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It is shown that the shape of the large, random clusters, near the critical percolation concentration cp is such
that their mean boundary ( b) is proportional to their mean bulk ( n) and this is illustrated by an

argument which shows that the dimension of the boundary is the same as that of the bulk. The resulting ratio

(b)/(n) is simply related to the critical concentration co. The detailed results of a Monte Carlo
calculation, previously reported, are given for c g co on a simple square lattice; they yield an empirical
formula for the probability distribution 5'(n, b), for finding a cluster of size n and boundary b, that is

proportional to a Gaussian in b/n, which is independent of concentration and which narrows to a 5 function
at b/n = ao, n l oo. The asymptotic behavior of the Gaussian form gives the critical exponents p = 0.19 + 0.16,
and y = 2.34+0.3,ando, gives the critical concentration cp = 0.587+0.14, in agreement with previous
determinations.

I. INTRODUCTION

In a recent Letter, ' we reported a new limiting
behavior in the shape of the large fluctuations
near percolation threshold, which gives rise to
the critical behavior.

We report here the details of the Monte Carlo
calculations, the primary results of which were
given in Ref. 1. Essentially, we find a Gaussian
form for the probability distribution 6'(n, b), for
large n, of finding a single non-null fluctuation
extending over n sites, and bounded by b sites.
This Gaussian form sharpens to a 5 function about
a characteristic ratio n, = (b/n), as n approaches
infinity, in a way which allows one to calculate the
critical concentration c,=(1+oo) ', and the criti-
cal exponents. The probability P(n, b), of course,
contains not only information on the critical point
and the critical exponents in its moments, but also
much information on the other, nonuniversal, fea-
tures of the system near the critical point, which
are not usually calculated by other techniques.

For simplicity, we study here the site-perco-
lation problem on a simple, square lattice where
each site is randomly occupied (or not) with a
probability c [or (1 -c)], which is independent of
the occupation of other sites. The common char-
acteristic of these so-called "percolation prob-
lems" in nature are the direct relations between
the physical quantities and various moments of
the cluster size distribution, a relation which
gives rise to singular behavior of these quantities
about the percolation threshold. A very nice dis-
cussion of a percolation problem and its critical
behavior has been given by Dunn et a$. , in terms
of a dilute Ising model at low temperatures kBT
«J. The dilute Ising Hamiltonian X, in a magnetic
field H, is

R=-Z g q;q,. (o&o, —1) mH g(g, -—1), (1)
(5y j) 5

where q; is 1 (or 0) depending upon whether the
site is occupied (or vacant) by a. magnetic atom,
where J is the nearest-neighbor ferromagnetic
exchange, and (i,j}is the set of all pairs of near-
est-neighbor sites on the lattice, where o,. (= ~1)
is the spin variable on site i, and where m is the
magnetic moment. In the limit of low tempera-
tures kBT «j every spin in a given magnetic clus-
ter will almost certainly be parallel although the
spins in separated clusters (with no nearest-neigh-
bor connections) may not be aligned with each
other. We shall only be considering concentrations
c &co below percolation threshold where there is
no infinite cluster. In this limit it may be shown'
that the free energy per site is given by

2rrtHÃf(c, T,H) = ksT —ln -1+exp-
n B

where ( ~ ) is the average over all configurations
and sizes n of non- null clusters. From this ex-
pression, it follows' that

where a, is the coefficient of x' in the expansion of
in[1+ —,'(e '" -1)], so that, in particular, the mag-
netic susceptibility exponent y will be determined
from the first moment

y~{n& ~, ~c-c.
~

&,

and other critical exponents will be determined
by studying the exponents of the singular part of
other moments (n').
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The quantities of direct physical importance are
thus the moments (n') as a function of concentra-
tion c. These moments are simply integrals over
the size probability distribution (P (n), '

&n') =g n'6 (n).
n=l

%e shall, in this paper, be concerned primarily
with the analytic form of the probability distribu-
tion functions. Following the general arguments of
de Gennes et a/. ,

' we can write an exact, general
expression for 6'(n) on any network:

