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A general relationship is derived between the concentration derivative of any ensemble-averaged quantity and
the correlation function of that quantity with fluctuations in the concentration. This relationship is then used
to obtain general formulas for the concentration derivatives of the magnetization M(~), and of the 'VArren

short-range order parameters, a(R), for the case of binary substitutional alloys. The use of these formulas in

the analysis of diffuse elastic neutron-scattering data and in the analysis of the effects of short-range order is

discussed briefly.

I. INTRODUCTION

Marshall' has derived, subject to certain re-
strictions, a relationship between the concentra-
tion derivative of the average magnetic moment in
a ferromagnetic binary substitutional alloy and the
magnetic elastic diffuse scattering cross section
for neutrons in the forward direction. It is shown
here that the Marshall relationship is simply a
particular case of a general relationship valid
without restriction. Although the explicit deriva-
tion given here is restricted for simplicity of ex-
position to the case of binary alloys, the resulting
general relationship is given in a form which is
correct for multicomponent alloys as well. The
derivation of this relationship is given in Sec. II.
Its use is illustrated in Secs. IjI and IV by con-
sidering explicitly the resultant formulas for the
concentration dependence of the magnetization and
of the %'arren short-range order parameters for
binax"y substitutional alloys.

In general, any intensive quantity y, which
characterizes an alloy depends not only on the
chemical composition of the alloy, but also on
thermodynamic variables and on the various n-
site correlation functions for the alloy. Thus, in
order to derive or even to define any general re-
lationship involving a concentration derivative
dy/dc (or dy/dc, for a multicomponent alloy), it
is first necessary to define precisely the meaning
of that concentration derivative. One defines dy/
dc operationally as the limiting value of Gy/5c
for 6c-O, as determined by measuring y under
identical thermodynamic conditions for a series
of samples of known chemical compositions pre-

pared under identical heat and mechanical treat-
ments. In order to formulate this definition
mathematically, it is convenient to consider an
ensemble of samples, each prepared in an identi-
cal manner from the same melt of fixed chemical
composition c, and each having N atoms. Due to
statistical fluctuations, each member of the en-
semble will be characterized by a ..lightly dif-
ferent concentration c, and slightly different
values for each of the n-site correlation func-
tions. The concentration derivative dy/dc can
then be defined in terms of the fluctuations

~y =-y - y -=y - (y&

and 5c, where the angular brackets (. ~ ) denote
an ensemble average.

To do so, it is necessary to introduce some set
of intensive variables ( (,), which satisfy the con-
dltlony

for all i and which, with c, forxn a complete set
for the characterization of each sample. Such a
set can be constructed from the set of all n-site
correlation functions. In terms of these variables
and to lowest order in N ', the expansion

5y = —„6c+ . BE.9$ Bp

&P . 9(,.

defines the fluctuation 6y. It is convenient to
choose the variables (,- to be orthogonal to c:

(n(,. ac) =0 .

This, together with condition (2) and the definition
of our ensemble, ensures that the variables (,. do
not change with c from sample to sample in the
experimental determination of dy/dc. Thus, the
experimentally measured dy/dc is defined math-
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ematically by setting the fluctuations 5(,. equal to
zero in Eq. (3) and dividing by 5c. One finds the
result

dy Sy(c, E j,.])
6c = 6K;=0

(5)

(y6c}=—((5c)'} .
dc

(6)

Now, the desired relationship between dy/dc and

(y5c) follows immediately. Substituting Eq. (3)
into Eq. (1), multiplying both sides by 5c, taking
an ensemble average, and using Eq. (5) and the
orthogonality condition (4), one finds the result

and the corresponding ensemble averages a(n)
and S( w). Here, for an alloy A, +„

I
1 if an atom of type B is on site n,

PM (13)
~ 0 otherwise

is a site-occupation number. For the random
alloy one finds the simple results o(n ) =5;s and

