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Experimental study of critical behavior of three-dimensional Heisenberg ferromagnets
with small anisotropy: CuM2X4 2H20 (M = NH4 or K, X = Br or Cl)f
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We have measured the parallel and perpendicular susceptibilities, the spontaneous magnetization and the
induced magnetization of Cu(NH, ),Br, 2H, O, CuRb, Br, 2H, O, and CuK, C1, 2H, O. These measurements

have permitted us to determine the intensity of the exchange anisotropy and the critical exponents Pi y, and 5
as well as the form of the state equation of bromine compounds. Near the Curie temperature, the

experimental state equation is close to the theoretical one of the three-dimensional Heisenberg model and the

scaling laws are approximately fulfilled. The measured susceptibilities agree with the theoretical results for the

slightly anisotropic Heisenberg ferromagnet. The crossover due to the small uniaxial anisotropy is clearly
observed on the perpendicular susceptibility and permits the explanation of the low experimental va1ue of y.

I. INTRODUCTION

In order to study the critical behavior of the
three isomorphous salts Cu(NHz), Brz 2H, O,
CuRb, Brz 2H, O, and CuK, Clz 2H,O, we have
measured their susceptibilities, their spontaneous
magnetization, and induced magnetization in a
magnetic field. These salts are insulators pre-
senting a paraferromagnetic transition at the re-
spective Curie temperatures of 1.83, 1.87, and
0.89 K. Their structure is particularly simple
because the copper lattice is tetragonal and almost
bcc (Sec. II). Their magnetic and thermodynamic
properties are well interpreted by the S ==- -„-;- Hei-
senberg model with interactions between nearest
and next-nearest neighbors'-' and small uniaxial
exchange anisotropy. Using the perpendicular
magnetic susceptibility jtx (Sec. IVC) and the low-
temperature properties of the spontaneous mag-
netization' (Sec. V B), we evaluate the relative
intensity of the anisotropy at 6 x 10 ' for the bro-
mine compounds and at 3 & 10 ' for CuK, Cl, '2H, O.

The simplest mechanism to explain the pres-
ence of the anisotropy is that of the pseudodipolar
exchange. The fundamental state of a copper ion
Cu" placed in an orthorhombic symmetric crystal
field is a Kramer's doublet. Owing to the spin-
orbit coupling, the two components of the doublet
are mixtures of spin-up and spin-down states. At
low temperature, if the exchange interaction be-
tween spins is much weaker than the energy of the
first excited level, then all ions are in their fun-
damental state, and we carr consider that each one
of them is a system with two levels, that is to say
equivalent to a pure fictitious cr=- spin with a
Landd factor g slightly different from 2. The
Heisenberg exchange interaction -Z;jJ,jS,. ~ S,. is
treated as a perturbation. It expresses itself in
terms of fictitious spins 0 by

(~ijx ix jx+ i jx ix jx+ i jz iz jz)'~ ~ ~

Therefore„ if we consider the copper ions as
pure fictitious 0=--; spins, the exchange is neces-
sarily anisotropic. The relative intensity of the
anisotropy is oi ihe order of (+«/g)'-, where ~/jx
is the relative anisotropy of the Landd factor.
For the salts studied here, we have (Ag/jx)'- Io '.
Th»s, the pseudodipolar exchange mechanism
qualitatively explains the observed. anisotropy.

Owing to their small axial anisotropy, the studied
ferromagnets are highly suitable to check the ef-
fect of anisotropy on critical behavior. Riedel and
Wegner' were the first to predict a crossover due
to the exchange anisotropy from Heisenberg criti-
cal behavior to Ising critical behavior. Their the-
ory predicts in our case that the reduced tempera-
ture of cross over is about 10 ', which is in our
experimental range. This crossover is easy to
observe by comparing the parallel y, and perpen-
dicular y, susceptibilities in the critical zone.
Moreover, the recent works of Pfeuty ef al. ' per-
mit us to compare our experimental results with
precise, numerical calculations (Sec. VII C).

In these salts there also exist dipolar interac-
tions between spins that may produce a crossover
from the Heisenberg model to the isotropic dipolar
model. ' These dipolar interactions have already
been used to explain the experimental value of the
critical exponent n relative to the specific heat. '
Their influence i.s discussed in Sec. VII C.

This paper is organized as follows: in Sec. II
we give a brief account of the crystal structure of
the salts studied. In Sec. III we give some experi-
mental details on the measurement and control
of the temperature. Section IV describes the mea-
surements of the magnetic susceptibilities. The
low-temperature measurements of X, permit us
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to evR1URte the Rnisotropy. In Sec. V. we describe
some experiments using nuclear magnetic res-
ollR11ce (NMR) ~ They Rllow lls 'to oil'tRlll the 1'6-
duced spontaneous magnetization curve nl, (T).
For T &T„ the curve el, (T) gives us a second
6VRluRtion Gf the Rnisotropy. The anisotropy Gf

CUK, Cl~ 2H~O is di.scussed in detail.
In Sec. VI, we give the x'esults of the measure-

ments of magnetization induced by a magnetic
field II. Finally. in Sec. VII, all our results rela-
tive to the neighborhood of T, are discussed: the
critical exponents, the scaling laws, the state
equation, and the crossovers due to the anisotx'opy
and to the dipolar interactions.

Cu K, CI, 2H,O

CU

CI

H, O

H. CRYSTAL LOGRAPHK STRUCTURE

The CuK, Cl, 2H, O crystals are obtained by the
slow evapox ation at room temperature of a. Satu-
rated aqueous solution containing 1 mole of CuC12
for each mole of KCl. The broxnine compounds
are obtained by the same process except that the
components Rx'6 in stoichioxn6tric px'opox'tions.
As the preseQce Gf chlorine impurities in the bro-
mine compounds modifies their critical tempera-
ture (Fig. 8), we have used the purest possible
components: CuBr, is produced from CuO (Cl
&10 ~ wt. /g) and HBr (Cl &10 ' wt. %) RbBr con-
tains less than 10 ' wt. ~gg of Cl and NH4Br less
than 0.2 wt. k, so that, for each atom of Br, we
find in the Solutions less than 10~ atoms of Cl
for CURb2Br~ '2820 and less than 3 & 10 ' atoms
of Cl for Cu(NH, ),Br, 2H, O.

CuK Cl, '2H, O and Cu(NH~), Br4 2H,,O belong to
the space group P4, /~un~~. ' The unit cell is a
rectangular parallelepiped with a square base of
side a and height c (Fig. 1, Table I). The copper
ions are located at the corner and in the center
of tllls lllllt cell. Tile r'Rtlo c/n is 1.05, so 'tllat 'tile

copper' 1Rttice is Rlnlost body-center ed cubic. Ill

all the theoretical calculations, we have made the

simplifying hypothesis Gf a bcc lattice.
Each copper atom 18 surrounded by four halogens

forming a rhombus whose plane is p6r'pendiculRx'

to the [001]axis and whose diagonals are parallel
to [110]and [110]. The furthest halogen from the

copper i.s noted X(I), the closest X(H). The local
copper axes parallel to the directions Cu-X(I) and

Cu-X(II) are called [yj and [y'], respectively, The
local axes of the copper situated in the center' of
the Unit cell make R 90'angle with those of the
copper l.ocRted Rt the corQex' Gf th6 Unit cell.

