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The elastic magnetic neutron cross section from a single crystal of USb has been measured in the
antiferromagnetic state (type-I ordering, T& ——241.2 K) for all Bragg reflections with sin8/4 = v/4n. & 0.811

0

A '. By using the tensor-operator method, we have calculated the theoreticalcross sections from a number of
possible ground-state configurations and compared them with experiment. Excellent agreement is obtained for
one model only; a 5f' ionic state (U'+) with a I," crystal-field ground state. Such a crystal-field ground state
implies that the fourth-order crystal-field potential V, is negative, which is the opposite sign to that found in

the analogous 4f' neodymium compounds. By ineasuring the temperature dependence of the magnetic
scattering as a function of K, the scattering vector, we have been able to estimate the magnitude of the crystal-
field parameters as V4 ——300 K, and V6 = —15 K. The implications of this first unambiguous identification of
the electronic ground state in a metallic actinide compound are discussed.

I. INTRODUCTION

In spite of the considerable research effort un-
dertaken on the actinide monopnictides AX, where
A is an actinide ion and X=N, P, As, Sb, and Bi,
and monochalcogenides, X =S, Se, and Te, no
clear understanding of their electronic structure
has emerged. ' Although no systematic studies of
the transamericium compounds have yet been re-
ported, in the heavier actinides, Pu and Am, dis-
tinct trivalent-type behavior is evident. In such
cases we may use the formalism developed for
the corresponding lanthanide systems and consider
the interplay between spin-orbit, crystal-field,
and magnetoelastic interactions in a well-defined
manner. However, in the UX compounds, the
situation appears considerably more confusing,
and not even the ionization state has been reliably
established. We believe these difficulties stem
from the extended nature of the 5f electrons sur-
rounding the uranium nucleus, and their ability
to interact both with the actinide 6d electrons as
well as with the ligand wave functions. Thus, we
find the most perplexing problems in those uranium
compounds with the smallest U-U separation, '
e.g. , UN, UP, and US.

In the present study we have measured the elastic
neutron cross section from a single crystal of
USb. These measurements give information on
both the radial extent and the precise composition
of the 5f wave functions. The availability of rela-
tivistic Dirac-Fock wave functions for uranium
ions' allows us to choose a particular ground-state

configuration, calculate the neutron cross section,
and compare the results with experiment. We ob-
tain quantitative agreement between theory and
experiment for only one of the possible ground-
state configurations, which gives us confidence that
this is the correct assignment of both the ionicity
and the crystal-field ground state of the uranium
ions in USb. We have also measured the tempera-
ture dependence of the neutron cross section at
different values of &, the scattering vector. By
assuming that the magnetic ordering is produced
by a simple isotropic molecular field, we have
used these measurements to deduce qualitative
j.nformation about the magnitude of the crystal-
line electric field acting on the uranium ion.

II. EXPERIMENTAL

A. Previous work

Uranium antimonide (NaC1 crystal structure)
appears to exist over a range of composition, as
indicated by both the lattice parameters (6.176-
6.209 A) and Neel temperatures (217-246 K).
Neutron-diffraction studies' show the magnetic
structure to be type I, which consists of ferro-
magnetic (001) sheets arranged in the simple +-
sequence. The spin direction is perpendicular to
the sheets, i.e. , p, ~~[001]. The crystal and mag-
netic structures are shown in Fig. 1. Values of
between 2.2 and 2.8y.s/(U atom) have been reported
for the ordered magnetic moment at low tempera-
ture.
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D. Nuclear cross section

To pla. ee the coherent elastic nuclear scattering
cross section in barns on an absolute scale we de-
fine the quantity

=do„=IVIVI' (b/mole),
do

Co

FIG. l. Uranium antimonide crystal (Nacl) and mag-
netic (type I) structures. The solid circles are U atoms,
the open circles Sb.

B. Crystal preparation

Uranium antimonide crystals were synthesized
from high-purity uranium and antimony. A l-in.
bar of uranium was machined on a lathe in an inert
atmosphere into turnings of about 0.002 cm diam-
eter. Stoiehiometric amounts of uranium and anti-
mony were encapsulated in evacuated silica tubes
and held at 600 C for two weeks. This primary
reaction produced a powder mostly consisting of
USb. The reaction product was ground and pressed
into a &-in. pellet, which was encapsulated in a
sealed tungsten crucible. The crucible was kept
for about three weeks at a temperature 50'C below
the melting point of USb with atemperature gradient
of 20'C over the pellet. The resulting recrystal-
lization process produced high-purity single crys-
tals.