S(z)=1. In the presence of only short-range
order, the o(n) are the usual Warren short-range
order parameters and yield an additional diffuse
contribution to S( ~). Long-range order introduces
superlattice Bragg peaks in S(v). From Eqs. (11)
and (12) and the equation

For the case of a multicomponent alloy Eq. (6) as-
sumes the very similar form

(y6c;)= d ((5c;) ) .
dc

4

Jh5c=X ' P; —c,

one finds the result

((5c)'}=N 'c(1 —c)S(0),

(14)

(15)
Here, due to the nonorthogonality of the partial
concentrations c, , dy/dc, is not equal to»/Sc, .

but instead is given by the equation

dy Sy (6c,.6c,.) Sy

dc; Sc;, , ((6c,.)'} Sc,. '

where sy/sc, is defined as is dy/dc for a binary
alloy:

(8)

Thus, for an n-component alloy, Eq. (8) assumes
the form

n-I
(y5c, }= Q y (6c,6c,} .

j=1 j

~ (P;,- —c)(P- —c)
Nc(1 —c)

By explicitly calculating the mean-square fluc-
tuation ((6c)'} and the quantities (5c,.6c,.}, one
can reduce Eqs. (6) and (10) to forms more
meaningful to the experimentalist. For this
purpose we consider only ensembles of single-
crystal samples. Polycrystalline and powder
specimens as well as single-crystal specimens
are well represented as ensemble averages over
such samples. Nonsubstitutional alloys can be
treated simply by considering vacancies as an ad-
ditional chemical species.

First, consider the case of binary substitutional
alloys. For that case, it is convenient to introduce
the chemical order parameters

and hence the form

(y6c}=N 'c(1 —c)S(0) —y
dc (16)

and their Fourier transforms S,,(v), in terms of
the partial concentrations c; and the corresponding
site-occupation numbers

(
1 if an atom of type i is on site n,

(18)
I 0 otherwise .

One finds the result

(Dc,6c, }=N 'c;[c,+ 6;,(I —2c, )]S,,(0), (Ig)

and hence the forms

dy» ~ c, S,,(0) Sy

dc,. Sc, ~~,. (1-c,)S;,.(0) Sc,
(20)

for Eq. (6). It should be noted that as defined
here S(~) approaches its limiting value S(0) con-
tinuously and gradually as K-O.' Both the diffuse
and the Bragg contributions to S(v) can be mea-
sured by the elastic scattering of neutrons or x
rays.

For the ease of crystalline multicomponent al-
loys of any type, one can introduce the generalized
order parameters

(
~

) ~(g)(P, - —c,}(P- —c,)
Nc, [c,.+ 6, , (1 —2c,.)]

their Fourier transform

S(~) =Q n(n}e'" (12}

(y6c, }=N 'c, Q [c,+5,,(1 —2c,)] S,,(0)

(21)

for Eqs. (8) and (10), respectively. Note that for
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'the random alloy, S;~(0) ls equal to 26;g —1 and
that in all cases, S,,(0) has the sign of 26, , —l.

There is one very useful generalization of our
fundamental equations (6), (10), (16), and (21).
As is done in Eqs. (1), (11), (14), and (17) for
By, Bc, n(n), and n, , (n), it is often convenient
to define a quantity y as an explicit function of c
or of the c,-'s as well as of c ox of the c,'s. In
that case one must equate dy/dc to (By/Bc+ By/
Be) rather than just to (Bg/Bc&. This leads to the
replacement of the derivative dy/dc by the quan-
tity dy/dc —(By/Bc) in Eqs. (6) and (16), yielding
the results

(yBc&= —— — ((Bc)')dy / Bj'

dc ec (22)

(yBc&=A) 'c(1 —c}S(0) ——9$
dc 8c

(23)

~x ~X'
(yBc,& =+ — (Bc,6c;& (24)

for binary alloys. Similarly, for multicomponent
alloys one must equate By/Bc,. to (By/Bc,.+ By/Bc,. )
rather than just to (By/Bc,.&. This leads to the
replacement of the partial derivative By/Bc; by
the quantity By/Bc, —(By/Bc;) in Eqs. (10) and (21),
yielding the results