There are no crystaoographic data for CURb28r4.2H 0 but as the natural crystals of the salt are
identical to those of Cu(NH, ),Br, 2H,O and the
NMR spectra of the bvo salts are very similar,
we can conclude that they have the same structure.

The densities of CuK, C1, ~ 2H,O and Cu(NH, )Br,
'2H.O Rx'6 calculRted from the crystal pRX'Rm6ters.
That of CURb, Br~ 2820 was determined by mea-
suring the Archemedian pressux"e px'oduced by R

bath of dibutyl phthalate on a crystal of known
mass.

1'll. CONTROL ANB MEASUREMENT OF
THE TEMPERATURE

TABLE I. UAJt-CeB diMCA81OA8 8Ild d6DSltg.

&(+) f- (A) DeDSitv (g/cm. )

CuK, CI4 ~ 2826 7.477 7.935
Cu(NH4) &Br4 ~ 2H&G 7.98 8.4&
CuB.b2BI 4

~ 2H&O ~ 4 0

2.40
2.82

3,71.+ 0.04

The temperatures between 1.2 and 4.2 K are ob-
tained in a bath of pumped ~H6 and those between
0.35 and 1.2 K in a bath of pumped SHe.

Below 2.17 K, tile He is superfluid Rnd is R good
conductor Gf heat. An automatic control Gf the
temperatux'6 is theref Gre obtained with R 47 A, fl Ã
Allen Bradley resistance and a heating resis-
tance Gf 190 Q. The heating powex's are usually
20 m%. The stability of the temperature i.s bettex
than 2'-&10 ' K in the neighborhood of 1.8 K.

The temperatux'e is measured by another 4"(I' Q,
8 W Allen Bradley resistance placed near the
sample. The resistance 8 is r61Rted to the tem-
perature by the empix"ical lR%' Gf Clement Rnd

Qulnnell
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log,++ A./Iog, +=A+ B/T.

In each run, the resistance is calibrated from
about ten data points, where the temperature is
computed according to the pressure of the helium
above the cryogenic bath (1958 scale). The coef-
ficients A., A, and B are determined by the method
of least squares. The difference between the tern-
perature computed according to the resistance
and the temperature computed according to the
pressure remains smaller than 1 mK in the in-
terval 1.5-2.17 K.

Between 2.17 and 4.2 K, the automatic control
does not function well because of the great time
constant of heat transfers. The vapor pressure of
He is regulated by a Cartesian manostat which

acts upon the flow of the pumping. The tempera-
ture stability thus obtained is sufficient for the
experiments undertaken. The temperature is mea-
sured by a 470, 8 W Allen Bradley resistance
calibrated from a measure at 4.2 K and from a few
measures between 1.5 and 2.17 K. Using the sus-
ceptibility of a chromium potassium alum (Fig. 2),
we checked once that our interpolation process
using the law of Clement and Quinnell between 2.17
and 4.2 K gives the correct temperature.

Between 0.35 and 1.2 K, the speed of pumping of
the 'He is regulated manually with the help of a
needle valve. The stability of the temperature is
better than 0.3 mK in the neighborhood of 0.9 K.
The temperature is measured by a 100, —,

'
W

Allen Bradley resistance calibrated between 0.7
and 1.2 K from the vapor pressure of 'He (1962scale).
Below 0.7 K, the thermomolecular correction
becomes non-negligible. We obtain a first estimate
of the temperature TR by extrapolating the law of
Clement and Quinnell [Eq. (1)]obtained between 0.7 and

Kcr Al

T (K)

FIG. 2. Calibration of the susceptibility measurements
bridge. C): the temperature is calculated from the vapor
pressure of 4He; ~: the temperature is calculated by in-
terpolation of the Clement and Quinnell law.

1.2 K. This temperature TR was compared to the
temperature T deduced from the susceptibility of
a cerium magnesium double nitrate crystal. We
deduce from this experiment the following empir-
ical law, which holds between 0.32 and 0.7 K:

T= T„-10 T„'. (2)

0+ kVX

where V is the volume of the sample, y, is the ap-
parent volumic susceptibility of the sample, k is
the calibration factor, and p, , is measured in the
bridge by a calibrated mutual.

In 4He, the sample can be taken out of the coil
in the course of the experiment in such a way that
p., can be accurately determined at that moment.
In 'He, we cannot take out the sample and p., is
determined from an experiment without sample.

The calibration factor k is calculated from the
susceptibilities of spheres of chromium alum, of
ammonium magnesium sulfate, and of ferrite (Fig.
2). The measurement of p, therefore gives the
apparent volumic susceptibility y, . The true vol-
umic susceptibility X can then be computed, using
the relation

I/g, = I/)(+ N. (4)

R is the demagnetizing factor. In order to have a
homogeneous and relatively small demagnetizing
factor, we cut our samples into ellipsoids prolate
in the direction of the measurement of suscepti-
bility.

At T & T„ in the bromine compounds, the ap-
parent susceptibility measured along the [001]di-
rection reaches the theoretical limit imposed by
the demagnetizing factor, if one takes into account
experimental error. On the other hand, perpen-
dicularly to [001], it remains smaller than this
limit. We can thus conclude that there exists only
one easy axis, [001].

In CuK, Cl, ~ 2H, O, the apparent volumic suscep-
tibility is isotropic in the plane perpendicular to
[001]. Below T, =0.89 K, it reaches the inverse
of the demagnetizing factor, when one takes into
account the experimental error. On the contrary,
along the [001]direction, it does not reach this
limit. We conclude that the easy axes are perpen-

IV. MAGNETIC SUSCEPTIBILITIES

The measurement apparatus is an ac mutual in-
ductance bridge functioning at frequencies of about
70 Hz." The measurement coil, immersed in He,
is made up of two theoretically opposite mutuals.
In fact, in the absence of a sample, the mutual of
the coil is not zero: we denote it p, . When the
sample is placed in one of the mutuals, the total
mutual of the coil becomes
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TABLE II. Experimental and theoretical critical parameters for the S =~I bcc Heisenberg
model.

CuK~C14 ~ 2I-I &0

Nearest-neighbor
interaction

Next-nearest
neighbor interaction

Thi. rd-neighbor
inte ract ion

0.63

0.222 a 0.235 0.210

0 384 0.460 0.357

~ See Ref. 11.

dicular to [001].
%'e eall pa, rallel susceptibility y ~

the suscepti-
bility along an ea,sy a.xis and perpendicular sus-
ceptibility, X~, the susceptibility along a direction
perpendicular to all easy axes.

A. T&2T

The study of the susceptibilities at T &2T, en-
ables us to determine the range of the exchange
interaction. Analyzing the specif ic-heat measure-
ments of Miedema ef a/. "for Cu(NH~)2Br~ 2H20
and CuK Cl~ 2H20, Wood and Dalton' concluded
that in these salts, the exchange interaction be-
tween next-nearest neighbors, J„ is about 4 of
the interaction between nearest neighbors, J,.
Van Amstel and de Jongh' have recently shown
that, in Cu(NH~), Br, '2H, O and CuRb, Br, 2H, O,
J, is almost equal to J, and that perhaps there
exists an interaction between third neighbors J,.