(P (n) =—Q 5' (n, b ) =Q M (n, b ) c" ' (1 —c)'

for c &c„where 6'(n, b) is the probability that a
given non-null cluster will have n occupied, con-
nected sites, isolated from the rest of the network
by b vacant, bounding sites. For example, in Fig.
1 there is shown a cluster of n =193 connected
sites, bounded by 169 vacant sites. Note, in par-
ticular, that there are internal, as well as exter-
nal, boundaries. Clearly 6'(n, b) is proportional
to c" ', since (n —1) sites (beyond the one assumed)
must be occupied, and proportional to (1 —c)',
since the b bounding sites must be vacant. The
coefficient M(n, b) of this proportionality is just
the number of distinct clusters (beginning with one
specified site) containing n sites and bounded by
5 sites which can be drawn on the network. The
coefficient M(n, b) contains all the information on

the lattice structure; an exact calculation of M
would represent an exact solution of the percolation
problem. In particular, the form of M(n, b) de-
termines the critical concentrations, and the cri-
tical exponents.

Nevertheless, some limited information can be
obtained from Eq. (6) which must apply to all lat-
tices, ' For example, since the probability dis-
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FIG. 1. Random. ly generated cluster of 193 occupied,

connected sites (e), surrounded by 169 vacant, boundary
sites (0).

tribution must be normalized, we can write the
identity

1=+(P(n) =Q QM(n, b)c"-'(1-c)'
n=1 n=l 5

for c &c„which we can multiply by c and differ-
entiate with respect to c to obtain

1 = P g M(n, b) [nc"-'(1-c)' -bc" (1-c)'-']
n=l 5

or

1=(n& -[c/(1-c)] (b&.

Thus we find the general relation

c = (n —1&/(n+ b —1& . (10)

co = (1+&0) (lib)

This result that (b) -o.,(n& is indicative of the
fact that the boundaries of the large clusters are
of the same dimension as that of the bulk or vol-
ume of the clusters. For example, large two-
dimensional (three-dimensional) clusters have
edges (surfaces) which are proportional to their
area (volume), which indicates that the edges (sur-
faces) are also two dimensional (three dimensional)
in some sense. To understand more fully this re-
sult, consider the two-dimensional fluctuations on
a square lattice. First, we associate a randomly
chosen number between 0 and / with each site in
the square lattice. Then, we plot these numbers on
a perpendicular line below each lattice point, as
shown in Fig. 2. These random points are then
connected by lines between neighbors as shown.
The result is the irregular surface of Fig. 2. Now,
we imagine that all of the valleys of this surface
are filled with, say, water to a level cl (where c
is the concentration), as measured downward from

This relation simply says that the ratio of the
average number of occupied sites (minus the one
site assumed occupied) in a cluster to the average
number of associated (occupied plus bounding)
sites of a cluster is just the concentration of oc-
cupied sites. Near the critical concentration,
(n) diverges with critical exponent y; thus, from
Eq. (10) we can see that(b& also must diverge
with this same exponent y, or that (b) becomes
proportional to (n). It should be noted that Stauffsr and
Domb' have previously suggested that b should be pro-
portional to n near c,. Near the critical concentration
c„we find (as was previously shown in Ref. 1)
specifically that

(b&.,=~,(n&.„
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lar proof exists in any dimension that the fractal
dimension of the boundary of these random clus-
ters is equal to the dimension of the lattice.

Finally, in order to motivate the data analysis
of Sec. II, let us consider briefly the case
of the Cayley tree, which was solved exactly by
Fisher and Essam. ' Inthiscaseall clusters of
n sites are topologically equivalent with a boundary
of 5 =a,n+2 lattice sites, where a, =z —2. Thus
M(n, b) is of the form

M(n, b) =5, ,~2m(n), (12)

so that the probability function 6'(n) becomes, from
Eqs. (6) and (12),

c(P(n) =m(n)A(c)"(1-c)',

FIG. 2. Random numbers between 0 and l are plotted
vertically below the square lattice lattice constant a).
The resulting, neighboring points are connected to form
an irregular surface.

the origin. The boundary of the clusters is then
measured by the intersection of this irregular
surface with the water level. The dimension of
the boundary is one less than that of the irregular
surface'; thus, we must see how this irregular
surface can be considered three dimensional.