+X 'c(1 —c)S(0) —+ n(n)
1 2c

dc c(1 —c)

Ldc Bc Bn(n } Bn(5)

or, for the case of long-range order, the anal-
ogous equation with n (n) and n( n ) replaced by
S(Tc,) and S()&;), respectively, with Tc; a super-
lattice reciprocal vector. Such equations are of
less interest than Eqs. (22)-(25) because such
higher-order correlation functions as (yBn(n)& or
(y68(Z,.)& cannot be measured directly, whereas
(yBc& can be measured directly in many cases,
such as those discussed in Sec. III.

III. CONCENTRATION DERIVATIVES

OF THE MAGNETIZATION

It is useful in studying magnetic alloys to
establish relations between magnetization mea-
surements and neutron-scattering measurements.
The basic quantities to be related are the ensemble
average p. of the sample average magnetic mo-
ments

(yBc,&=f)t 'c,.g .[c„.+6,, (1 —2c,.)]

xs, ,(0)(,"",)) . (25)

(Bk;6&, &= 6;;((Bk;)'& (26)

for all i and j, as well as the condition (4), then
by a derivation exactly analogous to that of Eq.
(22), one finds the result

&&&()= z(
— —,( )&&( )'), (27)

where dy/&f(, = By/8$, is define. d in exact analogy
with dy/dc, and where $, is any quantity which
satisfies Eqs. (4} and (26). The choice $,. =c re-
duces Eq. (27} to form (22); the choice of j, as
an orthogonalized order parameter yields the re-
sult

Equations (22)-(25) constitute the primary re-
sults of this paper expressed in a general form.
However, there remains one more general result
to be given. If one chooses the variables g,. to
satisfy the orthogonality conditions

p, =N p~ (29)
n

and, for binary substitutional alloys, the ensemble
average of the quantity

3tl(x) = [f)tc(1 —c)] 2 p-f-(~)(P .~
c)c'"' . —

d p, K(0)
dc S(0)

(32)

follows immediately from Eq. (16). Equation (32)
is just the Marshall relation, but is derived here

Here, j.„- is the z component of the total moment
associated with the site n, and f(((Tc) is the form
factor associated with that moment. The quantity
K()&) is directly measured by the magnetic dif-
fuse elastic scattering of polarized neutrons3 and
also can be determined approximately from an
analysis of the scattering cross section for un-
polarized neutrons. ' Noting that Eq. (30) yields
the result

%(0)= N( i(,6c& /[ c(l —c)], (31)

and that f-(0)= 1 by the definition of the form
factor, one finds that the relation
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without assuming chemical randomness, ferro-
magnetic ordering, or the linearity of the de-
pendence of any moment p.-„on its local environ-
ment.

In common practice, the quantities SII(T() and

S(T() are measured only down to some minimum
value of ((, z,„20.1 A, and the values 311(0} and

S(0) are determined by extrapolation. Relation-
ship (32) allows one to check the validity of one' s
data analysis, in particular, the validity of the
theoretical or phenomenological curves used for
the extrapolations to v=0. In at least one case,
that of concentrated Ni-Cr and Ni-V alloys, ' Eq.
(32) establishes the existence of important long-
range effects not seen by neutron scattering. Such
effects could arise from band saturation, which
can lead to long-range charge transfer.

Useful relations also exist between the higher-
order concentration derivatives (f"i),/dc" and the
quantities

for higher n .For the case of random alloys, S(0)
is equal to one, the coefficient of dp/dc in Eq.
(38) vanishes, the quantities 21 „are proportional
to [c(1 —c)]" ', and one can prove, by induction,
the result

cf
K„(0)= [c(1—c)]" (38)

C')2( )( 2 n-22 ~ ~ ~ 2 n(2-2) 2

As will be discussed elsewhere, the quantities
C„(T&;n„.. . , n„,) are useful parameters in the
analysis of neutron-scattering data. In particular,
the quantitiy K( v), which is directly proportional
to the cross section for the magnetic diffuse
elastic scattering of unpolarized neutrons is given
exactly by the infinite series