We have studied CuK, CI~ 2H,O in a similar
manner. " Its relatively low critical temperature
permits us to reach temperatures of 4.7T„and
to measure the Curie-Weiss temperature 8. For
2T, &T&4.7T„ the ratio XT/C (C is the Curie con-
stant} is perfectly isotropic; this shows that the
influence of the possible anisotropy is negligible
at this temperature. The measured Curie-Weiss
temperature is 1.24 K. The ratio T,/8 is equal
to 0.72. This ratio theoretically depends on the
number of equivalent neighbors. "'~ Here we find
16 equivalent neighbors: thus the next-nearest-
neighbor interaction is nea, rly equal to the nearest-
neighbor intera, ction. The experimental values of
other critical parameters support this hypothsis
(Table II}.

Lastly, we compa, red the susceptibility of
CuK, C1, 2H,O to the high-temperature series ex-
pansion of the Heisenberg Hamiltonain"'" (Fig.
3). The theoretical curve computed for J, =Z, = 0
is valid for T/T, &1.5. The curves computed for
8, and 8, 40 are valid only for T/T, &2 because
of the small number of known terms in the expan-

sion. The fit is very good with the theoretical
curve computed for J, = J, a.nd J, =O.

B. Parallel susceptibility in the neighborhood of T,.

In the neighborhood of T„we have tried to fit
the thermal dependence of the parallel suscepti-
bility with the law

Cu KlCl, 2 HIG

f 001)
~ It&0)

I

2.5
T /Tc

l

3.5

FIG. 3. Experimental susceptibilities of CuK2C14 2H20
compared with the high-temperature series expansions
computed for the 8=2 bcc Heisenberg model: ( ):
J,=J,=0 Qef. aS); (--—): J,=Z, ~0, J,=0 (Ref. 13);
(—~ —): Z, =-~, =~, (aef. 13).

(5)

where f = (T —T )/T
In order to avoid the errors due to the uncer-

tainty of the T, value, we use the Kouvel and
Fisher method" to analyze the data. Thus we
plot -g„(dy„/dT) ' vs T. If Eq. (5) is true, this
curve is a stra, ight line which intersects the T
axis at T, (Fig. 4). This is observed for the three
salts. We compute the T, value by the least-
squares method, and we plot the curve logMX„vs
Iog„e (Fig. 14). The coefficients I" and y are de-
termined by the lea.st-squares method. The ex-
perimental values of T„y, I' T,/C, and the valid-
ity interval of Eq. (5) are given in Table III.
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/. Field dependence ofperpendicular susceptibili ty

0.1—

We have studied the influence of the anisotropy
on the field dependence of X, using the molecular
field approximation (Appendix A). The theoretical
results, which are known to hold at 0 K, are
shown in Figs. 15(a) and 15(b). The behavior of

g~ in the presence of a. magnetic field parallel to
an easy axis or to the measurement axis of X~,

theoretically enables us to determine H» the an-
isotropy field defined by Eq. (A2).

This has led us to measure X„ in the presence
of a field parallel to the measurement axis of X„
m the ca,se of CuRb, Br~ 2H,O and CuK, CI~ "2H,O,
a,nd of a field pa, rallel to the easy axis [001] in the
case of CuRb, Br~ 2H,O. The experimental curves
plotting X~ versus the field are shown in Figs.
5(a) and 5(b). The curves obtained for the lowest
temperature T-0.35 K are the only ones which
are approximately of the shape predicted by mo-
lecular field theory; they enable us to estimate
H~. Table IV contains the results.

FIG. 4. Determination of Tc by the Kouvel and Fisher
method for CuK&Cl. 4" 2H&0.

C. Perpendicular susceptibility for T&0.5 T, :
evaluation of the anisotropy

The field dependence and the temperature de-
pendence of the perpendicula. r susceptibility at
low temperature allow us to evaluate the intensity
of the anisotropy.

X, («) C, 1

gg&P&S g~ H&
(6)

In CuR1,8r, 2H, G, we compare the temperature
dependence of y~ with the theoretical curve [Eq.
(816)] (Fig. 6). The value of g~ (0 K) = 30.3 emu

2. Temperature dependence of the perpendicular

initial susceptibility

The temperature dependence of X, is qualitative-
ly the same for the three salts. When T de-
creases, g~ reaches a maximum at T= T, , thende-
crea, ses more and more slowly until T reaches
0 K. The X~ value at 0 K gives us an estimate of
H„[Eq. (A6) and Appendix Bj.

TABLE III. Experimental values of Tc, y, and I. TcjC deduced from the susceptibility measurements.

Kouvel and Fisher method

C

'y

log yi~ vs log ~

I."T,/C
Suzuki and Watanabe (Ref. 17)

C

'Y

De Jongh and Miedema (Ref, 18)
7
'y

rv, /c

Cu(NH4) 28r4 ~ 2H&0

2x10 ~&@&10
1.827 + 0.002 K
1.26 +0.02

2xlO &&&2.2x10 '

1.275 + 0.017
1.22 ~0.08

2x10 ~«&10 i

1.831+0.001 K
1.30 + 0.03

8x10 ~& g&3x10
1.773+0.001 K
1.31 + 0.02
1.22 + 0.15

8.5xXO 3&& &7x10
1.8739 + 0.0005 K
1.28 + 0.015

5 xlO &e&3x10
1.29 a 0.01
1.26 + 0.05

CuK2Cl& ~ 2H20

5 x10 & a&1.5x10 '

0.8S57 +0.0003 K
1.28 + 0.01

1.5 x 10 & e & 3 x 10
1.28 ~ 0.01
1.27 *0.05
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Cu Rb8r, 2

H ii [ooi]
0.5

T/Tc
FIG. 6. Temperature dependence of the true perpen-

dicular susceptibility of CuBb2Br4' 2H&O for T& T~ .
(—): theoretical curve computed with the help of Kq.
16) for a„=220 Oe.

1.765 K

).204 K

e 0.37 K

0-
200

FIG. 5. Kxpeximental variation of the apparent pexpen-
dicular susceptibility of CuRb2Br4 2H2Q, as a function
of the applied field. (a) Field is parallel to the dix'ection
along which ~ is Ineasured. ~ T =0.35 K Q T
=1 829 K'~ T=1 75 K. V' T=4 2 K k T=l 785 K
Ordinate of the experimental data at T = 4.2 K is multi-
plied by ten. (b) Field is parallel to the easy axis t001f.

cgs/mole is chosen in order to have a good fit
between the experiments and the theory. This fit
is very satisfactory below T/T, =O.V. The aniso-
tropy field deduced from y, (0 K) is 220 + 13 Oe.
The uncertainty arises especially from the uncer-
tainties in the demagnetizing factor and in the
calibxation factor of the bridge used in the sus-
ceptibility measurements.

For Cu(NH, ),Br, ~ 2H, O, we did no experiments
at very low temperature, but, in the observed do-
main 0.65«T/T, &l, X is very close to the value
of y~ for CuRb, Br~ 2H O. We conclude that y,
(0 K) = 29 emu cgs/mole, and therefore that H„
=230~15 Oe.