C. Experimental procedure

The present experiments have all been performed
on a small single crystal of USb with dimensions
2.49x 3.05x5.46 mm'. The experiments were per-
formed at the CP-5 Research Reactor with the
cryo-orienter assembly, ' which is capable of col-
lecting three-dimensional crystallographic data at
low temperature. The incident neutron beam
(& =0.992 A) was obtained from (311) planes of a
Ge monochromator and the 2~ and —,'~ contamina-
tion was less than 0.01%. The crystal was placed
in a small vanadium ean in good thermal contact
with a copper block containing the heater and cali-
brated resistors. The temperature was controlled
to H. 1 K. The room-temperature lattice param-
eter of our USb crystal is 6.197+0.001 A.

where N is the nuclear structure factor per mo-
lecular unit, For the NaC1 crystal structure

(2)

where the plus sign refers to hk'l all even and the
minus sign. to k&& all odd. The coherent scattering
lengths are g =0.853 x10 x2 cm and gsb —0 564
x10 "cm. The Debye-%aller factors, e
=exp(-BA 'sin'8), where B is the isotropic tem-
perature factor and 0 is the scattering angle. The
integrated intensity is related to da„by

Iz =CINI2Ay/sin20,

where C is the over-all scale factor, A is the ab-
sorption coefficient, and y is the extinction correc-
tion. Follow'ing Zachariasen, '

y = (1 +2g01) 'i',

where Q =X'V 'IÃI'/sin28, V is the volume of the
molecular unit cell, I, is the effective path length,
and g is the extinction pa.rameter.

The intensities of over 400 nuclear reflections
were measur ed at 80 K, sorted into equivalent
sets, corrected for absorption, and reduced to
average values of N», . The values of N», were
then used in a, standard crysta, llographic least-
squares refinement to determine the atomic pa-
rameters. The standard deviations were derived
from both the counting statistics and the internal
consistency within an equivalent set of reflections.
The results of such a least-squares refinement
with 40 independent Na„values are

C = 30.29+0.16, B„=0.12 +0.01 A',

Bsb=0.11 +0.01 A', @=2766 +106,

R =0.006 (y' =0.&).

In this refinement the crystal stoichiometry i,s
fixed at 1:1. If we allow the Sb/U ratio to vary,
the value of this ratio is 0.98 +0.01. However,
with a value of X' already below unity, we cannot
justify the additional parameter, and assume that
our crystal of USb ls stoiehiometrlc.

The extinction corrections for the strong nuclear
reflections are appreciable. Vfe illustrate this in
Fig. 2 in which do„ is plotted as a function of
0'+~'+/'. The data points have not been corrected
for extinction. After this correction is made
(g=2'I66) the points all lie on the solid lines. For
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FIG. 2. Nuclear cross sections as a function of the
reflection indices h +k +l . The open points are un-
corrected for extinction. The straight lines represent
the least-squares refinement and includes extinction.
The solid points are the cross sections for the first five
magnetic reflections with q2 = 1.

comparison we have also plotted the first five mag-
netic intensities which have q' =1. The intensities
fall off rapidly because of the magnetic form fac-
tor.

E. Magnetic cross section

The magnetic structure of USb is shown in Fig. 1.
The magnetic reflections are indexed on the basis
of the chemical unit cell and are such that h + k =even
and A+ L = odd. Since the magnetic propagation direc-
tion of the magnetic structure ~ can be parallel to any
of the three cubic axes, three types of domains
will exist. The magnetic structure factors are
such that only one domain contributes at a specific
reciprocal-lattice point. We have found no evidence
for preferential domain population and have aver-
aged reflections from different domains. The
elastic magnetic cross section is given by

«xe =3q'l~l' (b/mole), (5)

& e &Ay/sin2& (b/mole) . (6}

where the domain factor is -3, p' is the square of
the magnetic interaction vector, M is the magnetic
structure factor

M =0.2696&10 "pf (Tc) e "u cm,

g is the magnetic moment per uranium atom in
Bohr magnetons, and f (~) is the magnetic form
factor. The intensity of a magnetic reflection then
becomes

I„=q'(—', C)[0.2696'f (K)] '

Such a formula relating f (x) and do„ is an over-
simplification in systems with large orbital mo-
ments. Nevertheless, the concept of an effective
magnetic form factor is still useful in comparing
experiment and theory.

