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High-temperature series for the spin-one Ising model for arbitrary biquadratic
exchange, field, and anisotropy
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The spin-one Ising system —PX = K X&,- &&(S,S& + qS', S,') + X„(hSI, + AS'„) is considered. ~e have obtained

high-temperature series for the free energy through eighth order for arbitrary q, h, and A by rewriting this
Hamiltonian in a form which exploits its relation to the three-component Potts model (q = 3). Explicit results

are presented for the bcc lattice.

The Blume-Emery-Griffiths model' is a spin-
one Ising system characterized by the H3miltonian

Blume et al. ' studied Eq. (1) in the mean-field ap-
proximation to elucidate the X transition and phase
separation in 'He-'He. Dunn and Essam' have
shown that a decorated spin-one Ising model can be
reduced to the form of Eq. (1). Additional situa-
tions where the model has applicability are dis-
cussed in the review paper of Nagle and Bonner. '
For g» 1 and h =0, the system is equivalent to a
spin-~ Ising model in a temperature-dependent
field. ' %'hen g=3, it reduces to the three-com-
ponent Potts model for which eighth-order high-
temperature series for arbitrary h and A are
known on the Bravais lattices. ' If g=1, similar
results are straightforward to obtain. Ditzian and

Oitmaa' have obtained sixth-order high-tempera-
ture series for h =0 with g, A arbitrary on the fcc
lattice.

In the present paper, we show that by utilizing
the functional form of the appropriate Potts-mod-
el interaction,

1 3 2 25z z = zS; S, + zS'; S2 —(S';+S})+ 1,

Ref. 7, Eq. (1) can be cast into a form which re-
duces considerably the labor of calculating high-
temperature series coefficients for arbitrary q,
h, and A. In fact, through fifth order for Bravais
lattices the series coefficients can be simply read
off from those available for the Potts model. ' On
the loose-packed lattices, this is even true through
seventh order and in the eighth order, the addi-
tional computations that are necessary are quite
modest.

Now since 5& =8,, it follows directly from Eq.
(2) that we can write

Hence, Eq. (1) can be rewritten in the equivalent form

—P&=K Q [2S;S;+(})—l)(1-S,S,)]5z z +Q t, (h, A') —2NzZ(r) —1),
&i, j& k

~h~~~ A'= A+Kz(r/ 1}and -z is the la—ttice coordination number. Using the identity e"=—1+x(e'-1) lf z
=0, 1, the partition function Z for Eq. (4} takes the form

with@=-g' —1, v=-e '" '&-1, and where we have
used the fact that S,S,(1 —S,S,)5z z = 0 in order to

eliminate the uv term. For convenience, we now

let
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g—= g et&'~~ '=1+2e" coshh,
San=Os

&1

g(m, l) =— Q [uS,'+v(1 —S,')]'e '&'"' '
Sp=O, kl

= v'+u'(2e ~ coshmh),

G(m„l) ~g(m, I)/g .

(6)

" u'
Pf= zK+ lng+g —

t
F,(G), (7)

where E, =—zGz„E, =z(z —1)G, —z(z ——,)G', , . . . , and
g=3 is used. F, -F, have been explicitly obtained
on the Bravais lattices by Kim and Joseph. ' Each
term appearing in a given F, comes from a distinct
topological set of graphs which contribute similar-
ly because of the 5s.s. factor. For arbitrary g, we
could expand in a double power series in u, v.
However, it is not necessary to carry this out in
detail. Consider a term u'G~& GN2 ~ ~ ~ appearing in