For CuK, C1, ~ 2H,O the minimal attainable tem-
perature is still too high to allow us to accurately
compax'e y~ with the theoretical curve. In that
case, the apparent susceptibility is three times
that of the bxomine compounds and closex' to the

TABLE IV. Anisotropy field values deduced from the perpendicular susceptibility measure-
ments (in Oe) .

gg in presence of
a field perpendicular

to the easy axes

gg in presence of
a field parallel
to an easy axis

Cuab28r4 - 2H20
Cu(NH4) 2Br& ~ 2H~O

CuK~C14 ~ 2H&O

220~13 at 0 K
230~15 at 0 K
52+6 at 0 K

203 + 20 at 0.35 K

44+ 5 at 0.36 K

206 + 20 at 0.37 K
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TABLE V. Mean NMH frequency of the protons at T =0 K and anisotropy field deduced from
the low-temperature spontaneous magnetization.

v(0) t'MHz)

H~ (Oe)

Cu(NH4) 2Br4

6.450 + 0.005
245 + 25

Cuab2Br4 2H20

6.473 + 0.001
250 + 25

CuK2C14 ~ 2H2O

3.664 + 0.002

demagnetizing factor. The uncertainty for the
true susceptibility reaches 12%. However, we
can roughly extrapolate the curve at 0 K amI ob-
tain the value y, (0 K) = 102+12 emu cgs/mole,
which is equivalent to an anisotropy field of 52+ 6
Oe. The results of the different measurements of
H„are given in Table V. All these values are con-
sistent when we take into account that the aniso-
tropy field measured at 0.36 K is less than the one
at 0 K. The H„value found for the bromine com-
pounds agrees with that of 200 Oe deduced by
Suzuki and Watanabe'9 from EPR in Cu(NHC)2Br,
'2820. Lastly, the experiments of susceptibility
are properly explained if we assume that the Ham-
iltonian of the three salts is given by

z, =-pz, ,s,. s,. —QIc, ,s,.p...ij
where z is the [001]axis and the sums Z;,. are ex-
tended to the nearest and next-nearest neighbors
i and j.

In the bromine compounds, the anisotropy is
uniaxial: Z„E,~& 0 and its relative intensity is

QK;, Q J(q=6X10 3.

In CuK2C14. 2820, the anisotropy is planar:
Z;;Z;,.(0 and its relative intensi y is

K(q Q J„=3&& 10 s.

V. SPONTANEOUS MAGNETIZATION

The spontaneous magnetization of the three salts
is obtained by NMR of the halogens and of the pro-
tons of water. The nuclear resonance frequencies
depend on the local magnetic field at the site of
the nucleus. When no field is applied, the local-
field intensity is usually rigorously proportional
to the magnetization of the magnetic lons and its
direction strongly depends on the direction of the
magnetization. We can therefore accurately study
the spontaneous magnetization by NMR, even in
the neighborhood of the critical point.

A very complete study of the NMR in the salts
isomorphous to CuK, CI~ ~ 2H, O was done simul-
taneously and independently of us by Klaassen
et al. 'o We therefore only report our results rela-
tive to the anisotropy and to critical behavior.

A. . NMR of halogens: spontaneous magnetization near T

The "Br and "Cl nuclei have a nuclear spin-~
and a quadrupole moment which interacts with the
local electric field gradient (EFG) at the site of
the nucleus. If the local magnetic field is zero,
we observe one pure quadrupole resonance line
of frequency v. If the local field H, is nonzero,
we note vs= (y/2v)H„where y is the nuclear gyro-
magnetic ratio. In the case where v~«v and Hf
is parallel to one of the EFG axes, the pure quad-
rupole line is split into four lines, the intensities
of which vary according to the orientation of the
radio frequency field exciting the resonance. The
spectrum is symmetric with respect to v, up to
first order in v„/vo. The difference between the
frequencies of two of the lines is rigorously equal
to 2v~, and therefore proportional to 0, . All ex-
periments are done without an external magnetic
field in such a way that II, is proportional to the
spontaneous magnetization, in the ferromagnetic
state, and zero in the paramagnetic state. The
local field at the halogen site is parallel to one of
the EFG axes because of the crystal symmetry.

The behavior of the two bromine compounds is
quite similar. We observe two distinct 'Br spec-
tra corresponding to the two sites Br(I) and Br(II)
and to one easy axis [001]. When the temperature
decreases from 4.2 K to T„we notice that the
pure quadrupole line of "Br(I) remains at the
same frequency v@ but becomes broader. It never-
theless remains detectable. Below T„ it splits
into four lines whose frequencies are close to vz
and whose splittings increase when the tempera-
ture decreases. The splitting between the two ex-
terior lines is proportional to the spontaneous
magnetization [Fig. I (a)].

The temperature where the ferromagnetic lines
appear theoretically coincides with the Curie tem-
perature. In fact, over a temperature range of
about 1 mK, we observe a. coexistence of the fer-
romagnetic lines and the paramagnetic pure quad-
rupole line." Near 7".„ the lines are clearly
asymmetrical. We conclude from this that the
critical temperature is not homogeneous in the
sample. This effect is particularly perceptible
for Cu(NH, )~Br, ~ 2H20 and we believe that it is due
to the presence of chlorine impurities. In fact,
we have noted that the Cu(NH, ),Br, 2H, O crystals
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grown from solutions containing chlorine impur-
ities have a Curie temperature noticeably lower
than that of a purer crystal (Fig. 8): r T, =-14
mK for 1% chlorine impurities in the solution.
Finally, the chosen Curie temperature is the

(a)

Nr
X

minimal temperature where only the pure quadru-
pole line is visible. It may vary slightly from one
sample to another because of impurities (Table
vi).

For CuK Cl~ ~ 2H, O, the existence of four dis-
tinct 'Cl spectra clearly shows that there are
two easy axes, [110]and [110]." The "Cl(I) spec-
trum for spontaneous magnetization parallel to

[y] [Fig. 7(b)] is the only one to permit us to de-
termine M, near T,. The distance between the
two detectable lines is proportional to M, .

For the three salts, the reduced spontaneous
magnetization near T, is well fitted by the law

(»g 8)

(8)

The amplitude B and the exponent P are computed
by the least squares method. All results are given
in Table VI. Two Cu(NH, ),Br, 2H, O samples of
different purities were used, but we have observed
no difference for the critical parameters P and B.

B. NMR of protons: low-temperature spontaneous

magnetization

In the ferromagnetic state, when no field is ap-
plied, the NMR spectrum of the protons of a water
molecule is composed of four to six lines, sym-

(b)

I
0.5

I

T {K)
I

1.5

7.5

N
X

35

Ms

CuK 7

1.9

I I

0.4
T (K)

I

0.8

FIG. 7. NMR spectrum of the halogen Q). (a) Br(I)
in Cu(NH4)2Br4' 2H20. (b) Cl(I) in CuK2C14 2H20 in the
case where the spontaneous magnetization is parallel
to the direction Cu-Cl(l). Two other lines with a larger
splitting exist but they are too weak to be detected.

6.5

1.7
I

T (K)
I

1.8

FIG. 8. Influence of the chlorine impurities in
Cu(NH4)2Br4' 2H20. Samples represented by ~, 0 and

Q contain an increasing quantity of impurities.
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TABLE VI. Curie temperatures and experimental values of the parameters P and B.