The intensities of 820 magnetic reflections were
measured at 80 K and corrected for absorption
and extinction (both small effects). Equivalent
reflections were averaged and reduced to absolute
values of d0.b, by using the parameters deter-
mined from the nuclear refinements. The values
of do, b, are given in Table I. Since q'=(h'+k')/
(h'+k'+P) the observed values of do, b, can be
reduced to pf (K). Comparing experimental and
theoretical values for the low-angle cross section
gives p, =2.82+0.05', e/(U atom). The experimen-
tal values of f (~} are shown in Fig. 3 and given in

Table I.

F. Temperature dependence

To determine the Neel temperature and measure
the temperature dependence of the magnetization
density we have measured the (110}, (223), and

(401) reflections at a number of temperatures.
The Neel temperature, determined in a separate
critical scattering experiment, ' is 241.2 +0.1 K.
The reduced temperature plot for the ordered mag-
netic moment is shown in Fig. 4. The ~ =

& and
J=—', Brillouin curves are also drawn.

III. CALCULATION OF THE MAGNETIC CROSS SECTION

No unique determination of the ground-state con-
figuration in an actinide intermetallic system has
yet been reported. The first detailed examination
of the UX compounds was by Grunzweig-Genossar
et al. ' who proposed a 5f' configuration for all
compounds. Chan and Lam' have proposed a 5f'
configuration for the uranium monopnictides, and
this model has received further support from the
interpretation of high-temperature susceptibility
and NMR measurements. ' In view of the various
models, our aim has been to calculate the mag-
netic cross section from a large number of possi-
ble ground states and compare them with the ex-
perimental cross section. Previously, this method
was applied' to the experimental form factor of US,
but the lack of appreciable anisotropy in the ex-
perimental cross section resulted in some ambi-
guity in fitting theory and experiment. The large
anisotropy observed in the USb cross section
(Fig. 3) offers hope that a more definitive assign-
ment can be made in the case of USb.

The magnetic cross section has been calculated
with the tensor-operator method. " In performing
similar calculations for UO, we have recently
discussed the extension of this method to mixed
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TABLE I. Experimental and theoretical results for USb. Only the first 19 reflections are
included. A complete table is available from the authors. do& is the calculated {I9/2 r,'
+H,„,g cross section. The observed and calculated effective form factors, f,b, and f~, re-
spectively, are determined with Eqs. (5) and (6). Standard deviations in parentheses refer
to the least significant digit.

SlnH/A,

(A-')
d&obs

(mb/mole)

110
201
112
221
310
203
312
223
401
114
330
421
332
403
314
510
205
423
512

0,114
0.180
0.198
0.242
0.255
0.291
0.302
0.333
0.333
0.342
0.342
0.369
0.378
0.403
0.411
0.411
0.434
0.434
0.442

1.000
0.800
0.333
0.889
1.000
0.308
0.714
0.471
0.941
0.111
1.000
0.952
0.818
0.640
0.385
1.000
0.138
0.690
0.867

169.1(63)
117.2(24)
45.8 (10}
88.7 (13}
86.6 (35)
26.3{6)
51.9 (11)
30.1(8)
52.3(16)
7.3(7)

49.2(12)
36 ~ 3(13)
33.0(9)
22.7 (6)
14.8 (6)
25.8 (8)
4.1(7)

18.3(8)
19.8 (7)

167.5
110.4
45.2
90.9
91.1
26.5
54.8
31.1
52.3
6.35

49.5
39.4
35.6
25.6
14.3
26.5
3.40

21.3
21.5

0.937(17)
0.872(9)
0.844(9)
0.720 (5)
0.670 (13)
0.666(8)
0.614(7)
0.576(8)
0.517(9)
0.582 (28)
0.505(6)
0.445(8)
0.457(6)
0.429(5)
0.446 (10)
0.366 (15)
0.395(32)
0.371(8)
0.345(6)

0.9323
0.8463
0.8393
0.7285
0.6877
0.6682
0.6312
0.5851
0.5369
0.5445
0.5067
0.4632
0.4755
0.4552
0.4386
0.3705
0.3567
0.4006
0.3586

I.G
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( I)

4 configurations. " To calculate the cross section
~e need to know both the angular and radial terms
of the 5f wave function. For the radial part of the
wave function we use the (j;) integrals given by

Freeman et al.' Qur experiments so far have
suggested that these radial wave functions are ac-
curate representations of the 5f electrons, so that
once the number of 5f electrons is assigned the
values of (j,) are taken as fixed.