With only a trivial generalization of Mandelbrot's
analysis' of the dimension of the irregular west
coast of Britain, we can define the Hausdorff-
Besicovitch' or "fractal"' dimension of the surface
as follows. Imagine that the approximate area A
of a large section of this irregular surface were
measured by marching a distortable, three-pronged
caliper of constant area g' across this surface.
The fractal dimension d of the surface is then de-
fined in general by

A =Kg

where K is a constant. This definition of d is use-
ful if d is independent of g, which turns out to be
the case here, when the lattice spacing a is small
compared to g and when the typical peak height is
large compared to g, that is, when t»g»a. In
this limit, the normal to the plane defined by the
three points of the calipers makes an angle 8 to
the vertical l axis, where 8 is of order g/l. Thus,
we find that, to order l/g, A is given by

where A(c) =c(1 —c) 0. Equation (7) then can be
written

c= cn = mgAc" 1 —c~, (14)
n=1 n=l

so that we obtain, by dividing by (1 —c)' and takmg
l derivatives of each side

d'&
m(l) = —,

lf dA A oorc p
(15)

where f=c(1 —c)2. But, since A(c) =c(1 —c) tt we
obtain the closed form

m(n) = (n+b -2)!(b+2n -2)
8 0 ~

where b =n, a+2. For large n, we can use Stir-
ling's approximation to find the asymptotic form
of m(n):

1+co" „„[2tt(1-c,)]"n" c, 1 -c,
(17)

where c2=(1+n2) '. Thus, for large n,

Z A(c) tl (1 )2
(P( (18)

where K is a constant depending upon co The
positive l moments (n') in Eq. (5) thereby all
diverge at c =c„where A(c) reaches its maximum
value of 1, with critical exponents which are easi-
ly shown to be 2L —1,

A =A» l/g, (nt ) (c —c) 2I (19a)

where A„, a constant, is the projection of the area
A onto the plane of the lattice. And, since l is in-
dependent of g, we find, from Eq. (12), that the
fractal dimension of the surface is three, and
finally then that the corresponding dimension of
the boundary of the clusters must be two. A simi-

This result is in agreement with the previous re-
sult of Harris. ' Thus, for example, y =1, and
since""

( t ) ( )S -t(8+y) (19b)

we find P = 1, also. From the general scaling re-
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lations for ordinary phase transitions" and the
established connection with the percolation tran-
sition, ' we can assume

n+2P+y =2,

so that n = —1. The gap exponent

turns out to be 6 = 2.
In real lattices, of course, M(n, b) is no longer

diagonal; that is, for each g there is a distribu-
tion of allowed values of b. This distribution is
discussed in Sec. II.

IL MONTE eARLO CALCULATIONS

Previous Monte Carlo calculations" "have been
performed to measure critical behavior but Dean
and Bird, "in particular, measured directly the
mean cluster size (n) and the mean-square clus-
ter size (n ) versus concentration for atoms ran-
domly placed in finite sections (typically 62 500
lattice sites) of several two- and three-dimensional
lattices. From Dean and Bird's calculations it
is possible to extract values for the critical in-
dices of (n) and (n')."'" The approach of the
work reported here is different in that we mea-
sured the probability disbributions (P(n) and 5'(n, h)
directly and that we avoided systematic errors
associated with finite lattice sections by generating
and measuring one isolated cluster at a time; in
this sense our Monte Carlo calculation is like that
of Frisch et al. '

The computer program used a pseudo-random
number generating subroutine (called FLTaN in
the IBM system at Oak Ridge National Laboratory)
to randomly decide whether each site was occupied
or vacant. The site at the origin (see Fig. 3) was
always considered occupied. The program then
went outward, one shell of sites at a time as in-
dicated in Fig. 3, deciding randomly whether the
sites were vacant or occupied until the cluster of
sites connected via nearest-neighbor occupations
became isolated (i.e. , until an entire shell of va-
cant or disconnected sites could be drawn around
the cluster). Then the program counted the number
of sites in the cluster, the number of boundary
sites (including internal boundaries), and the rms
size (radius of gyration) of the cluster. These
data were obtained for 101086 clusters at c = 0.50
and for 24310 clusters at c =0.55. The execution
time was between 1 and 1~ h in each of the two
cases. The results are as follows.

