact a function
of the excess charge densities AN and 4P. In
order to calculate it, we put 5M/6f = 0 in Eq. (15)
and obtain, after some manipulation,

in which

n. P(r /r ) —nN[N, +(r„o/r )P]/[1+(r /r )P]
1+N, +(r /r~)(P, +P,)+nv+(r /r~)n. P

M=M.([N+(r /r )P, j/[N+N, +(T /r„)(P+P, )]j.
From this equation me may obtain M„ the equilibrium value of M, by putting N =N, = 1 and P = P,:

M, =MO{[1+(&~/&qo)P, ]/[1+N, + (T~/rqo)(P, +P,)]j. (25)

To sum up we find that in the presence of recombination centers in high concentrations, which imply also
notable trapping effects, the transport equations are changed in two ways. The important parameter A be-
comes a function of 4Ã and 4P, and Poisson's equation includes an extra term ~Q„which likewise de-
pends on excess carrier concentrations. More elaborate models could be envisaged which make a distinc-
tion (not made here) between recombination centers in which charge is also trapped, and pure traps which
play no role in recombination. Though 4Q, mould be quantitatively changed, no essential qualitative
changes are expected to arise from this situation. The consequences of the modified parameter A are al-
ready discussed above; those arising from 4Q, will now be considered in some detail.

V. LIFETME-REI.AXATION BOUNDARY FOR DIFFERENT
TRAP CONCENTRATIONS

As seen above, the lifetime- relaxation boundary
is no longer defined by AD=1, even though A=AD=1
remained a useful approximation in the absence of
trapped space charge. In the presence of signifi-

cant charge trapping, this is no longer true. Cor-
responding to Eq. (8},we now have in the steady state

= (1+ nN)(nP AN+ &Q,)+E„-5t

X(~P+P.nN+ nN& P) = O. (26}
4 2'
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In general, and as long as the traps are not full,
one must also expect

AQ =CAP'. (27)

The continuity equation for majority carriers then
becomes

too-high values of AP [so that Eq. (2V) remains
permissible].

The parameter B can be calculated for every
particular trapping model. For the single mono-
valent trapping level envisaged here, Eq. (29}be-
comes, with Eqs. (11) and (24),

5t
—= —AN- (AN) +E5N, BAN

5X

5 AN+, —(a+ I)P,AN, (28)

1+N, + (r~/r~) (P, + P,)
'1+N, + (~„,/r»)(AP+ P, + P,)

'I N,+(~+/~„)(AP+P, +P,)
(30}

where 8 is a constant, given by

Equation (28) is again compatible with a solution
AN = 0 for all values of x and t. %'e see, there-
fore, that A =—8+ 1 which ensures AN=—0 is a new
boundary for the operating regimes, valid for the
case with traps in the steady state, and fox' not-

For large concentrations of occupied traps,
M, »1, and, under these conditions Eq. (30), and
thus the depletion boundary is actually independent
of AP (injection level). It will be seen that, for
any given value of A„ there will be a particular
trap density M, which satisfies the above condition.
By using Eqs. (12) and (25) it will be seen that this
critical trap density is given by
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r~/r„, =M, =M, for P„N„P,«N, (=1), (31)

compared with rv„/r, = 1, in the absence of traps.
A computation was carried out along the lines

described in the previous paper for the particular
trapping system discussed above (N, =P, =N, and

r„,= r») Fo. r this case, Eq. (30), via Eq. (25),
reduces to Ao=Mo+ 1. This means that A, /(M, + 1)
&1 corresponds to the relaxation regime and Ao/
(M, + 1) &1 to the lifetime regime. Thus, the na
ture of this trapping system is assessed, approxi-
mately by comparing A, /(M, + 1) with unity, instead
of A, in the absence of traps.

Figure 2(a) corresponds to Ao= 9.91, and con-
trasts the two cases, M, = 0, which makes A,/
(M, + 1) = 10 (moderate- relaxation case), and M,
= 10, which makes A,/(M, + 1)= 1. It will be seen
that majority-carrier depletion is greatly reduced
by the presence of traps, in comparison with ex-
pectations based on the same value of A, in the
absence of traps. Indeed, the depletion has become
almost negligible. The positive space charge now
resides mostly in the traps. Figure 2(b) corre-

sponds to Ao= 991 and contrasts two other cases,
M, =0, [A,/(M, + 1)=10'], deep relaxation case,
and M, =100, [A,/(M, + 1) =10]. Majority carrier
depletion which is virtually complete for M, =O, is
considerably reduced in the presence of traps. It
will also be noted that ~P is likewise strongly re-
duced; the necessary positive space charge is now

provided by the minority carriers in traps. The
computations also showed that the disappearance
of the majority-carrier depletion region is asso-
ciated with the disappearance of the recombination
front, as one would expect.

