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Two-magnon bound states in itinerant electron ferromagnets*
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A model of a single-narrow-band itinerant-electron ferromagnet is considered. An effective magnon

Hainiltonian Is introduced to dcscribc magnons and magnon interactions in thc itinerant, fcrroITlagnct. By thc

use of the effective magnon Harniltonian, the problem of two-magnon bound states reduces to solving an

integral equation. The equation is solved for a simple cubic lattice using the tight-binding electron energy. The
two-magnon bound states are found to exist for values of the total momentum of the interacting magnons

close to the Brillouin-zone boundary.

I. INTRODUCTION

In recent years, there has been growing interest
in studying the problem of magnon bound states.
The importance of the problem is due to the fact
that the existence of magnon bound states imposes
limits on the range of applicability of the linear or
noninteracting spin-wave theory, and is also due
to the experimental possibilities of studying the ef-
fects of magnon interactions.

Magnon bound states were extensively studied
theoretically for the Heisenberg model of ferro-
magnets and antiferromagnets. The problem was
first considered by Bethe' in 1931, who showed that
in the one-dimensional Heisenberg system of spin
S =-,', with positive exchange integral between near-
est neighbors, there exist bound states of two, or
more, spin waves, their energies being always
lower than the sum of energies of free spin waves
having the same total momentum K. The two-rnag-
non states were then considered by Dyson' in 1956,
who proved that in two- and three-dimensional
Heisenberg ferromagnets, the two-magnon bound
states do not exist for the total momentum K= 0.
In 1963 Hanus, ' for spin 5=-,', and %ortis, ' for ar-
bitrary 5, found that in the simple cubic nearest-
neighbor interaction Heisenberg model in the two-
dimensional case, two-magnon bound states exist
for any KI0, even for K arbitrarily small„where-
as in three dimensions there is a region of small
K for which bound states do not exist; however,
they appear near the Brillouin-zone boundary for
K exceeding a threshold value. The problem of
magnon bound states in the Heisenberg spin sys-
tems was then discussed in numerous papers. ' "
In particular, bound states in antiferromagnets
were predicted. ' Magnon bound states were dis-
covered experimentally in a simple spin system. "
Various possibilities of experimental investigations
of magnon pairing effects were reviewed. "

The problem of magnon bound states has an im-
portant implication for determining the range of

valldlty of the llneRr or noMnteractlng spin-wRve
theory. Practical applications of the spin-wave
theory are based on the assumption that the super-
position of single magnon states holds, approxi-
mately. For the regions of values of the total mo-
mentum of spin waves for which bound states exist
and have energy lower than the sum of energies of
free spin waves, the superposition principle breaks
down.

Because of the relevance of the magnon bound-
state problem to the fundamentals of the spin-wave
theory, it is interesting to study the same problem
in itinerant-electron ferroma, gnets. In the itiner-
ant-electron theory of ferromagnetisrn, a magnon
is a bound state of an electron and a hole of op-
posite spins. "" The problem of a two-magnon
bound state in itinerant- electron ferroma. gnets is
essentially a four-body problem, two electrons
and two holes, and is extremely difficult to solve
by direct methods. In the present paper, we de-
scribe a solution of the problem based on the con-
cept of an effective magnon Hamiltonian, "which
appeared to be very useful for treating interactions
of magnons. ""The effective magnon Harniltonian
is constructed from combinations of products of
electron operators, which in the random-phase ap-
proximation (RPA) have the properties of magnon
creation and annihilation operators. In the method
of the effective Hamiltonian, the task of finding the
bound state reduces to solution of a. two-body prob-
lem, although with a rather complicated kernel in
the ensuing integral equation. The equation ean be
solved only numerically. %'e consider here the
single-narrow-band model of itinerant electrons,
use the tight-binding approximation, and consider
the simple cubic three-dimensional lattice.

The solution of a similar problem for a one-di-
mensional case was recently reported. " It was
shown that for the one-dimensional model, two-
magnon bound states exist for all values of the to-
tal momentum K, so the qualitative behavior is the
same as for the Heisenberg one-dimensional sys-
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tems.
The format of the paper is as follows. In Sec. II,

we outline the method of the effective magnon Ham-
iltonian; in Sec. III, the integral equation for the
two-magnon bound state is derived. The algorithm
used for solving this equation for a three-dimen-
sional lattice is described, and results of compu-
tations are presented in Sec. IV. Some general re-
marks on the results are presented in Sec. V.

