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Intraband absorption in a low-density Hubbard chain*
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We have investigated the intraband absorption in a single-band Hubbard model at a low concentration c (c is

unity for a filled band) of electrons with a particular emphasis on one-dimensional nearest-neighbor electron
transfer. Using a two-particle approximation, we find, for the latter in the frequency range c &Pco (the
bandwidth is unity) that the absorption is independent of frequency and vanishes as U ' for a large on-site
Coulomb repulsion U. The absorption occurs when an electron is accelerated by another electron in the
presence of an oscillating field (i.e., inverse bremsstrahlung). The transport relaxation rate is given by
r ' ~ ceo'U '. In the limit U = oo the present result supports the spinless fermion model, according to which
the intraband absorption vanishes for v@0. In the presence of second-nearest-neighbor electron transfer (t,)
such that c &~ t, ~, the co '-frequency dependence of the absorption obtains as in two or three dimensions.

I. INTRODUCTION

Recently, one-dimensional phenomena have re-
ceived a considerable amount of theoretical and ex-
perimental attention because of their many inter-
esting properties. ' In one-dimensional molecular
crystals, Coulomb correlation between electrons
is particularly important, and the subsequent
many-body effect complicates the problem. In this
connection the Hubbard Hamiltonian' has been
studied extensively.

The dc transpor t proper ties of one-dimensional
systems have been studied by various authors.
Brinkman and Rice' and Beni, Holstein, and Pin-
cus4 found that the mobility of a hole or an extra
electron in an otherwise half-filled nearest-neigh-
bor hopping Hubbard chain is infinite when the in-
trasite Coulomb repulsion (U) is infinite; for an
arbitrary density, barring a half-filled band, the
electrons seem to behave as spinless fermions,
giving rise to an absorption rate proportional to a
delta function 5(m), where &u is an external fre-
quency. However, there has been no rigorous
proof of the latter assertion. Recently, Lyo' found
for a low-density nearest-neighbor hopping Hub-
bard chain that the dc conductivity based on a two-
particle approximation is infinite. He also found
that the conventional dc Boltzmann equation based
on a two-particle T-matrix approximation is in-
sufficient in a nearest-neighbor hopping Hubbard
chain and that many-particle scattering is im-
portant.

In this paper, we study the effect of strong Cou-
lomb correlation between electrons on intraband

absorption with a par ticular emphas is in a one-
dimensional lattice, using a Hubbard model. The
absorption occurs when an electron is accelerated
by another electron of opposite spin in the pre-
sence of an oscillating field (i.e. , inverse brems-

strahlung). A particularly interesting question is
the frequency dependence of the absorption in the
limit U=~ in a low-density one-dimensional sys-
tem with nearest-neighbor electron transfer. The
approach employed in the present paper improves
the result obtained in Ref. 5 for this specific case.
We find that the absorption is independent of the
frequency and vanishes as U ' for a large on-site
Coulomb repulsion U within a two-particle ap-
proximation. In the limit U=~, the present re-
sult supports the spinless fermion model. By in-
troducing a sufficiently large second-nearest-
neighbor electron transfer, one obtains the v '
frequency dependence of the absorption as in two
or three dimensions.

In Sec. II, we develop a theory of intraband ab-
sorption in a Hubbard band for a suff iciently
large frequency (i.e. , ~T» 1), and at a low
electron density, using a two-particle ap-
proximation. In Sec. III, we study how the absorp-
tion rate depends on dimensionality, frequency,
and U. The effect of second-neighbor electron
transfer to a nearest-neighbor hopping Hubbard
chain is also investigated. In Sec. IV, a brief dis-
cussion is given.

A=(E c /i. (u)(e '"' e'"') (2.1)

where 2E, and c, are amplitude of the electric field
and speed of light, respectively. The interaction
of the pair with the external field is given by

II. FORMULATION

At a low electron concentration, it is sufficient
to use a two-particle approximation. We investi-
gate the mutual interaction of a pair of electrons
of opposite spins in the presence of an oscillating
field, which is described by a vector potential
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H (t) = (e/mc, )A (p, +p, ), (2.2)

where e(= Ie I), m, and p, are, respectively,
charge, mass, and momentum operator of an elec-
tron. One studies the scattering of the pair from
an initial state Iiti, ) = Ik, k, ), into a. fina. l state IiIi&)
= Ik, k, ) after going through intermediate states

I
gati„) = Ik, k,. ). Here k,. is the crystal momentum.