The configurations we have considered are listed
in Table II, To make meaningful comparisons,
the calculated values have been scaled by (p,,b, /

GA—
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FIG. 3. Effective magnetic form factor for USb. The
radial intepals of Ref. S have been used together with
the 5f I"

9 configuration.

FIG. 4. Reduced magnetic moment as a function of
reduced temperature for USb. The Brillouin functions
for J = ~ and 29 are also shown.



TABLE jI. %ave-fllnctlon lnformatfLon used in calculRtlng h magnetic c1088 sectioQ of
USb. The IM) components are listed. For mixed 4 configurations the IM) components of
each J state are determined by the I'& representation and are omitted for brevity. The ionic
configurations are single states (H4 and Isy2), intermediate coupling (4=4) and (J= -) as
given by Eq. (8), or mixed 4 configurations (mixed J). The agreement with experiment is
indicated by g2. The shape prolate is spheroidal, axially symmetric about the axis of quan-
tization, with the long axis being the axis of quantization. The shape oblate is spheroidal
with the short axis being the axis of quantization.

Configuration

f H4

f2 @=4)

f H4

f~ (mixed J)

f341

f' (~=-,')
f' 'Ie/~

Crystal-
field
stRte

Free ion

Flee ion

Free ion

Free ion

ave function

I4)

0.9984 I 9)-0.9890 I

0.948 I J=4)+0.194 I~ =3)

+o.198 I J = 9&-o.11o Iv=5)

I I)

O.791. f &)-0.995 I ~&

-0.148 I
-I-)

0.999 I~ =- 9.
&
—0.920 Iz = &»

+0.144 I J= 3 )

0.819 I
9.) + o.784 I

~ )
+0.904 I

- 7)

0.988 I 1, ) —0.980 I--', )

-0 0111—~)

0.968 I ~)-0.950 I
—-', )

-O.OXX I
-~~

o.994 I -', )-0.110 I

-O.oo~ I
—9 )

Pcalc

( 8) Shape

Prolate

Prolate

Oblate

Oblate

Prolate

Prolate

Prolate

Oblate

it~&cP befor'e evaluating )p. Here p,,b, and p„„are
the observed and calculated magnetic moments,
respectively, and

-Q [(do b, —du„)/redo„, ] '/n,

where the sum is over all reflections and Ada,'b,

is the experimental uncertainty on do', b, .
The Hamiltonian for an ion in a crystal may be

written

where H~ is the Coulomb interaction, H,.„ is the
spin-orbit interaction, and V~ is the crystal-field
interaction. The strong spin-orbit coupling in
actinide ions will mix states of different 8 and I
into the ground-state J' manifold. (The so-called
intermediate-coupling scheme. } The spin-orbit

integral is taken from spectroscopic investigations
as 1650 cm ' for uranium in f' and f' configura-
tions. ' The resulting wave functions are

f'. &=-4, 0.942I'H) +0.322I'G) —0.095I'E),

f ': & =-', , 0.909I4f & +0.12SI2a, & -0.297I2a, &,

where we have used the notation of Nielson and
Koster "We consi.der the IM=4) and IM= —', )
states for f' and f', respectively, because in the
absence of a strong crystal-field interaction these
will be the ground-state wave functions. In Table
II the values of 1' for both the f' and f ' free-ion
configurations, with and without intermediate cou-
pling, show that these calculations do not repro-
duce the experimental cross section. As we shall
see below, this disagreement is primarily because
the shape of the magnetization density for both the
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M = ~4',& and M =
( —,) states is different from that

found experimenta. lly. All calculations of proper-
ties of aetinide ions must take into account the
strong spin-orbit interaction. However, the wave
functions in Eq. (8) are comprised mostly of 'H

and 'I terms, respectively„which are the Russell-
Saunders SI. states. Under these conditions, the
cross section is Qot greatly affected by the intro-
duc«on of intermediate coupling (in fact the g' ap-
pear to increase with the mixed St, wave functions}
and we may restrict the considerations to a single
component,

The next lnteraetlon to consider ls the crystal
field V,f. IQ R cubic system, this inter Rctlon ls
specified by two parameters defining the fourth-
and sixth-order potentials

V4 =A, (r4), V, =A, (r6),
where A, and A., depend on the coordination and
surrounding charges and (r") are expectation val-
ues of the 5f radial wave functions. ' All calcula-
tions involving the crystal field assume a quanti-
zRtion axis paraHel to the cube edge. this is the
spin dix'ection in the type-I structure. In the J =4
manifold (f') the extreme pole. rization of the I;
singlet and I; doublet necessary to support a mo-
ment in excess of 2.4p, ~, leads to essentiaHy free-
ion, wave functions. In Table II the results are
given for the single ~ =4I; triplet as well as for a
complete mixed J intermediate-coupling state. '2

Neither calculation fits the experimental cross
section. It is apparent that f' configu"rations do
not agree with experiment a,nd the remaining cal-
culations concentrate on f'.