II. EFFECTIVE MAGNON HAMILTONIAN

where 6 =-In (or h =In +2p sH) is the exchange (or
exchange and Zeeman) splitting, n is the number of
itinerant electrons per atom, and n„=(p, ~a»t a»
obviously, nk=1 for ek below the Fermi energy E~
and n, =0, otherwise.

The coefficients in (2) are

t'» .»=",&'(e» .-'»+~-&»)
as can be easily found solving in RPA equation of
motion for P~. If the normalization constant d, is
determined from the condition

Qur discussion of magnon bound states in itiner-
ant-electron ferromagnets will be based on the
Hubbard" model. It is generally believed (e.g. ,
see Ref. 15) that a, realistic description of ferro-
magnetism in itinerant electron 3d transition met-
als like Ni or Co should take into account multiple
bands and also include other interactions, not only
theleading intra-atomic Coulomb one. For a prob-
lem of great mathematical complexity, as the mag-
non bound-state problem, it is reasonable to start
with simplest possible model qualitatively simula-
ting the behavior of itinerant electron ferrornag-
nets.

We consider a system of itinerant electrons in a
single narrow band, described by the Hubbard
Ham iltonian

K = ~ ~kako ka+ ~ ~ Ok+a, + k'-, — k', -~k, +

ko kk ~q

The standard notation is used: a»t, (a„) denotes
the creation (annihilation) operators for electrons
of spin o in the Bloch state specified by the wave
vector k. The Bloch energy is denoted by e» (if the
magnetic field 0 is present, the Bloch energy has
to be replaced by e»+ gsH), I is the intra-atomic
Coulomb integral, and N is the number of atoms in
the crystal.

We assume that the ground state ~P, ) of the Hub-
bard Hamiltonian (1) is strongly ferromagnetic
with all electrons having spins down. It is well
known"" that in the (RPA), the operator

& a ~ bk+ a, kak+ ~, +ak-
k

(2)

—Q n, (e„,—e»+A —E,) '=1,
k

generates a one-magnon state in the sense that
pt ~Q, ) is, within RPA, the eigenstate of 5t, and
corresponds to a bound state of an electron of re-
versed spin, and a hole in the Fermi sea. The en-
ergy E, of that bound state or magnon is determined
from the equation

Q I ~»+

the operators P
~ and their Hermitian adjoint P,

satisfy in RPA the commutation rules [P„Pt,]~,„
We also have [pt, pt, ] = 0.

The set of operators p, and p„satisfying (in
RPA) boson commutation relations can be inter-
preted as magnon creation and annihilation opera-
tors. For problems of magnon interactions, it is
convenient to extract from the general Hamiltonian
50 [Eq. (1)] that part which corresponds to the ener-
gy of the magnons, and the energy of their interac-
tion. Obviously, such a program cannot be imple-
mented exactly, because magnons are not exact
normal modes of the system, even apart from their
mutual interaction, since actually a one magnon
state pt ~((,) is not an exact eigenstate of 50 as a
result of residual interactions of magnons with
electrons. However, a consistent approximate
procedure working within RPA can be used to de-
rive from & an effective Hamiltonian which is the
energy of the magnons and their interaction. Such
procedures have been successfully used in studying
magnon relaxation and other problems. " " Sim-
ilar methods of extracting the energy of boson-type
excitations in systems of interacting fermions were
used in the theory of nuclear matter. "

The effective magnon Hamiltonian is defined as
an expansion in powers of the magnon operators
P~ and P, . The expansion can be simplified from
the outset by taking into account general properties
of the primary Hamiltonian of the system of itiner-
ant electrons. The Hubbard Ha. miltonian 30 [Eq. (1)]
conserves the total magnetic moment of the sys-
tem p»(a» a, —a»t, a„). Therefore, the effective
magnon Hamiltonian which has to be equivalent to
3C in the subspace of magnon states should conserve
the total number of rnagnons, which means that it
can contain only products of equal numbers of oper-
ators J(3~ and P. Further restrictions come from the
translational symmetry requiring conservation of
the crystal momentum: in every term of the ef-
fective Hamiltonian the sum of wave vectors of
created magnons must be equal to the sum for an-
nihilated magnons. The general expression for the
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effective magnon Hamiltonian Z,«equivalent to (1)
in the subspace of magnon states compatible with
the above mentioned restrictions and with neglect
of higher order terms is given by