A

Cu(NH4) B2Br4 2H20
B

CuHb2Br4 ~ 2H20

CuK2C14 ~ 2H 20

T (K)

1.8346 + 3 x 10 4

1.8306 + 3 x 10 4

1.8762 + 2 x 10 4

0.892 +5x10 4

0.375 + 0.008

1o 3&Ill &7& 1o ~

0.373 + 0.007

4x10 &
~

e~ &7x 10 2

O.354+ 0.O1

2x10 &(ei &10

1.45+ 0.04

1.45+ 0.03

1.36 + 0.06

0.5

0.4

I I I I f

Cu (NH, ) I B r, .2 H&0

sample A

9 = 0.375%0.008

0.2—

l

10 3

l l
10 I

FIG. 9. Cu(NH4) 2 Br4. 2H&O. Temperature dependence
of the reduced spontaneous magnetization near T, plotted
in a double logarithmic scale.

metrical with respect to the mean frequency, with
temperature-independent splittings. The com-
plexity of this spectrum as well as the observed
splittings between the lines can be explained if we
take into account the dipolar interactions, not only
between the protons of one water molecule, but
also between the protons of two adjacent water
molecules, separated by a distance of only 2.88
A in CuK, C14 2H, O, and also between protons and
halogens, bound to water by a hydrogen bond,
whose length is 2.2 A in CuK, Cl, 2H,O and 1.7 A

in Cu(NH~)~Br4 2H, O.
The mean frequency of the spectrum v(T) is pro-

portional to the local field at the protons and there-
fore proportional to the spontaneous magnetization
M, (T) The reduce. d spontaneous magnetization is
given by m, (T) =M, (T)/M, (0) = v(T)/v(0). The fre-
quency at 7= 0 K is extrapolated from the very
low-temperature data obtained in an adiabatic de-
magnetization apparatus" (Table V). For the
three salts, we note that the experimental curve
M, (T) is located above the theoretical curve, as
calculated by a spin-wave renormalization method

for the isotropic Heisenberg model with next-near-
est-neighbor interactions. '"

1. Bromine compounds (Fig. 10(a)j
In a previous paper' we have computed theoret-

ical spontaneous magnetization curves for the Hei-
senberg model with a small anisotropy and with

a next-nearest-neighbor interaction J, of the order
of —,

' of the nearest-neighbor interaction J,. We

have generalized this computation to the case
J,= J,. The theoretical curves vary little as a
function of the J,/8, value. The experimental
curve, identical for the two bromine compounds,

is properly fitted by the theoretical curve for
J, = J, and If„/T, = 135 Oe K ' for T/T, &0.5. The

corresponding H„values which are given in Table

V are consistent with those of Table IV.

2. C~KzCl4 2HzO(Fig. 10(b)J

The experimental curve is almost identical to

that of the bromine compounds. It is not fitted by
the theoretical curve for a planar anisotropy, com-
puted by the spin-wave method without renormal-
ization. " If the anisotropy were planar or almost

planar, the magnetization of a domain would be

badly fixed along the easy axis and it would fluc-
tuate in the easy plane. Therefore the NMR lines,
for instance, of chlorine would be much broader
in the ferromagnetic state than in the paramagnetic
state. In fact, though, we do not observe such a
phenomenon. Furthermore the chlorine spectra
clearly show that the spontaneous magnetization
of a domain can only occur along the two direc-
tions [110]and [110]. In a. domain, everything

happens as though one direction were favored with

respect to the others and as though the anisotropy
were either axial or rhombic. This is corroborat-
ed by the fact that the low-temperature spontaneous
magnetization of a domain is the same as that of
the bromine compounds, though theoretically the

magnetization of a system with planar anisotropy
noticeably differs from that of a system with uni-



14 EXPERIMENTAL STUDY OF CRITICAL BEHAVIOR OF THREE-. . 5097

(a) (b)

1

Cu Rb&B r4-2H)O 2 H)O

CA
P'
1

0.9 09

isotropic model

anisotropic model

H~/T, =135 Oe K
'

0.8 0.8

I

0.2
I

0.6
I

0.2
Tc

0.6

FIG. 10. Temperature dependence of the reduced spontaneous magnetization for T & 0.6T~. 0: experiments in a 3He

bath; ~: experiments in an adiabatic demagnetization apparatus. (a) Cuab&Br4 ~ 2HzO; (————): theoretical curve for
the isotropic model calculated with a spin-wave renormalization. 4: J2 ——0; 1: J2 ——0.25 J~, V': J2 ——J). ( ): theor-
etical curve calculated for a uniaxial anisotropy H~/T~ = 135 OeK with a spin-wave renormalization. (b)
CuK2C14 '2820. (- ———): theoretical curve for the isotropic model without renormalization; (' 2 ): theoretical
curve for a planar anisotropy equal to 4X10 without renormalization; ( ): theoretical curve for a uniaxial aniso-
tropy H/T = 135 OeK ~ with renormalization.

axial anisotropy. However, the tetragonal crys-
tal symmetry prevents the singling out of one of
the directions [110]or [110]. We therefore assume
that the crystal symmetry is modified at T, by
magnetostriction. " In support of this hypothesis is
the significant variation below T, of the parameters of
the CI(II) NMR, in the case where the spontaneous
magnetization is parallel to [y]. So the [110] axis
becomes the favored axis for half of the domains
and the [110]axis the favored one for the other
half. The macroscopic crystal symmetry of the
susceptibility is not modified by the magnetostric-
tion because just as many domains are magnetized
along [110]as along [If0], and the two directions
are macroscopically equivalent.

In a domain, the Hamiltonian of CuK, Cl, '2H, O
is therefore given by Eq. (7), where now z is the
easy axis [110]or [If0], and where Z,~K„.&0.

VI. INDUCED MAGNETIZATION: CRITICAL ISOTHERM

integrator

~e
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VAIWNA,

10 A

solenoid

nal of the integrator is proportional to the magne-
tization M of the sample. It is sent along the Y
channel of a XY recorder.

The induced magnetization is measured by means
of a fluxmetric method24 (Fig. 11). The output sig-

FIG. 11. Block diagram of the induced magnetization
measurements apparatus.
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The 4 and 5 numerical values are given in Table
VII. The uncertainty in 5 arises especially from

0.5

0.4—

0.3
Ct

K

C u{NH,),

T T 1.828
$-4.21~ 0

0.2

The magnetic field H, is supplied by a solenoid
whose homogeneity over the length of the flux-
metric coil is better than 10 . A signal propor-
tional to the current and therefore to H, is sent
on the X channel of the recorder. One can increase
the current proportionally with time.

The field variation speed is chosen to be suffi-
ciently slow, in order to avoid any detectable heat-
ing of the sample. The variation times from 0-
to 340 G range from 2 min in superfluid 4He to 8
min in 'He. We thus obtain the curve M(H, ) direct-
ly on the recorder.

In order to calibrate the Y axis, we plot the
curve M(H, ) for a ferrite sphere at 4.2 K. The
apparent volume susceptibility is independent of
the field and is equal to 1/N and one should ob-
serve a straight line with a slope equal to 1/¹
The value of the experimental slope permits us to
compute the calibration factor. Let H be the mag-
netic field inside the sample. To deduce the
curves M(H) from the curves M(H, ), we use the
equation

H = H0 —NM.

The samples used are those which served for the
susceptibility measurements. They a.re cut into
ellipsoids and the demagnetizing factors N are
known within an accuracy of 2/p to 5/p.

The magnetic field H0 is applied along an easy
axis. For the bromine compounds, the curves
M(Hp) are plotted at many temperatures, most of
them in the range -10 ' & & & 10 '. These curves
allow us to determine the state equation (Sec.
VII B). The critical isotherm is the curve M(H)
at T = T,. For a.ll the fields which we explored, it
is well fitted by the law (Fig. 12)

TABLE VII. Experimental values of the parameters 5
and E of the critical isotherm.