The normalized orbital wave functions IQ „)are
symmetrized. The matrix elements of the elec-
tron-field, and electron-electron interaction are
given, respectively, by

(flH'(I) In) =[(eEO/i&d) (v, +v, )5& „]

&(+) f (tofswu)t+Ot t

+ (+)"—&f + A(d + 'LSQ
(2 6)

where Ef, —-Fief, and c(t is a positive infinitesimal.
Inserting (2.6) in (2.5) and dropping the quadratic
terms in the external field, one finds

where Hfn is the quantity inside the square brackets
of (2.3), arz„——(ez —e„)/8, and ez-—e„+e„, etc. The
initial condition is given by c„(-~) = 5„,. The
Schrodinger equation (2.5) is solved by introducing
an ansatz'

T ei,vf t+n t

c~(t) = " . +Bt,+ZS&

and

~ (e-i&at i' )i (2.3)

and

T =g "",V
+ lAQn ns

(2.7)

Vq„——(I/N)U&q „, (2 4)

where v; [—= (I/fi)(Be-„/Bk, .), e; is a Bloch energy] is a
Bloch velocity, and 5f n and N are the Kronecker
delta and the number of sites, respectively. The
quantity 6

& „ is unity, when k, +k, = k, + k, + g (g is
a reciprocal-lattice vector), and zero otherwise.

The Schrodinger equation is given by

(~)
~(.) ~

n E ns + ~+ + Z@Q

H T +HF—&ns + ZRQ
(2.8)

One solves (2.7) and (2.8), using (2.3) and (2.4),
and obtains

~ d
ih —c&-—g V«c„e' «'

n

+ + HF C ei(~fn+~) t (2.5)

Tfs Ts f sv

V UT:——1 ——
N „&„—c„+iSn

and (H„=H„„), —

(2.9)

(2.10)

In (2.10), use is made of the energy conservation
ez=e, +hid for rz, =r,"'. Here the upper (lower)
sign denotes a photon-absorption (emission) pro-
cess.

The first term in the square brackets of (2.10)
describes a, two-stage process, whereby the pair
absorbs or emits a photon at a state Q, and is,
then, scattered into a final state pf. The second
term represents a two-stage process, whereby the
pair is scattered from an initial state Q, into a
final state (I)f and then absorbs or emits a photon.
Finally the third term corresponds to a three-
stage process, whereby the pair is scattered from
an initial state P, into an intermediate state P„,
absorbs or emits a photon, and is then scattered
into a final state Qf.

Finally the net power absorption per volume is
given by

S(d 8~ ~ 277W=—(I —e 8" j—0

x Qf,f,f,"f,"I
v« I'5(e~ —e, —)fed), (2.11)

fs

where 0, f, [=—f(e„- )] are, respectively, volume of
the sample, the Fermi function, f,."=1—f, , and p
= (kaT) '. Here ka, T are Boltzmann's constant
and temperature. The first and second terms in
the curly brackets of (2.11) stand for absorption
and emission processes, respectively. Equation
(2.11) is valid in the limit iu'r» 1. In this limit,
one can rewrite (2.11) in a Drude form

W = 2oa(w)E,' = (2ne'/m*(u' r)E',

where oa(id), n, and r are, respectively, real part
of the conductivity, density of electrons, and
transport relaxation time. Assuming that the field
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is in the x direction, the effective mass m* is
given by' 1/m*= —(I/cN)Z, f,'.(v,")', where c is the
electron concentration (c is unity for a filled band)
and prime means a derivative with respect to the
argument. As will be seen in the next section,
(2.12) coincides with the result obta. ined by Lyo, '
using the Boltzmann equation in three dimensions
in the limit Phut«1. In a simple cubic lattice, or
a one-dimensional lattice, m* is given at a high-
temperature limit, PB «1 (B is the bandwidth),
by

1/m* = ,'P(2ta/h )—' (2.13)

where a, t are lattice constant and nearest-neigh-
bor electron transfer, respectively. In the re-
mainder of the paper we calculate the relaxation
rate r ' defined by (2.11) and (2.12) for several
situations.