%'ithin a single & manifold the parameters V and

V6 may be conveniently treated by the method of
Lea, Leask, and Wolf" (LLW). The over-all
strength of the crystal field is specified by lV and
the ratio V, /V, is specified via the parameter x.
Thus

V, =Wx/pF(4), V, =W(1 —(x()/yr(5), (IO)

where P, y, F(4), and F(6) are numerical factors. "
For the f' 'I, /2 configuration

V, =-57.552Wx, V, =-10.445W(I —~x~).

Assuming that the crystal-field arises from the
neRrest-Qelghbo1 Sb lons, which Rle Rx'x'Rnged ln Rn

octRhedl Rl Rrx'Ry

V, =—,', Ze'(r')/If', V, = —,
' 2'e'(r'}/R', (12)

where Z is the negative charge at the Sb site at R

distance ft from the central cation. From Eq. (12)
we see that V4/Ve + 0, which implies x + 0 in Eq.
(11). Furthermore, we anticipate both from eval-
uating the terms in Eq. (12) as well as from the re-
sults avai. lable fx om lanthanide systems, " that the

value of (x( is near unity, i.e. , V~ is small. In the
ealeulations that follow we have chosen x =0.8;
varying x between 0.8 and 1.0 has a negligible
effect on the magnetic cross section. The crystal-
field interaction acting on the ~ =+ manifold leads
to two quartets, I',"', I',"', and a Kramers doublet

The wavefunetions corresponding to these
states are given in Table II. The g' values im-
mediately suggest that neither I',"' nor I", are cor-
rect assignments of the ground state. On the other
hand, the I","' state clearly fits the experimental
data well, To further illustrate this we have plotted
the effective magnetic form factor in Fig. 3 and

given the cross section in Table I.
The important difference between the I'8(2' and

I',"' states as specified here (x =0.8) is that the

major components are (M =—', ) and ~M =—.', ), re-
spectively, As indicated in the last column the
shape of the magnetization densities are different
for these two wave functions. This can be illustra-
ted by focusing on the anisotropy directly. Ne-
glecting the transverse (noncollinear) parts of
the magnetization density" the effective magnetic
form factor is

f(8, 4, x) =(j,)+ Q c, (j,),

where c, are functions of 6 and @, the polar coor-
dinates relating the direction of the scattering vee-
«»»d the quantization axis (001] (n««hat
q' = sin'8}, thus c; = c; (8, 4 ), and the (j,. ) radial
integrals are functions of & only, (j;) = (j;(&}).
The shape of the magnetization density is expressed
through the c, (8, @)coefficients. Since both the
coefficients c,, and c, and (j,) and (j,) themselves
are small, we concentrate on c, (8, 4}, which varies
between I.V and 2.0. With a [001] quantization
axis, c, does not depend on 4', a consequence of
the high symmetry imposed by the cube axis of

uRntlzRtlon. If c& lQcx'eases with lncx'eRslng 6',

then the magnetization density is prolate, i.e., it
resembles an American football with the moment
along the long axis. Conversely, if c„decreases
with increasing (9, the density is oblate, and re-
sembles R pumpkin w'ith the momerlt pRrRllel to
the compressed axis. One way to choose between
these two shRpes expel lmentRlly ls to examine
differences between the effective form factors of
reflections at the same scattering angle, 6f=f (K, )
—f(Z, )& where ~K, ~

=)T&,~. The open points in Fig.
5 are the experimental values for USb, where
6},& 8, , Since the values of ~ f are Rll positive, c,
must decrease with increasing 0, and this implies
RQ oblRte magnetization deQslty. To px ovlde R

quantltatlve conlpRrl8OQ the solid points Rre cal-
culated values. Considering the small quantity
represented by 6f, the fit with I',"' in Fig. 5(a) is
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excellent.
Troc and Lam' have fit high-temperature sus-

ceptibility measurements on UP and UAs with a
model involving a mixed J ground state. (Unfor-
tunately, these authors do not follow the LLW con-
vention and call their ground state I","'. With the
values V, -3200 K, V, -30 K, as suggested by Troc
and Lam, the wave function has a predominant
~
M =

2 ) component and corresponds to the I'"'
state of LLW. ) The cross section from this wave
function is an extremely poor fit to the USb data
as shown in Table II (y' =80). This poor fit is not
only because the anisotropy has the wrong sign,
but also because the absolute values of c,(8) are
reduced by the admixture of ~ = —", into the ground
state. As a result, the effective form factor falls
more rapidly as a function of w than the experi-
mental data.