Tc (@

Cu(NH4) Br4 ~ 2H20 1.828
4.21 + 0.05

3&H&300 G

4.20 + 0.07

0.126 + 0.003

CuRb&Br4 ~ 2H &0

CuK2C14 2H )0

1.874

0.895

2&H &300 G

4.4 ~0.15

1&H &100 G

0.123 + 0.003

0.157 + 0.01

the uncertainties in the demagnetizing factor and
in T,. Indeed, the curves M(Hp) do not permit us
to determine T, accurately because they vary lit-
tle near T,. Since we have used the same samples
in these experiments as those used in the X„mea-
surements, the chosen T, is the critical tempera-
ture deduced by the Kouvel and Fisher method
(Ta,ble Ill).

For CuK, CI~ ~ 2H20, the M(Hp) measurements
are less accurate. We have only plotted the
curves M(H, ) for T very close to T, The un.cer-
tainties in 5 and b, are greater than for the bro-
mine compounds.

VII. DISCUSSION OF THE RESULTS IN THE

NEIGHBORHOOD OF Tc

A. Scaling laws and the state equation

The experimental values of a. , P, y, and 5 and
the theoretical ones are given in Table VIII. As
a rule the theoretical exponents computed from
the high-temperature series expansions are more
accurate than those computed by means of the 4 —d
developments. We note that the experimental P
exponent is consistent with the theoretical value of
the Heisenberg model, but the latter is rather in-
accura, te. On the other hand, the experimental
values of the other three exponents differ from
the computed va, lues. The experimental values
of a and y a.re intermediate between those of the
Heisenberg model and those of the Ising model.
As for 6, it is smaller than either of the two the-
oretical values. The scaling laws

2 —n =2p+y= p(5+1) =y(5+)/(5 —1)

0.1—
I I I

3 5 10
H (Qe)

I I I
30 50 100

I

300

FIG. 12. Critical isotherm of Cu(NH4)&Br4. 2H)O plot-
ted in a double logarithmic scale.

are checked in Table IX. They are not quite ful-
filled by our salts: in particula, r, 5 seems to be
too small.

In accordance with the scaling hypothesis, the
state equation must be of the form"
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TABLE VIII. Experimental critical exponents p, y, 6, n compared with theoretical values for three-dimensional mod-
els.

Cu(NH4) 2Br4 ' 2H20

CuRb2Br4 2H20

0.375 ~ 0.008
lo '& hei &Vx10 '

0.373+0.007
4xlo '& i~i &7xlo '

0.354 + 0.010
2x10 '& t~j &10 '

1.275 + 0.017
2 x 10 3 & c & 2.2 x 10

1.29 + 0.01
5 x 10 3 & e & 3x 10 ~

1.28 + 0.01
1.5 x 10 & e & 3x 10

4.21 ~ 0.05
3&H&300 0
4.20 + 0.07

2&0&300 0
4.4 + 0.15

1&H &100 0

-0.041+0.014 ~

High-temperature
expansion
Heisenberg
Is ing

4 —d expansion
Heisenbe rg
Isotropic dipolar

Molecular field

0.35 + 0.05
0.313+0.003

0.380
0.381

0.5

1.375 () Ooi

1,25

1.365
1.372

5.0 + 0.2
5.0 ~0.2

4.458
4.454

-0.14 + 0.06
0.13 + 0.01

-0.125
-0.135

Discontinuity

~ Reference 7.

or26

From the univer sality hypothesis the functions
h and g do not depend upon either spin or lattice,
but do depend upon the number of spin components,
upon the lattice dimensionality, and perhaps upon
other factors such as the anisotropy. The state
equation of the bromine compounds is obtained
from the induced magnetization curves plotted at
many temperatures. " In Fig. 13, we compare the
experimental curve of Gu(NH~), Br~ 2H,O with the
theoretical curves for the 8= & Heisenberg and
Ising models computed for the bcc lattice. " The
abscissa and ordinate are dimensionless (l/dM, )
x (M/H' i6) in the ordinate and (8/6)'i~(e/H'i~ )
in the abscissa.

We are not able to calculate simply the uncer-
tainty in the abscissa and ordinate due to those
in p, 6, 8, and d. We should observe that the
differences between p and B and their mean values
are correlated as well as those of 5 and 4. A cal-
culation done with a few points and using the ex-

tremal values of p and 5 shows that the curve de-
pends very little upon the P and 5 values when the
abscissa lies between 2 and -2. The uncertainty
increases as the abscissa increases. Finally, the
experimental curve is well fitted by the theoretical
state equation of the Heisenberg model and it is
clearly distinct from that of the Ising model.

B. Crossover

If the Heisenberg model accounts for the form
of the state equation, it does not account for the
critical exponents values and particularly not for
the y exponent, which is known with great accu-
racy. This phenomenon can only be attributed to
the presence of the anisotropy~ or of dipolar in-
teractions between spins. '

Fisher and Aharony' have shown that dipolar in-
teraction is a relevant operator. It follows if one
neglects the anisotropy, that the system must
gradually crossover from the Heisenberg model

i «i » e* to the isotropic dipolar model
i
e i

«e*.
The I educed crossover ten1perature z* is given
by

TABLE IX. Experimental check of the scaling laws: 2 —n =2 —o."=2P+y=P(6+1) =y((5+1)/
(& -1)

Cu(NH&) 2Br4 ~ 2H20
CuRb2Br4 2H20
CuK~C14 ~ 2H2O

2.041+0.014
2.025 -0.033
2.036 + 0.024
1.988 + 0.030

1.954 + 0.061
1.940 + 0.063
1.91 + 0 ~ 11

2.069+0.040
2.096 + 0.033
2.032 + 0.052
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I I I I I I I I

1.5- &Tc
7.33 x10 l

2.97 x10
7.98 Ã10

4.4 c 10
~ 2.6 x10

0

0.5—

~ 7.82 x10
3.17 x 10

J
TR -1.828 K

P =0375

C u (NH), Br4 2 H, O +.~

I
-4

I I ) I I I I I
-2 0 2 4

H /PS

e*-[3z(gp.s)'/zZv]' ~D,

where g is the Landd factor, z is the number of
equivalent neighbors, v is the unit-cell volume,
and fD is the crossover exponent equal to

FIG. 13. Scaled state equation of Cu(NH4)2Br4 2H&O

compared to the theoretical scaling function of the S
=-2bcc Heisenberg (solid curve) and Ising (dotted curve)
models.

y(Heisenberg) =1.38. In our samples e* is of the
order of 3& 10 ' for bromine compounds and
6x10 for CuK2C14 2H, O, and this crossover oc-
curs in the experimental range. The critical ex-
ponents should be intermediate between those of
the Heisenberg model and those of the isotropic
dipolar model. The latter were calculated by
Bruce and Aharony": they differ very little from
those of the Heisenberg model (Table VIII). It is
therefore not possible to explain the measured
values of the critical exponents by taking only di-
polar interactions into account.