The normalized size probability distribution
functions'(n) obtained is shown versus n in Fig. 4,
for the toro concentrations c = 0.50 and c = 0.55. As
the critical concentration (at c,=0.59) is ap-
proached, the large-n tail of the size probability dis-

FIG. 3. Randomly generated cluster of occupied sites
(e), connected by neighbor bonds (heavy lines). The
cluster is generated shell by shell (light diagonal dia-
monds) until the cluster randomly terminates. The un-
connected, occupied sites (y) belong to other clusters
and are ignored in this calculation.

0.005 I l l I t & j

0.004— o 24, BIO CLUSTERS AT c =0.55

+ IOI, 086 CLUSTERS AT c= 0.50

P(n j

0.002—

I

Q.QOI—

200 400 600 800 IQQO

FIG. 4. Probability 6'(n) of randomly generating a
non-null cluster of size n vs n as determined from the
Monte Carlo calculation (data points). The statistical
errors are shown as vertical bars.

tribution grows so that the positive moments of the
distribution diverge at c =c,. The vertical bars
on a few selected points represent the statistical
error in the histogram bins of width 10.
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The mean number of boundary sites ( b(n)) was
indeed found to be proportional to n for large n
as shown in Fig. 5. That is,

50 I I

l

I I I I
l

1

l
I

(b(n)) =a(c)n, (21)
20—

where the proportionality constant a(c) decrea. ses
with increasing concentration, and tends toward
the critical value u, = (1-c,)/c, as the concentra-
tion c approaches the critical concentration co.

The radius of gyration of the clusters (R'(n)) '~',
which is a measure of their linear extent, does
not seem to be simply proportional to the square
root of the area or n' for the two-dimensional
clusters as might have been expected. Rather we
find the power-law behavior

l0:

lo

SLOPE

~ c =0.50
o C =055

I i I I I I I I i I I I I j I I I

20 50 l00 200 500 l000
n

(It 2(n) ) 1/2 ~ P ic) (22)

where the power p(c) is a decreasing function of
concentration, as can be seen in the data of Fig. 6;
also p(c) seems to be heading toward 0.5 at c =c „
which would be true if the large clusters were
two-dimensional in their extent.

In order to study in detail the behavior of large
clusters, it would be most useful to find the form
of the c oefficie ntM( nb) in Eq. (6). Our first
thought was to simply find 6'(n, b), then divide by
c" '(1 —c)~ to directly obtain M(n, b) This ap.-
proach turns out to be not so practical, since
c" '(1 —c)~ is such a tiny number for typical clus-
ters of size 500 and for c=0.5. Thus, we try to
guess that part of the form of M(n, b) which grows
so large and counteracts the smallness of c" '(1
-c)'. The best guess we found was motivated by
the Cayley-tree solution above. This guess leads
to the following definition:

FIG. 6. Root-mean-square size (R (n)) of the clusters
vs n from the Monte Carlo calculation (data points) and
the log-log straight line fit to the data.

1 ff-1 1 NN

M(n, b)—:m (n, n) Kn-x
c 1-c„

(2 3)

(24)

where n=b/n, c =(I+o) ', K, and y are constant
parameters to be determined from the data, and
where m(n, b) is, for each n, a normalized func-
tion of b, to be determined. Whether this defi-
nition is useful can only be determined at this
stage from the Monte Carlo data. With this defini-
tion, the probability distribution becomes

(P(n, b) =m(n, n)Kn "(c/c„)" '[(I —c)/(1 —c~)] ".

800

700

T I t T

In order to verify form (6} for the concen-
tration dependence of 6'(n, b}, and to find
K and It in Eq. (24), we then proceeded to
weigh each (n, b} cluster generated by the factor
((c/c„)" '[(I -c)/(1 —c }] "j 'and to integrate the
resulting histogram over 5 to obtain

600,—

500 l-

400-c

300—

200

~ c = 0.50
0 c =0.55

loo

100 200 300 400 500 600 7'00 800 900 1000

FIG. 5. Mean boundary (b(n)) of the clusters vs n

from the Monte Carlo calculation (data points) and the
straight-line fit to the data.