One further term must be added to Eq. (7) to
represent the internal staggered exchange field
that, in the molecular-field model, is responsible

FIG. 5. Anisotropy in the form factor of Usb. &f
represents the difference in the form factor between two
reflections at the same scattering angle. In cases where
more than two reflections occur, different symbols are
used. The open points are experimental values. The cal-
culated values f r I'8~~~ a d 1~8~ are sh wn in (a) and (b),
respectively. The radial integrals (j&) are plotted for
this region of sin0+ in (c).

for the magnetic ordering. If the exchange is
assumed isotropic, then H,„,h =~p, , where ~ is the
molecular-field constant and g, is the projection
of the sublattice magnetization on the quantization
axis, is added to Eq. (7). In the final row of Table
II the I',"' wave function is given when H,„,h =2400
kOe. This exchange field results in a polarization
of the ground state, favoring components with +M
values, and increases p. ~k from 2.36'~ to 2.51'.~.
With the intermediate coupling g factor this mo-
ment becomes 2.62'.~, but is still 0.2p, ~ smaller
than the experimental value. With the simple mod-
els treated here it is not possible to match p, ,b,

and p~, exactly.
In this section we have demonstrated that the

elastic magnetic cross section can give informa-
tion on the character of the ground-state wave func-
tion. The basic approach is analogous to that used
in the transition metals, although the computations
are more laborious for f electron systems. Since
the exchange is very strong in USb, T„=241 K, the
moment is large, 2.82', ~, one might anticipate a
free-ion-like situation. This is not the case. In-
stead, the wave function ha, s a predominant M = j-, )
character that must be a consequence of the str ong
crystalline-field interaction. If we assume that the
octahedral configuration in the NaCl crystal struc-
ture determines that x & 0, then to produce a I,"'
ground state W&0. From Eq. (11) this implies
V, &0, V, &0. The determination of the strength of
this crystalline-field interaction is of fundamental
importance to our actinide studies. The most
obvious method of doing this, of course, is to
measure the energy transitions directly with neu-
tron spectroscopy. Unfortunately, for reasons
that are by no means clear, this technique has so
far failed to observe transitions between discrete
crystal-field levels in actinxde systems. "

IV. TEMPERATURE DEPENDENCE QF MAGNETIC

ANISOTROPY

In an attempt to obtain indirect information about
the excited-state wave functions we have measured
the temperature dependence of the magnetization
density. This method has been applied to iron"
and holmium. " The idea is that as the tempera-
ture is raised the exchange field is decreased and,
together with the Boltzmann factor, leads to an
admixture of higher states into the total wave func-
tion. Such higher states lead, of course, to a re-
duction in the projection of the dipole moment on
the quantization axis, but may also lead to a dif-
ferent temperature dependence for the higher
(quadrupole, octapole) moments if the excited and
ground-state wave functions are of different sym-
metry. These effects can be observed by the neu-
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tron interaction at different values of &. We have
used the simplest model, that of an isotropic ex-
change field acting on discrete crystal-field states.
Since the interpretation of the temperature depen-
dence is a function of the model employed, the
qualitative nature of the results should be borne
in mind.

In Sec. III we have determined that W & 0 for
x =0.8. The method of determining the molecular-
field constant is then straightforward. First, H.„,h
is added to Eq. (7} and the diagonalization per-
formed for a series of values of W and H. ,h, the
temperature dependence of p, ~ being determined
each time. The values of W and H„,~ ranged be-
tween 2 and 12 K and between 0 and 3000 kOe,
respectively. The eigenvalues for W =6 K are
plotted as a function of H.„h in Fig. 6. Note the
large values of H,„,h. In low fields the I; doublet
is isotropic, as it must be; at higher fields the
upper level interacts strongly with the I',"' states.
Figure 7 illustrates the graphical solution for ~
with W =6 K. Since the observed magnetic mo-
ment of 2.82Ij.~ is greater than that obtained with
the I',"' state at T =0 K, we have plotted the re-
duced moment on the ordinate axis. The experi-
mental points are plotted by locating the correct
isotherm and reduced magnetization value in Fig.
6. If the molecular-field model is valid, the ex-
perimental points should lie on a straight line
through the origin. The slope of this line deter-
mines ~, and the ordering temperature is given
by the isotherm that is tangential to the line. As
Fig. 6 shows the experimental points do lie on a
reasonable line, A. =920 kOe/ps, and give T„-280