Let us now consider the exchange anisotropy
which also is a relevant parameter. Theoretically
in the presence of a uniaxial exchange anisotropy,
if one neglects the dipolar interaction, the sys-
tem passes gradually from the Heisenberg model

~
&~ » &* to the Ising model'

~
c~ «e*, where

p~ is the exponent of the crossover due to the an-
isotropy, equal to 1.25.' g is a parameter pro-
portional to the anisotropy: g=4 x 10 ' and &*

(s,) I (b)

O

2
OI
0

O

2

0)
0

0 0-
I
3

I
-2

log io

0
I

-2
log )0

0

&4 ~rallel and perpendicular susceptibilities vs temperature in a double logarithmic scale. Amplitude of the
theoretical. parallel. susceptibility (solid curve) has been adjusted to fit the experimental data at E' = I.o . For E' & 0.4, the
measured susceptibilities fit the dotted curve deduced from the high-temperature expansion for the S =- —, bcc Heisenberg
model. (a) Bromine compounds. Theoretical. curve is calculated for g =-4x 10 ' . (b) K2CuC14 ~ 2H20. Theoretical curve
is calculated for g = 2x 10 ~ .



14 EXPERIMENTAL STUDY GF CRITICAL BEHAVIOR OF THREE-. .

=1.2~ 10 ~ for the bromine compounds; g=2 ~10 3

and a*= 6.6 x 10 ~ for CuK Cl» ~ 2H20.
This crossover is easily observable in the per-

pelldlculR1' susceptlllllity bellRV101' }tl (Fig. 14).
For c»e~, the system is isotropic and y =y,
Qn the other hand, for c «~*, the system behaves
like an Ising model and y~ does not vary with
the temperature. e* is roughly the reduced
temperature at which the plot of log„y~ vs
logyp6 has maximal curvature 2 x 10 ' for the
bromine compounds, 10 ' for CuK, Cl4 ~ 2H, G,
which agrees with the computed crossover tem-
peratures.

The perpendicular susceptibility maximum g~
(&=0) is theoretically proportional to g ~t» =g ".
We indeed note that }t, (g = 0) is greater for
CuK, Cl~. 2H, O than for the bromine compounds.
The ratio between the two maxima is consistent
with the ratio of the q values, when one takes into
account the incertainty in g, which is of the order
of 10/o.

In Fig. 14, we have also compared the parallel
susceptibility with the theoretical scaling function
of the Heisenberg model with a small uniaxial ex-
change anisotropy. ' Let T,(g) be the critical tem-
pel'R'till'e of the Rlllso'tl'oplc sys'te111 Rlld T (0) 'tilR't

of the isotropic system. We put

(12)

In the critical zone, the temperature dependence
of y„ is given by

respond to the experimental case. We have ad-
justed the A coefficient in such a way that the ex-
perimental curve coincides with the theoretical
one at &=10 '.

For the three salts the ratio of the experimental
A. with the theoretical A. given above is approxi-
mately 0.88. We attribute this lowering of the
amplitude to the influence of the next-nearest-
neighbor interactions, an effect which one can
see on the high-temperature series expansions
(Fig. 3).

The slope of the theoretical curve evolves very
slowly from the Heisenberg y to the Ising y (three
decades in e). The local slope near e= 10 ' is
equal to 1.305 for the two g values. It is very
close to the experimental value of the y exponent.
In fact, in the interval 10 '&&&10 ', we measure
an effective critical exponent intermediate between
the Heisenberg and Ising ones.

The Heisenberg behavior of the susceptibility is
hidden by the fact that the system behavior pro-
gressively becomes "classical" for &&10 '; it
goes out of the critical zone. So we observe a
kind of crossover between critical behavior and
molecular-field behavior. The reduced tempera-
ture of this "crossover" is given by the Qinzburg
criterion: the greater the interactions range, the
lower this reduced temperature; in our case, it
is of the order of 5 x 10 '. Thus, above g=3 & 10"',
the experimental data are much better fitted by the
high-temperature series expansion than by Eq. (13).

}t„T/C =At "X„(Bg/t»&). (13)

T,(g )/T, (0) = 1+ (Bg/1.29)' ~ »& . (15)

Equation (13) is only valid in the critical zone,
that is to say for &&10 '. The computation shows
that the theoretical curve is insensitive to the g
value: the curves computed for g = 4 x 10 ' and

g = 2 x 10 ' are not perceptibly different. This al-
lows us to make the theoretical computations with
the B value given above although it does not cor-

C is the Curie constant and y is the Heisenberg
exponent = 1.38. X, is a univer sal function whose
form is given by Eq. (7.11) and (7.15) of Ref. 5.
A. and B are nonuniversal constants depending upon
the spin and the lattice. For a bcc lattice with
only nearest-neighbor interactions, we have'

A=1.177 for S= ~

(14)

B=1.183 for 9= ~.

The B value for a spin 8 = —, is not exactly known
but in any case it is close to one.

The t variable is converted into the & variable
by means of the relation

C. Conclusion

In the immediate vicinity of T„since the system
exhibits an Ising-like behavior, the effect of the
dipolar interactions must be reconsidered. Sev-
eral authors" have shown that dipolar interactions
in a uniaxial Ising-like system strongly affect the
critical behavior and give the exponent values of
the Landau model. In the present work, we be-
lieve that we observe both previously discussed
crossovers: a first crossover due to the aniso-
tropy which lowers the symmetry of short-range
interactions and a second crossover due to the
dipolar interactions in the resulting Ising-like
system. The two-crossover hypothesis might ex-
plain the experimental values of the critical ex-
ponents which are all shifted towards the values
of the molecular-field model.

Lastly, because our experiments have been
done in the crossover region, the measured
exponents are effective exponents: hence it is not
surprising that they do not exactly satisfy the
scaling laws. For these nonideal ferromagnets
the scaling laws are only valid in the immediate
neighborhood of T,: g&10 ~.
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(Al)K = —~ J;~S; 'S, — K(, S(,S,,
&j tj

The sums Z;„.are extended to the nearest and
next-nearest neighbors i and j. Later on, the S
operators are taken as classical vectors. We
limit the study to the case of the uniaxial aniso-
tropy (Z, , K,, & 0). The planar anisotropy is
treated in the same manner, but

APPENDIX A' FIELD DEPENDENCE OF x~ AT T OK

We perform here a molecular-field treatment.
The results are exact at T =0 K and are approxi-
mate for T«T, . When there is no magnetic field,
the Hamiltonian is

g» p'zS

H„g, /g„+ D„
(A6)

(b) H, & H„g,/g„+ D, . We have sin 8 = 1, cos8 = 0,
and

E,' is a constant and D„ is the maximal intensity
of the demagnetizing field in the x direction:
D„=N„rg„p~S. We look for the 8 values which
minimize E'.

(a) H„&H„g,/g, + D„. The solution is given
by

H„sin8 =
H„g,/g„+ D„

The apparent perpendicular susceptibility is con-
stant:

+ Q K;, S;„S;„
X,„=0. (A7)

is substituted for

—g K,, S,.S,,
The z axis is an easy axis; the x axis is a hard
axis.

We neglect the dipolar interactions. We define
the "a,nisotropy field" H„by' (Appendix B):

ng, p H~= 2S Q K;, , (A2)

1. Magnetic fi'eld H„ is parallel to the x direction

The spins turn in the xz plane and a magnetiza-
tion parallel to the x axis appears:

where n is the number of spins and g, is the I and6
factor in the z direction.

The sample is an ellipsoid with axes x, y, and
z and respective demagnetizing factors N„, Ny p

and N, . At T = 0 K, all spins are parallel to the
z-direction axis. We apply an external magnetic
field to the system.

The curve of the apparent perpendicular suscep-
tibility versus H„has the form of a step whose
height and length permit us to calculate H„[Fig.
15(a)].