I(n) =g Kn "m (n, 5/n) =Kn
bin

(25)

since m(n, b/n) is, by definition, normalized. The
resulting integral obtained is shown in Fig. 7, where
I (n) is plotted versus n for the data at concentra-
tions 0.50 and 0.55. The two curves coincide out
to about n = 300 where the number of points per bin
in the c =0.50 calculation fall to a mere handful
and statistical significance is poor. This coin-
cidence verifies the general form (6) of the con-
centration dependence. In addition, a least-squares
fit of the curve to the form Kn x, for n in the range
75&n&905, gives X =0.97~0.007 and K =0.257~0.01
as previously reported. This fit is best shown in
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FIG. 7. Weighted probability I(n) =5~& 6'(n, &)

x[(c /c)[ii —c„)/(1—c)]~)" =ICn & ve n, from the Monte
Carlo calculation (data points).

0
FIG. 8. Log-l. og plot of the data in Fig. 7 including the

straight-line fit to the data.

forms for ~ =105 and ~ =205 is illustrated in Fig.
9 where the smooth curves are the Gaussian fits.
But are the curves Gaussian? The most convinc-
ing way to plot the data we have found is given in

the straight line, log-log plot in Fig. 8 of the
c =0.55 data. The quoted errors are statistical.

Next we explicitly found Kn " ' m(n, b/n), by
weighing each cluster in 6'(n, b) with the factor
sf(c/c~) [ (1 c)/(1 c~)] / to obtanl directly
results typified by those shown in the histograms
of Fig. 9, as previously reported, ' for n = 105 and
g =205. The histogram binwidths are 5n = 10 and
b, (b/n) = 0.01, and the statistical error bars are
as shown at a few selected points.

It is noted that the error bars of Fig. 9 get very
large for small b/n (at c =0.50) since the a priori
probability of generating these clusters is very
small (i.e. , the factor (c/c„)" '[(1—c)/(1 —c„)]""
is very small), this effect, which could lead to
systematic errors if the data were not properly
treated, disappears as the critical concentration
is approached. For example, there were no clus-
ters (of the 101086 generated) found at c =0.50 with
200 «n «210 and with b/n «0.76; although the curve
was filled out with the g = 0.55 data.

The shape of the resulting histogram is very
suggestive of a Gaussian form for m(n, b/n) vs
b/n The least-squ. ares fit of the data to Gaussian

e n=lo5
o n =205

a.o2—

C

E

I

Q.ol—

LIM]T
0.7

b/n

FIG. 9. Form of m(n, b jn) vs b/n from the Monte
Carlo calculation (data points) at c =0.50 for histogram
bins centered at n = 105, and n =205, the vertical line at
0/n =0.704 represents the limiting 5 function, extra-
polated from the data as n-, and the Gaussian fit to
the data (smooth curves).
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e(n) =II/tt', (26)

where a. least-squares fit yields' that B = 0.250
~0.096 and (II) =0.40+0.04. The downward shift
of the Gaussian with increasing n is such that
a limit is approached as n-~. This limit can be
obtained by finding the value of the limit n, = (b/n),
such that It (n) —o, has the least-squares devi-
ations from a straight-line logarithmic plot. This
fit, shown ht Fig. 11(b), indicates that It(n) is of
the form

Fig. 10 for z = 105, where an arithmetic probability
plot of the integrated data j't" m(n, o.)da is given.
This plot is one such that the error function ap-
pears as a straight line, with the mean position of
the Gaussian occurring where the straight line
crosses 0.50. These data are the same as those
plotted in Fig. 9; the fluctuations near the ends
of the straight line in Fig. 10 are the statistical
fluctuations in the tails of the Gaussian seen in

Fig. 9. The straightness of this plot indicates its
degree of Gaussian character.

Two important systematic features of the Gaus-
sian curves of Fig. 9 are evident. The Gaussian
mean shifts toward lower values of b/n, and the
Gaussians narrow as n increases. The n depend-
ence of the mean p. (n) and the standard deviation
v(n) are easily seen in the log-log plots of Fig. 11.
The straight line for the standard deviation o(n)
in Fig. 11(a) indicates that the Gaussian narrows
according to the formula

0.2
I

I I
}

« I I

SLOPE —;-O.M+0.08

a- (n)

0.05

a.)