III. INTRABAND ABSORPTION

A. Three-dimensional lat tice

r~, =(T,t ~,/h(u)(H~ H~~), f w-s. (3.1)

This result combined with (2.11) and (2.12) is
equivalent to that obtained earlier by Lyo' using
the Boltzmann equation. For a large Coulomb re-
pulsion (i.e. , U»B), one finds at high tempera-
tures (PB «1), and in a simple cubic crystai5

r,~ = 3.1tc/K (3.2)

As is expected, the relaxation rate is proportional

In two and three dimensions, the last term in the
square brackets of (2.10) is negligibly small in the
limit he «B. One then obtains, approximating Tf
—TSP

to the bandwidth and the number of electrons of
opposite spin.

B. One-dimensional lattice

In the following we compute the relaxation rate
in a high-temperature limit (P«1). One writes

E, = —cosk —E cos2k, (3.3)

where

H —H H —H

s n+ ~~~+ f n+ ZI'LQ

(3.5)

The dependence on the reciprocal lattice vector g
is shown explicitly in (3.4). In order to perform
the various k integrations, one transforms

k, +k, = 20o, kl —k2 =

k, +k, =20+g, k, —k4 ——2Q.

One then has, for example,

(3.6)

dk, dk, ( ~ .) =jf 2d8, dg, ( ~ ), etc. ,
A

(3.7)

where A, is the region inside the rhomb with ver-
tices at (8„$,) = (+ v, 0), and (0, + m) in 8, —Q, plane.

The absorption rate is then given from (2.11) by

where a—:1, 2t —= 1, and E is the second nearest-
neighbor electron transfer. It is convenient to re-
write (2.10) a.s

~r, (g) = (4~, /8(u)T, T~

x [(N/U)(H, Hf ) + -Xq, (g)], f e s (3.4)

P(Ku)' 2xc'
2~ h ;, , 'J „P(r,.(g) l'6(~e(g)))6(28. -28-g),

0 0

(3.8)

where A corresponds to A, in 0 —P plane, f, =f,
=c,f,"= f,"= 1 in the present nondegenerate lim-
it, and

Ae (g)—:e~ —e ~
—5(d

= 4 sin —'(P, + P + —'g)

x sin ~(P0 P ~zg)

x (cos8, + 2e cos8,[cosg, + cos(P +-,' g)]}—8+.

(3-9)

The integrand on the right-hand side of (3.8) with
respect to the 0, integration is an even function of

0p Ther efor e, assuming 0, ~ 0 and setting the
quantity in the curly brackets of (3.8) as F(8, P),
one obtains

d0d~t) F 0, (It))5 20, —20 —g)
A

~-eo
dAF(80, 0)+

ef)

d(f&F(8, —v, P). (3.10)

The first term in (3.10) arises from a normal pro-
cess g=0, and the second term from an umklapp
process g = 2p. One now transforms Q —v —Q for
the second term in (3.10). It turns out that F(8, Q)
depends on 0 and P always as a function of e, +e,
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= —2(cos8 cosQ + e cos28 cos2@) via energy param-
eters and of v, +v, = (2/K)(sin8 cosQ +2@ sin28 cos28)
via velocity parameters. Hence F(8,—v, v —P)
=F(8„$), yielding

where

4P(8'&u)'c' 2w, ' d8, dp, dg
0 5, (2v)'

(S.i2a)

d8dg Q Ii (8, $)5(28, —2Q -g) = E(8„$)dg
0

(3.11)

The remaining integrations in 8„g„and Q in (3.8)
can be rearranged, noting that the integrand is in-
variant (i) under 8, ——8„and (ii) under 8o-v —8„
Qo-g —Qo, and Q -g —Q:

~(8., ~) =~,.(g) ~'5(~. (g)) l, .„..... (3.»b)

To compute the T matrix, one defines

(s.is)

Using the method described in (3.6)-(3.11), one
finds

2w d(It) I 1

2v e„+2cos8„cosg'+2& cos28, cos2$'+i0'

where 8, -=8„8&=—8, e, = —2 cos8„cosg„—2e cos28, cos2$„, Q, —= P„and Q&
——&f&. One also obtains

X&,(g) = —. ' (sin8, —2 cos8, tan28, )
eEO

Z S(d

2%' df I '-
1

2v cos8, —2e cos28, (cosg ' —cosP, ) —i 5 sgn(cosQ'+ cosP, )

1
cos80 —2c cosa g cos280(cosf —cosp) —f5 cosy gsgn{cosf + cosf),

(3.14)

(3.15)

Here 5 is a positive infinitesimal.

/. Nearest-neighbor hopping Hubbard chain

Setting e =0 and noting that cos8, c0 from (3.9),
one finds from (3.15),

Xf.(z) =o.