E' =E'+ ,'(H„g,/g„+ D—„)sin'8

—h sin8 —Mz Hz+ zN zMz (A8)

(a) H, &D,. M, adjusts itself so that the demag-
netizing field cancels the applied field in the sam-
ple:

M =H/N
(A9)

E'=E' — ' + —H ~+D sin'8 —hsin8.0 2N 2 Ag»
This equation only differs from Eq. (A5) by a con-
stant. Whence

2. Magnetic field H, is parallel to the z direction

We add a small field h, parallel to the x direc-
tion, to measure the perpendicular susceptibility.
We note that D, = N, ng, p, ~S. The method is identi-
cal to the one in the previous paragraph.

M„=ng„p, ~S sin8,

S,=S cos8.
(As)

8 is the angle of the spins with the z axis. The
energy of the system is

E= —Q J;;S; 'Sy —Q K;~s;, S;,

JCxa

(b

—M H+gN„M„

The last term represents the potential energy
due to the demagnetizing field.

Combining Eqs. (A3) and (A4) we get

(A4)

Hao~+ox
9x

Hx

I
I

/ I

/
Nx

I I
I I

A

H,

g=E0+—HA —+ D„sin 8-H„sin8.
pgg p $0 2 Ag

(AS)

FIG. 15. Theoretical variation of the apparent per-
pendicular susceptibility as a function of an applied field
H. (a) H is parallel to the direction along which the sus-
ceptibility is measured. (b) H is parallel to an easy axis.
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(AIO)

(I)) H, &D„ the Bloch walls no longer exist

M, = ng, p, BSeos8.

E' is expressed in the pax'ameter .8 and minimized.
%e obtain

1
Qg(T) = 1 —

2 So~ (0) Q»~So~,

Wg(k)'Yg (It' )
P (k T) 1 ~ ~ 1+ P(0)»~

(84)

n is the numbex' of spine. The other notations are
the same as those of Ref. 3.

The anisotropy field H~ is defined by

g, p,sH„= 2S PZ; y; (0).

Thus the curve I/y„vs H, gives us another
evaluation of Hg [Fig. 15(b)].

APPENDIX 8: INFLUENCE OF THE UNIAXIAL

ANISOTROPY ON THE PERPENMCULAR
SUSCEPTIBILITY FOR T&0.5 T,

This calculation used the results obtained in a,

previous paper, ' where we calculated the renor-
malized-spin-wave spectrum in the case of the
Heisenberg Hamiltonian with a small uniaxial an-
isotropy and with next-nearest-neighbor interac-
tions.

The Hamiltonian is

3C=Kj, + V,

We call ~p„. . . ,p„.. . ) the eigenvector of 3C,

which represents the sta, te where there exists po
spin waves of wave vector 0 and p~ spin waves of
wave vector k. po, . . . , p~ are positive or null in-
tegers. R, is diagonal in the basis composed by
all the ~p„. . . ,p„.. . ). In the statistical e(lui-
librium at temperature T, we have

(B6)

%hen one successively applies Holstein-Prima-
koff and Fourier transforms, one gets an expres-
sion of the perturbation V as a function of the et~

RIll 8& opex'atox'8 up to thill ox'der'

(2»S)' ~'
(so+ so) 4 S soso so+)

kk'

Xo = —Q Jq~S( ' S~ -Q Z)~ S),S~„
ij ti

V represents the potential due to the small field
h parallel to the x axis which one needs to mea-
sure the perpendicular susceptibility. h is suf-
ficiently small fox' V to be a perturbation with x'e-

spect to X.
We generalize the previous results' in the case

where K,~
40 for the couples i and j nearest and

next-neighbors and where

0&+ Eq~«Q J(~.

&Jh' A ~k'

(Bv)

We make the follow}ng assumptions: (i) We treat
the perturbation in the nondegenerate ease. These
a,ssumptions were already done in the renormaliza-
tion calculation. We see that V does not contain
diagonal terms and we must drive the calculation
up to the second order of the perturbation. (ii)
The three-operator terms axe small with x'espect
to the one-operator terms. %e only keep those
which contain a~~a~, that is to say the terms which
modify only one quantum number p and which con-
cern only one spin wave. These terms verify:

k+k'=k, or k+k'=k';

that is to say k=0 or k'=0. Hence V becomes
We write X in the form

o=Ho+ Z(ooutsoi (B2)

where a~~ and a~ are the creation and armihilation
operators of a spin wave vector k, (d~ is the re-
norma, lized energy of this spin wave, and Eo is
a constant.

o)o=a, (T)co+ a, (T)e~+2S QH, y, (0) P;(k, T);

(BS)

The calculation of the perpendicular suscepti-
bility is of the following: (1) we calculate the per-
turbed basis states up to the first ox'dex' ln V:
~p, po). (2) We calculate the mean value of Z, S,„
in the new basis states:

' o' Z&g. o' pl)
t
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(3) Lastly we calculate the statistical mean value
of Z;S,„denoted as (Z;S,.), summing on all states,
taking into account their probability. The magne-

tization along x axis is proportional to (Z,.S;„).
Let X= g„p, ~h(2Sn)'~-'/2. The perturbed eigen-

vector is written up to the first order in A. :

Ip' p', &= lp. , p,&+'II-2, , gp, „'- -lp. -l, p, & -'„-, lp. +l, p.&

(p.)" (p. + 1)"
(89)

Using Eqs. (88) and (89), we obtain Eq. (810).
1 /' 2~-, . T. u. r~~l~. &, ~ i (~-~ &)"-l~.'&, u.)l-=(&-, , Z~.

+(terms in Ipo+2 pa& a"" lpo 2~pa&) (810)

We have neglected I/2nS with respect to l. In
the end, the mean value of 2,. S,.„ in the lp,', p,'&
state is:

Noting that for T &0.5T„n, is very close to n.„"'
and we obta, in, using Eq. (85):

'3

(p!,p'al ZS:.Ipl p9=-=~I-
2

—..S Zpa (2s")'"
~, = 2SI»H(T) —o.,(T)j Q &,. y,. (0)

t

g, p,s H„[2-m(T) —n, (T)]. (815)

(811)

Probability of finding. the system in the lp„, p,&.

'Thi. s is proportional to

1
exp —

], ~ j ~~~~I

At low temperature„ the most probable states are
those with small p, such that (I/2nS) h, p,« l.

So we can write

From Eqs. (813) and (815) we deduce the per-
pendicular susceptibility

At T=o K, w~ =- l and n, =1, and we find again Eq.
(6), which had previously been deduced from the
molecular field theory.

The n~/(2n~ —o. , ) factor gives the temperature
dependence of y„. This is plotted in Fig. 16 in re-
duced scale. As for all spin-wave calculations,
this one is only va.lid if there are few spin waves,
1:hat is to say for T &0.5T,.

~"5 S. '.

=-=(-s ) 1 ——F, ».)h)p nS

= -=—(2Sn)"'-~n(T).
(dp

The magnetization parallel to the x axis is

{812)

~~~~ =A"~&g i ~ Sg~j (dp

Following Eqs. (82) a.nd (84), we have

~„=-2SQ F, 1,(0)P,.(0,T). 0
I

0.8

= 2S P &; r;(0)(2~»(T) —o';(T)l. (814)

I"lG. 16. Theoretical temperature dependence of th&

perpendicular susceptibility for T& 0.67~ on a reduced
scale.
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