O.OZ

0.5— SLOP E= -0.5I2~ 0.09

f
O

0.2—
I

0.05 I IIII I I

50 I 00 200

ipLg-

I

500 1000

FIG. 11. (a) Log-log plot of o(n) vs n from the Monte
Carlo calculation (data points), and the straight-line
fit to the data. (b) A log-log plot of p, (n) —0.704 vs n

from the Monte Carlo calculation (data points), and the
straight-line fit to the data.

I (n) =n, +a/At', (27)
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where the least-squares fit gives' Ap 0 704
+0.04, A = 2.53+0.5, and P = 0.512+0.09. From
the value of no and Eq. (11b) we obtain immediately
the critical concentration c, =(1+o,) '=0.587
~0.014, which is in agreement with previous de-
terminatjons ~ ' ' ' ~ of the crjtical point as
shown in Table I." The position of the 5-function
limit gives directly only the b/n ratio for very
large clusters whereas Eq. (11b) requires the
ratio of the averages (b)/(n) over clusters of all
sizes ate cp' but asc approaches c, the large clus-
ters dominate so that the identity of the two ap factors
canbe made. One of the most important results of this
calculation is that all very large clusters that oc-
cur for c(c, have the same b/n ratio, independent
of concentration.

In summary, the coefficient m(n, ct) has been
found to be of the Gaussian form

m (n, o.) = (2v) 't' a (n)
' exp [ -o(nt) t'

[ 2(T(n)']

bin
FIG. 10. Arithmetic probability plot of J m (n, o) do

vs n, for the n =105 data of Fig. 2. And the fit to an
error function (straight line).

(28)

where tt (n) and &r(n) are as given by Eqs. (26) and

(27).
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TABLE I. Comparison with previous estimates of ep
for the site problem on a simple, square lattice. 8 (n)— e-F'(&~) e- 6 F (&~)12d~ (36a)

Reference

14
15
16
23
23
19
24

This work

Method

Monte Carlo
Monte Carlo
Monte Carlo
Series (ratio)
Series (matching lattice)
Monte Carlo
Experiment
Monte Carlo

Cp

0.581 + 0.015
0.580 + 0.018
0.591 + 0.001
0.580 + 0.020
0.590 + 0.010
0.593+ 0.005
0.587 + 0.005
0.587 + 0.014

or

8(n}-exp[-n'@(2B'c') 'x'] n' '(1+ n )' 'n ~'

(36b)

Then, we find, from Eq. (30),

(n& ) dn nL- x+0- I)2e-)) x D25 2

0
(36)

where D is a constant. Now, we change variables,
letting u = n'@, with the result

III. CRITICAL EXPONENTS
(„) J - -0'9 /0

0
(37)

In order to test whether this empirical formula
is sensible and to understand more fully its im-
plications, we proceed to find the most singular
part of the Lth moment (n ) of the cluster size
distribution, namely,

which can be evaluated analytically with the re-
sulting singular part

(nL) x-(L+0+)I2-x)ld (38)

Since the L=0 moment gives P and the L =1 mo-
ment gives y, as in Eq. (19b), we set

(n~) — dnn~ d In'()n, n) .
0 Qo

(29)
(39)

From Eqs. (22) and (26), this integral has the most
singular part

and

y '=P+y=~. (40)

where

8(n) = e-F~ ) dn

F(n) =(n'~/2b')(n —a, —A/n~}2

+n[a inn —(n+1) ln(n+1)

(30)

(31)

a+2/3+y =2 (41)

The values obtained above for y and Q then give
the values P =0.19 +0.16, y =2.34 +0.3, and 4 =2.53
+0.3 which are in general agreement with previous
results""'" ""'"as shown in Table II (with the
rather larger statistical error bars reported
here). The free energy per site' is proportional
to (n '); thus the exponent (2 —n) is obtained by
setting L =-1 in (38) or the basic scaling law

+ (n + 1) 1n (n, + 1)—n ln a,], (32)