Q2

Eq. (7) and the expression [GIq„p,)]~i
&&[G(q„P,)) 2 ~, where n, P, +o.,P, + =l. If
there is a unique set p„p, . . . satisfying this condi-
tion, then the result for arbitrary g can be directly
written down from the g = 3 result by the replace-
ment

u'G~~G~' -[G(q p )]~~[G(q p )]~2
01 Q2

If there is not a unique set of P„p„.. ., recalcula-
tion is required. This procedure is simplified by
noting that q, specifies the number of vertices in
a connected graph and the quantity p,. gives the
number of lines in the graph so that these numbers
must obey the restrictions that —,q, (q,. —1)~P;
~ q, —1. Thus, for example, u'G, is uniquely re-
placed by G(3, 2). Similarly u'G,'-[G(2, 1)]'. Going
through the known term structure factors for the
Potts model'(there are 1, 2, 4, 7, 12, 21, 32, 50 terms
for l = 1, . . . , 8, respectively), we find that through
fifth order this replacement is uniquely defined.
In sixth order, this can be done for all terms but
the single term u'G, G~. There are two distinct sets
of graphs which contribute to the latter term, and

For the Potts model (tt = 3},u = v. The G(m, l) are
then of the form u'G . One then evaluates Z by ex-
panding the right-hand side of Eq. (5) in powers of
u. The first term is g and each l-line graph which
can be drawn on a lattice contributes to the lth
power of u with a factor determined by the topology
of the graph. Factoring out g", an m-vertices-
connected graph gives a factor G so each u' co-
efficient will be a linear combination of terms of
the form G, 2G, 3 ~ ~ ~ . This simplification is due
to the factor 6s s associated with each line in the

i j
graph. In the thermodynamic limit the free energy
per particle f then takes the form

the factors associated with these graphs are
G(3, 3)G(4, 3) and G(3, 2)G(4, 4). Similarly in sev-
enth order, there are three terms for which we
cannot uniquely make the replacement: u'G, G,
-G(3, 2)G(5, 5), G(3, 3)G(5, 4); u'G, G,G,
-G(2, 1)G(3, 2)G(4, 4), G(2, 1)G(3, 3)G(4, 3); u'G, G,
-G(3, 2)G(4, 5), G(3, 3)G(4, 4). In eighth order
there are seven terms:

All of these terms arise from disconnected graphs.
Hence for arbitrary g one has to recalculate the
separate contributions of each set of graphs which
make up the two possible factors. Their sum is of
course just the factor occurring for the Potts mod-
el. At this point, in order to simplify our con-
siderations, we shall restrict our attention to the
loose-packed lattices. The reason for doing this
is simply that certain kinds of graphs cannot be
found on these lattices, and in particular no tri-
angular configurations can occur [terms with the
factor G(3, 3) do not contribute]. Taking this into
account, we find that the nonuniqueness in the re-
placements in all remaining sixth- and seventh-or-
der terms disappears as well as for all remaining
eighth-order terms except for those arising from
u'G, G, . Hence to obtain eighth-order series for
arbitrary g on loose-packed lattices, the only re-
calculation necessary is to find the individual con-
tributions of graphs of the form G(4, 3)G(5, 5} and

G(4, 4}G(5,4). This is straightforward. The lat-
tice constant of a disconnected graph can be ex-
pressed in terms of those of connected ones and
these in turn are directly obtained from Baker
et al. ' Hence with a rather modest amount of ad-
ditional work we have been able to obtain eighth-
order series for the plane square, sc, and bcc
lattices. In accord with Eq. (7), we shall write
the free energy in the form

1
OO

—Pf= —z zK(7I —I) + 1ng +
j lg e

(8)

Explicit results for F, -F, on the bcc lattice are
given in our Appendix. '

u'G.,G, —G (3, 2)G(6, 6), G(3, 3)G(6, 5);

u'G, G, —G(4, 3)G (5, 5), G(4, 4)G(5, 4);

u'G, G,G, -G(2, 1)G(3,2)G(5, 5), G(2, 1)G(3, 3}G(5,4);

u'G, G, -G(3, 2)G(5, 6), G(3, 3)G(5, 5);

u'G'G, G, —[G(2, 1))'