Il]yy y ~ ~Ktf

for ~=0. Here,

@n(&2n22 ~ ~ ~ 2 nn-2)
(40)

where 4„(Tc;n, . . . , n„,) is the value assumed by
the quantity

&3tI(&)= Q [ t(mfa(&) —(((If (T()) le'"'' (35)

of fluctuations in the magnetization with the quan-
tity q„(T(:;n„. . . , n;, ), which reduces to an
ordinary n-site chemical order parameter for
K=O, is equal to zero if n;=n„. for any i4j, and

is given by the equation

q„(Tc;n„.. . , n„,)

= [A(c(1 —c)]

x Q (pa .- —c) ~ ~ ~ (pr, .- —c)(p- —c) e'"'

(36)

otherwise. Choosing y to be given by the quantity

—= [lac(I —c)S(0)] 'Q (pg —c)p-
5, m

in Eq. (23), so that y is equal to d((L/dc, one finds
the result

(3V)

4„(T);n, . . . , n„,}=(f}„(»;n„. . . , n„,)69R(- T(. ))

(34)

is a correlation function of the Fourier transform

[c(1—c)]' "212„(Tc;n„.. . , n„,},
in the limit of a perfectly random alloy.

IV. SUM RULES FOR CHEMICAL ORDER PARAMETERS

For the case of binary substitutional alloys,
the general relationship (23) with y set equal to
()((n) immediately yields a useful sum rule for
the parameters

q( n, m) = (q, (0; n, m))

Direct evaluation of the correlation function
(n(n)5c) yields the result

( ( )2 ) =N '((1 —2 )(2(( —2-„2) (2) ~ 2;;2(O)]

+Q q(n, m)
m

Substituting this result into Eq. (25), one finds the
sum rule,

E 2(, ) = (( - 2;.-) ((( -2 )i 2(2) - 2)

3g (0) =S(0) —(1 —2c)[S(0)—1] + c(1 —c) dS(0)

+ c(1 —c)S(0}'
4c (38)

Similar but more complicated relations are found

+ c(1-c)S(0)—n(n) .
4c

(43)

For the case of chemical ordering or clustering
induced by pairwise forces and for only weak
short-range order, the sum rule assumes the
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simple form

g q( n, m) = 2(1 —2c) (1 —hzo)[ S(0) —1]o. (n ) (44)

in the usual approximation that n(n) is propor-
tional to c(1 —c) for n 0 0.

Using the methods of Sec. III, one can obtain
corresponding sum rules for all of the n-site
chemical order parameters in terms of higher-
order concentration derivatives of the order pa-
rameters o(n). Also, similar sum rules can be
obtained for the case of multicomponent alloys„
using Eqs. (1V)-(20) and (25). The n-site order
parameters cannot be directly measured for n)3, yet a knowledge of the n-site order param-
eters is necessary for the analysis of unpolarized
neutron-scattering data for some alloys and is
necessary for many alloy calculations. Thus,
sum rules such as Eqs. (43) and (44) serve as use-
ful adjuncts to approximate calculations of the n-
site order parameters.

V. SUMMARY

A general thermodynamic relation, valid for all
alloy systems, has been derived. This relation
connects the derivatives of any intensive quantity
with respect to chemical composition and long-
and short-range order to the appropriate correla-
tions between that quantity and fluctuations in
chemical composition or long- or short-range
order. That relation has been used to derive spe-
cific equations which relate the concentration de-
rivatives of the bulk magnetization of a binary alloy
to correlation functions measured by magnetic
diffuse neutron scattering. The simplest of those
relations has been previously derived, but only
under special restrictive conditions. Sum rules
relating the three-site chemical order parameters
to concentration derivatives of the measurable
two-site order parameters have also been de-
rived. Finally, it has been made clear how other
such relations can be obtained.
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