One also finds from (3.14),

I,„'= —2i
~
cos80 sing„~.

Using (3.16) in (3.4), one obtains

T,(g) = j ' ' eE tan8O
.&~, T, T~N

(3.1V)

(3.18)

where

Z „=(I/X)Z, „'/[I + (Z, „U) ']. - (s.19)

In (3.18), one power of Ku has been canceled from
the denominator unlike in three dimensions. This
arises from the fact that v, + v, —v3 v4 ~ {d in one
dimension due to the energy conservation. This
leads to u' dependence of the relaxation rate un-
like in three dimensions. The absorption rate can
be calculated in a straightforward way from {3.12)
in the region Sm«4«k~T«U. The relaxation rate
is given by

quency dependent and vanishes as (Ru/U)' for large
U. The relaxation arises purely from normal pro-
cesses. The umklapp processes give rise to high-
er-order contributions in h~. This is due to the
fact that a U process requires that cos&8, -48{d,
namely, k, + k, = + g, and the T matrix becomes
small (i.e. , of order K~) in view of (3.17) and
(3.19).

We now discuss the validity of (3.20). So far we
have restricted ourselves to two-particle scat-
tering. To include the many-body effect, one has
to consider a self-energy as well as a scattering
correction. As a consequence of the self-energy
correction, the second term in the square bracket
of {3.4) becomes of order c or smaller. The en-
ergy is defined within the accuracy of e, so that
one requires h{d»c. It is to be remembered that
the present approach is valid in the limit {d7» 1.
This condition is satisfied in (3.20) even for an ar-
bitrarily low frequency. This means that there is
no intraband absorption for Su &c in the limit U
=~ in agreement with the spinless fermion model.

2. Effect of the second-nearest-neighbor hopping

r,n = (0 090fc/K)(K&u/If)'. (s.20) For simplicity we assume U=~, so that the first
term of (3.4) vanis he s

Again, the relaxation rate is proportional to the
bandwidth and number of scatterers. It is also fre- Tq, (g) = (&q, /h(u)T, TqXq, (g). (3.21)
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One distinguishes two situations. For ~e ~«hm,
one expands X&,(g) in (3.15) to the lowest order in

E, obtaining

X&,(0) = . '(sin8, —2cos8, tan28, )
4eEO
zSm

One also finds from (3.14), using the energy con-
servation

=Z I sin@, I+ I sinfIJ) I

4 I e(cosP, —cosQ) sing, sing I

for g=0, r=s, f. (3.27)

and

e cos28, . Q, +Q
cos Oo

Using (3.21), (3.26), (3.27), and T„=N 'L„', one
finds from (3.12), in the limit hm «1,

T„=N 'L „'= —2iN '
~

cos 8, sing „~ . (3.23) T,n = 0.47cte'/8, 1»
~

e ~» 8 w. (3.26)

xi sgn(cosP, —cosQ). (3.26)

ln (3.22) we have used the energy conservation
he(0) =0. Inserting (3.21)-(3.23) in (3.12), one ob-
tains in the limit hm«1,

r,n =0.62ct&'/5, ~e ~«Km. (3.24)

For 1»e» hu, one drops 5e in (3.9)

sc(g)= (4
' '+

~
'

2 2

&& [cos8, + 2e cos28, (cosg, + cosQ)] = 0.

(3.25)
ln (3.25), the zeroes at P =+/, do not contribute to
the absorption, because Xz, (0) vanishes at these
points. Therefore the energy conservation re-
quires that [ ] =0 in (3.25). Using the energy con-
servation (3.25), one obtains from (3.15),

eE, 1 Isingo I+ I sing I

ih~ 21& I I sin&]&, sin@ I

One notes that the relaxation rates given in (3.24)
and (3.26) are independent of the frequency as in a
three-dimensional lattice. The many-body effect
can be neglected in the limit e»c.

IV. CONCLUSION

We have studied the intraband absorption in a
single-band Hubbard model at a low concentration
of electrons. In a one-dimensional lattice with
nearest-neighbor electron transfer, we find in the
frequency range c «Sar that the absorption is in-
dependent of frequency and vanishes as U '. The
transport relaxation rate is given in (3.20). In the
limit U=~, the present result supports the spin-
less fermion model. In the presence of second
nearest-neighbor electron transfer (e) such that
c «

~

e ~, the u ' frequency dependence of the ab-
sorption obtains as in two or three dimensions;
the relaxation rate is given in (3.24) and (3.26).
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