& G(3, 2)G(4, 4), [G(2, 1}]'G(3,3)G(4, 3);

u'G, G,G, -G(2, 1)G(3, 2)G(4, 5), G(2, 1)G(3, 3)G(4, 4);

u'G, G, —G(3, 2)G (4, 6), G (3, 3)G (4, 5).
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Finally, we point out that the present results al-
so apply directly to the more general spin-one
Ising system which would result from including the
term ~eS; S&(S, +S,.) in Eq. (1) in addition to the
term r)S2S~ S.ince S,.S~(S;+S;)—= (S, +S~)5», one
can show that the free-energy expansion for this
situation is obtained by replacing the g(m, f) of Eq.
(6) by the more general structures

g(m, l) =v'+e 'fe "[u+(u+1)(e'"—1)]'

+e- "[u+(u+1)(e 'r-1)]'3. (9)

In addition to the special cases o =0 with q = 3
(Potts model) or g = 1, this expression also sim-
plifies for the cases a=+2 with q=1 or q=5 so that
series results can be immediately obtained from
those for the Potts model.

Coefficients F„ for the bcc lattice [see Eq. (8)]. The following abbreviated notation is used R =G(f, y 1)
Sg= G(&, &-), T', -=C(&, &+1),U, =-G(k, k+2).

E, =4R .
I', = 56B,—60B,'.
E,=1512R,—3696 R,R, +2192R',.
I', = 61 680R, —174 240R, R —74 688R + 319 392R'R —132 456 B,+ 288 S .
F, = 3 403 200R, —10 964 160R,B,, —8 706 240R, R, + 21 693 600R', R, + 18 639 360R,R',

—35 373 120R,'B,+11313216B,'+ 34 560S, —40 320R, S,.
F,/120 = 1 979 352 R, —7 186 272R,R, —5 432 160R,R, + 15 453 912R', R, —2 516 724 R~

+ 24 602 976R2R3B~+ 3 522 632 R33 —26 240 688 R', R~ —33 871 824B22R2

+40150080R',R, —10462 752R', + 32 208 S, —60048R, S, -19944R,S,+ 49176R,'S, + 72T, .

F,/120 = 167 424 264R, —677 169 360R,R, —495 122 880R,R, + 1 582 899 696R',R,.

—436 968 OOOR, R, +2 399 627 664R,R,R, +1112243 328B,B,'- 2 841235 488B,'R,

+ 955 273 536R,B —6 797 917 728 B R,R, —1 949 474 016R.R,'+ 4 428 268 992B R

+7630367472R,'R', -6510434112R,'R, +1432274112R', +3 V97136S,

—9 328 032R, S, - 4125 744R, S, + 11640384R', S, - 1 604 736R,S, + 7 755 552R,B,S,
—8 197056B2S,+ 22 176T, —17 136R,T,.

F,/480 = 4 163 'l20 988R, —18 578 876 400R, R, —13 257 132 336R,R, + 47 044 563 552 R', R7

—11323 099 872R~R, +68 987497824R, R, 6
—89 763 496 704R2R6 —5 393 204 460R,

+ 60 939 180 288R, B,R, + 26156 846 520R', R, —204 571273 536R',B,R,

+ 24 254 367 984R R —94 860 853 416R R —163 159 909 920R R R

—11694 961 908R', + 145 249 394 472 R', R, + 464 082 286 752 R', B,R,
+199853 845 632B',R', 214 309 V58 096B',R, —462 027698 496R', R',

—182 025 648B,S, + 577403 568R', S, 94 328 640R, S, —39 671856B,S,
+512942 976B,R, S, +199662624B,R, S, —602 VV5936R', S, +85 580 712B',S,

—603 99V 632R2B3S~+ 390 287 520R~ S4+ 1 187 928T7 —1 800 288R ~T6

—333 648 B3T,+ 933 408 R2T, —72 324 S4+ 2 268U6.
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The contributions to P8/48 arising from u G+5 are
—56 044 800G(5, 5)G(4, 3) —24 554 880G(5, 4)G (4, 4) for
the simple cubic lattice and —1 767 360G (5, 5)G (4, 3)
—850 080G(5, 4)G(4, 4) for the plane square lattice.
Complete expressions for I"

&
—I'8 for these lattices are

available on request.