F"(a.) =n[n, (I+a.}] '.
Thus, the integral 8(n} becomes

(34)

with c —= (1+n,} '. In order to obtain the asymptotic
form of 8(n), we use the method of steepest des-
cents. First, we assume P&-, (which is the result
in our Monte Carlo calculation) and thereby, for
the purpose of locating the value of o. for which
F(n) is maximum [by setting F(n) =0], we ignore
the n'~ term relative to the linear n term. Then
we ignore the lower-order A/n~ term. We find
trivially that the maximum value of F(a) occurs
at e=a, , where F has the value

F(a ) =n'~x'(2B'c') '

where x =c0 —c measures the deviation from the
critical concentration. At a = e, , the second de-
rivative F" is given by

follows directly from the empirical formula here.
The value of n thus obtained is also given in Table
II. Perhaps, it should also be noted that if one
accepts the standard relations' 2 —n =dv, @ =2 —n/
v, and 6 =(2+d —)I)/(-2+d+q), one indirectly
obtains the remaining static exponents v =1.36
+0.2, q=0.28*0.2, and & =13.3+7 from this calcu-
lation.

It is important to note that, in the above for-
mulas (39}-(40), the mean-field exponents P=y=l
[as in Eq. (19)]will be obtained only if )}) = —,

'
and

The value Q =2 would correspond to the
usual central limit behavior where the standard
deviation in the Gaussian form shrinks as n ''.
The true critical exponents arise because the
form of the limiting behavior differs somewhat
from that given by the usual limit theorems. It
should also be noted that in evaluating the most
singular part of the integral (31}we assumed that

P was less than —,
' in order to neglect certain
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TABLE II. Comparison with previous estimates of the critical exponents for the two-dimen-
s ional lattices.

Method

Series
Site {square) (Ref. 25)
Site {triangular) (Ref. 26}
Bond (triangular) (Ref. 17)

Monte Carlo
Site (square) (Ref. 18)
S1.te (square) (Ref. 17)
Site (square) (Ref. 20)
Site (square) (Ref. 22)
This work

-0.7 +0.2

—0.72 + 0.4

0.14 + 0.03
0.148 ~ 0.004

0.14 + 0.02
0.16 + 0.02
0.14 + 0.03

2'0.1
0.19 ~0.16

2.1 ~0.2

1.85+ 0.2

1.9 +0.2
2.1 + 0.2
2.38 + 0.05
2.23 + 0.2
2.34 + 0.3

terms. At the critical situation (or dimension)
where Q is exactly one-half, these extra terms
will give corrections to the behavior calculated
here.

Finally, to clarify the relation of this to previous
mork it should be noted that the number of bound-
ary sites b (or perimeter, as it is sometimes
called) includes internal as well as external sur-
face sites and should not be confused with the ex-
ternal surface only which plays a role in various
cluster theories. ' Also, for clarity, we should
note that empirically we found that m(n, b/n) is
proportional to a Gaussian in b/n, given by Eqs.
(26)—(28) independent of concentration. Neverthe-
less, the full probability distribution (n/b),
given by Et). (24) is proportional not only to
m(n, h), but also to the factor (c/c )" '[(l —c)/
(l —c )j " which (for large n) becomes a Gaussian
in b/n, centered at n = (l —c)/c and with a stan-
dard deviation proportional to n ' ~ . Clearly the
competition of the product of these two limiting
behaviors gives rise to much of the interesting
behavior seen here.

IV. CONCLUSIONS

We have found a new limiting behavior in the
shape of the large random clusters that occur
near percolation threshold. This very irregular
shape is characterized by a boundary to the clus-

ters which is of the same fractal dimension as
the dimension of the bulk of the clusters. The
ratio of the boundary to bulk seems empirically
to be distributed in a way proportional to a Gaus-
sian (independent of concentration) which narrows
to a & function for very large clusters. The posi-
tion of the & function gives the critical concentra-
tion and the narrowing gives the static critical
exponents (although the poor statistics here pre-
vented a better determination of these exponents
than those previously reported). The empirical
formula presented here contains much more in-
formation, however, than just the critical point
and the critical exponents; it is hoped that others
will test and use other features of this result.
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