[w=6K, x=08
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FIG. 7. Determination of the molecular-field constant
The experimental points for reduced magnetization

are plotted on the isotherms calculated for S' = 6 K and
x=0.8. The straight line through these points and the
origin defines A.

K. Similar plots for other values of W give ac-
ceptable solutions for 5 &W &8 K, and set limits on
A. of 900&X&1100kQe/p~.

Having obtained a value of ~ the experimental
value of the reduced dipole moment at any given
temperature can be readily reproduced. Simul-
taneously the magnetic cross section is calculated
for all reflections. The quantity of interest here
is not the absolute value of the cross section, but
the variation in nf as discussed in connection with
Fig. 5. In Fig. 8 the reduced anisotropy in the
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FIG. 6. Variation of the crystal-field levels with in-
ternal exchange field. As H,„,q —~ the eigenfunctions
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FIG. 8. Temperature dependence of the form-factor
anisotropy as determined by the difference between the
(223) and (401) magnetic cross sections and plotted as a
function of the reduced magnetization. Theoretical values
for the free ion (W =-0 K) and W = 6, 7, and 8 K are shown.
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effective magnetic form factor &f /&fr=, is plotted
as a function of the reduction in the ordered mo-
ment 1 —p/p. r o, the latter being a, function of tem-
perature. The experimental points from two sepa-
rate runs for the (223} and (401) reflections show
some scatter, but 4f,b, clearly decreases slowly
with temperature. These measurements are diffi-
cult to make accurately. First, the (223) and (401)
reflections are much weaker than the (110), see
Table I. Second, as shown in Eq. (13), the form
factor contains terms in (j,), (j,), etc. For the
(223) and (401) reflections K =4.18 A ' and (j,)
=0.169, (J, ) =0.213, snd (j, ) =0.066. The values
of nf arises solely from terms in (j,), (j,), and

(j8). The isotropic contribution from the term
(jo) simply makes it more difficult experimentally
to determine nf. In the case of spiral magnetic
structures the (j,) term can be measured direct-
ly 19

To calculate the magnetic anisotropy as a function
of temperature we first consider the two limiting
cases W =0 and W =~. For W =0 the situation
corresponds to a free ion with the ground state
M = —,') separated from the next excited state
M = —,') by an energy determined by the exchange

field. Under these conditions the temperature
dependence of Cf should be approximately propor-
tional to (p/po)'"'"~' =(g/p )' at low tempera-
tures. 20 Although this linear relationship is modi-
fied at higher temperatures, the variation of n.f
for W =0 is very abrupt, as shown in Fig. 8. Such
a rapid variation of the anisotropy with temperature
has been observed in holmium. " On the other hand,
for W =~ the I',"' state is completely isolated from
states of other symmetry and because the cross
section is proportional to the square of the quadru-
pole and higher moments, which are identical for
all four I',"' states, the term &f is independent
of temperature. This situation occurs in iron, in
which the separation of the T„and E, states is
much larger than the exchange energy. " With the
present model for USb, &f is essentially indepen-
dent of temperature for W&10 K. (If W =10 K, the
I',"' —I", separation is -500 K.) As a first approxi-
mation, the temperature dependence of &f may be
associated with the percentage of the ~M = —', ) com-
ponent in the total wave function. The calculated
values of nf/n fr=, for W =6, 7, and 8 K are shown
in Fig. 8. The change of slope at high temperature
is associated with the rapid decrease in H.„.h and
the subsequent depopulation of the excited ~M = —', )
state, see Fig. 6. In this temperature region the
deficiencies of the molecular-field model will be
most serious, and it is not surprising that the
data do not reflect this change of slope. For exam-
ple, the molecular-field model overestimates
T„by -40 K.