The general conclusion is that the effect of traps
for a given value of Ao may be considered to
amount to a displacement of the depletion boundary,
with all its usual consequences. None of the above
situations revealed any possibility of higher-than-
normal resistances. It remains to be shown what
happens when traps in high concentration are pres-
ent in the material. Under conditions (A, &1)
which, in the. trap free case, imply majority car-
rier depletion, the presence of traps can make
A, /(M, + 1) &1 and thereby lead to majority-carrier

0.3
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FIG. 3. Carrier concen-
tration contours for a re-
laxation semiconductor,
brought into the lifetime
regime by injection in the
presence of traps (a); com-
parison with a trap-free
case of equaLAp/(Mp+1)
(b). n-type material; p, /n,
= 10 2; p,„=p& . Currents
J so chosen as to keep con-
stant the injection level
(defined as j /(eD~ P, /f. &),
where j is actual current
density) .
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augmentation, as shown below. When dealing with
real materials, as opposed to the solutions of
equations on paper, it should not be assumed that
a high value of Mo leads automatically to this in-
equality, since A, is in fact dependent on M, . In-
deed, considering the usual. definition of T~ in
terms of the capture coefficient C„, namely,
(r„,= 1/M, C„) in Eq. (31), the condition rn„&Mar~
reduces to

C„&1/n, ro„=e iu„/e = B (32)

VI. PROBLEM OF HIGHER-THAN-NORMAL RESISTANCES

Figure 3(a) shows the carrier concentrations for
A, /(M, +1)=0.1 and should be compared with Fig.

and is thus independent of M, . In other words, the
trapping coefficient should be lower than the
Langevin recombination coefficient B,"' to pro-
duce an excess of majority carriers when minority
carriers are injected.

2(a), because it corresponds to the same condi-
tions, except for the greater trap density. One
immediately sees that Ml is now positive. Figure
3(b) shows the carrier concentrations for the same
value of A, /(M, + 1), but in the absence of traps
(trap-free lifetime case). The difference is clear:
whereas 4P at X= 0 is the same (the currents
were adjusted so as to ensure this, for simple
comparison), hN at X= 0 is very much greater in
the presence of traps, and indeed greater than 4P.
~N, » 4 P, is brought about by the fact that the
positive charge in traps ~Q«must be compensated.
With increasing X, the trapped charge ~Q, changes
sign and, as a consequence, the total space charge
changes sign also. This has important conse-
quences for the local field which must now go
through a maximum value. There is no equivalent
to this in the trap free case.

Figure 4 gives the field contours which corre-
spond to the concentration contours of Fig. 3. In
Figs. 4(a) and 4(b), the total computed field is
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FIG. 4. Field contours
for a relaxation semicon-
ductor, brought into the
lifetime regime by injection
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contours for a relaxation
semiconductor, brought in-
to the lifetime regime by
injection in the presence of
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greater than the field which is necessary to bring
electrons into the injection xegion for recombina-
tion (to ensure current continuity). This field is
always Eosoer than the bulk field. The excess of the
total field over this value is used in both cases
(a and b) to compensate for electron diffusion.
The difference between Figs. 4(a) and 4(b) is, in

fact, only a quantitative one, related to the greater
electron diffusion gradient which has to be com-
pensated in the presence of traps. In the trap-free
lifetime case (b), the sum of the fields is always
lower than the bulk field; hence injection lowers
the total resistance. In the lifetime case with
traps (a), the total field locally exceeds the bulk
field; hence injection increases the total resis-
tance. The region of maximum field is associated
with the maximum carrier gradient. Figure 5
shows how current continuity is maintained in
these circumstances.

The situation described by Figs. 3(a), 4(a), and

5(a) is not restricted to relaxation semiconductors
with traps, but can also appear when traps are
present in lifetime semiconductors. This is be-
cause the only requirement is the negative majority
carrier diffusion gradient. Indeed, the ratio be-
tween the maximum field and the limit field in the
bulk material is even greater in the lifetime case.
Thus, for A, =0.1, and the same injection level
and trap density as above, this xatio increases to
3. The highest possible field is given by the high-
est possible slope of AN, and this is determined
by the highest slope of hQ, (see Fig. 3). The re-
sults show that, in the presence of a high trap
density, the conditions A, &1 or A, &1 no longer
imply qualitatively different solutions, the appear-
ance of the reverse majority carrier diffusion
gradient being then governed by A, /(M, +1)=1 or
C„=B.
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Nj

Ne

FIG. 6. Speculative conditions for higher-than-normal
resistances in the presence of majority-carrier depletion.

The question arises whether higher-than-normal
resistances can ever occur in the presence of
majority carrier depletion, as originally proposed. '
The present calculations have not revealed such a
case, but the results cannot prove that such a re-
sistance augmentation is actually impossible.
They do, however, indicate the conditions which
would have to be fulfilled. If a higher-than-normal
field occurs anywhere, this will not happen in the
majority carrier depletion region, but can only be
envisaged outside it, at some location where the
free majority carriers have a maximum decreas-

ing slope. This situation is shown in Fig. 6.
Whether such concentration contours, which begin
with electron depletion and develop to an excess,
correspond to real solutions remains to be seen.

Lastly, one might ask why observations of
higher-than-normal resistances in lifetime semi-
conductors with traps have not been reported long
ago. One answer might be that low values of the
capture cross section C„and high values of the
trap density M„do not usually go together. How-

ever, this combination of parameters is believed
to apply in good photoconductors, and the GaAs
measurements reported by Casey, Queisser, and
Van Roosbroeck' and by Ilegems and Queisser'
may also correspond to just such a case. The
present results suggest desirability of a wider in-
vestigation.
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