V. DISCUSSION

The neutron experiments on USb demonstrate
that the ordered-state wave function has a magneti-
zation density that is oblate (see Table II}. A de-
tailed comparison with a number of theoretical
models shows that the f' configuration is the most
likely, and that the ground-state wave function
must have predominantly ~M = —,

' ) character. As
we shall see, this is a most unexpected result. In
agreement with the conclusions in our study" of
UO„we have no evidence to suggest that the crys-
tal-field interactions are large enough to introduce
the complications of ~ mixing. To determine the
crystal-field ground state we can start by examin-
ing the LLW eigenstates for large ~M = —', ) compo-
nents. Possible candidates are I',"' with 0.5&x &1.0
and I',"' with x--1. Since the eigenstates are
identical for I',"' with x =1 and I,"' with x =-1, our
measurements cannot distinguish between these
two alternatives. Initially, it would appear that
such an uncertainty in x precludes any detailed
statements about the crystal-field parameters.
Part of the reason for these difficulties is that in

the ordered state the exchange field polarizes the
wave functions. Thus, provided the major com-
ponent in the paramagnetic state is ~M = —,'), the
strong field will ensure that the coefficient of this
state is greater than 0.95 when the moments are
fully aligned. Unlike spectroscopic techniques,
which measure transitions between the ground and
excited states, the form-factor studies sense any
wave-function admixture into the ground state
(thermally weighted with the Boltzmann factor}
by the change in the shape of the magnetization
density. To obtain a working model for the elec-
tronic structure of USb, we have assumed that the
sign of the LLW parameter x is defined by the
atomic coordination, as suggested by Eqs. (10)-
(12). If nearest-neighbor interactions dominate,
as we expect, then for the octahedral array in the
NaCl structure x&0. With this assumption, the
ground state is I',"', and to obtain such a ground
state both V4 and V, must be negative.

In the NdX series with 4f ' electrons, which are
the analogous lanthanide compounds, "the values
of V4 and V, are positive. For NdSb, for example,
x =0.78, V4 =84 K, V, =4 K, and for all the NdX
compounds 80& V4&160 K. The ground states of
these compounds are then &,"' with )M = —', ) as the
predominant wave function. Somewhat surprising-
ly, the simple point-charge model is quantitatively
successful in accounting for the crystal-field po-
tentials in the LX compounds. " Since the term
(&')/&' is approximately four times larger in USb
than in NdSb, because of the extended nature' of
the 5f electrons and hence larger (&'), we expect
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the absolute magnitude of V, to be greater in the
actinide compound. This is indeed the case. How-

ever, the reversal in sign between NdSb and USb
is totally unexpected. In terms of an effective
point-charge model, it makes no sense to assume
the Sb ions have a positive charge. Instead, the
conduction electrons (both s and d states} must be
considered important factors in determining the
electrostatic potential acting on the uranium ion.

By measuring the temperature dependence of the
magnetic scattering as a function of &, we have
shown that the shape of the magnetization density
changes with temperature. This change of shape
(actually a tendency to become more spherical at
higher temperatures} is a result of population of
excited

~

I'M) states and can be related to the ener-
gy differences between these states. The measure-
ments on USb illustrate that, as expected, the
situation is intermediate' between that in iron, " in
which V,~»H, ,.h, and that in the lanthanide metal
holmium, " in which H,„,h» V~. Our best estimate
is that V4=-300 K and V, =-15 K.

We recognize, of course that other interactions
besides an isotropic exchange field play an impor-
tant role in determining the magnetic properties
of USb. Indeed, critical scattering experiments'
suggest that the exchange interactions are far from
isotropic. The absence of transverse critical fluc-
tuations near T~ may require the consideration of
strongly anisotropic interactions. Although the
crystal-field ground state of USb is I',"', this

ground state has a (111)easy axis of magnetiza-
tion. Experimentally the spin axis is [001], in
apparent conflict with the axis preferred by the
crystal field only. A similar situation" exists in
CeSb and CeBi, for which odd-odd anisotropic
interactions have been proposed. " One interesting
point, for example, is that the agreement between
do.bs and do„may be further improved to give
p' =1.5 by constructing a I',"' wave function that
contains a small admixture of the ~M = —', ) state.
Within the simple model presented here this cannot
be done except by thermally populating the higher
states, which then leads to an immediate reduction
in the ordered magnetic moment.

In conclusion, the aim of our investigations has
been to determine the electronic ground state of
USb. Such a determination has important implica-
tions for our understanding of the large class of
AX compounds, and, indeed, for all actinide inter-
metallic compounds. To test this model, high-
temperature and high-field susceptibility, and in-
elastic neutron scattering experiments are current-
ly in progress.
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