36,« =+K,P, fi, +g r;„/f„,(i„,e,P, , +"~

kk~a

(6}

The coefficients are given by the following ground-
state averages of multiple commutators":

K, =(e.llP„I3C, fi,']]Ie.&,

Fl. =l(e.lie,...le. „IL&,p,'],4]]]le.&
The derivation" of the relations (7), (8} is based
on equivalence of the ground-state averages of
commutators like

(7)

(8)

tP, I.36. P,']l and ((f, I.& f),']l.
From (7) follows the expression

1I -q ~'-k-q -k'+k+ql
~kk ~~kk' ~k k kk'

I
(bp+~ ~ p bpe+ys pe}

XbP+k+e, P+abP+k'-a, PbP+k+a P ~P

(10)

which, on using (4) and (3), reduces to K, =E,,

where E, is the magnon energy determined by Eq.
(3), as it should be for consistency. The coeffi-
cients of the interaction terms in the effective mag-
non Hamiltonian (6) are given by"

more labor.
From now on we are working in the space of mag-

non states, the effective Hamiltonian (6) is of the
same form as the magnon Hamiltonian for the
Heisenberg ferromagnets. This formal analogy
will be used now to study the problem of two-mag-
non bound state by methods developed for the Heis-
enberg ferromagnets. "

III. TWO-MAGNON BOUND STATE

Let us consider two magnons of wave vectors
—,'K+k and —,'K —k. The total wave vector K is the
constant of motion and is used as the quantum
number for a general two-magnon state defined by

IK& —g g&PK/2+RP«/2 jl lf &Or

where the summation on the relative momentum of
the pair extends over the first Brillouin zone. The
coefficients g, of the superposition (11) and the en-
ergy & of the two-magnon bound state are calcula-
ted from the Schrodinger equation X,«IK& =+IK&
which leads to the following integral equation:

I(o —Q(K, k)]g =Q V(K, k, q) g, . (12)
a

The solution of Fq. (12) for a one-dimensional
itinerant-electron system was reported recently. "
Now we solve (12) for a three-dimensional, simple
cubic lattice, using as previously the tight-binding
approximation (with one parameter) for the band
energy of electrons. Since the coefficients gk
=g(k„k„,k, ) have the following symmetry proper-
ties:

g(k„k„,k, }=g(- k„,k„k,)
Higher-order terms in the effective Hamiltonian,

if necessary for a particular problem, can be cal-
culated by the same procedure, although with much we have

=g(k„—k„,k, ) =g(k„k„, —k, ),

axyay. ag = 41
EK/2 +(a kx ay y, ag g) ) (13)

and

1
v(v, k, q) =-

a .az
= %1

Sx. Sy, 8

(ax x Sxaxl ayky Syay, agkz-Szqg)
K/2 +( 8xaxe Syay~ 8gaz), K/2 -( 8xqx, 8yay, 8gag) &

(14)

where the expressions in parentheses denote vec-
tor components, and each of the summation indices
runs independently over a set of only two elements
(+1, —1).

IV. DETAILS OF COMPUTATIONS

In order to solve (12}we have to first calculate
the energies of free magnons E, from (3), and then
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the intera. ction ma. trix elements P~~, from (9). All
these calculations have to be done numerically.
Calculations for a realistic band structure would
require very large amounts of computer time.
Ther efore, the computations were performed for
a model of an itinerant-electron ferromagnet,
namely, for a band structure given by the simplest
tight-binding formula, and for the simple cubic lat-
tice. We assume

e, = —,
' W(3 —cosak„—cosak, —cosak, ), (15)

where a denotes the lattice constant. Values of the
material constants were taken as appropriate for
ferromagnetic nickel. The bandwidth 8" or rather
its ratio to the Fermi energy, W/E„ is determined
by the number of itinerant electrons per atom
n=N 'g~„n„Takin. g n=0. 6, a.s for Ni, we obta, in
E~/W=0. 559. For Ez=0.3 eV, as appropriate for
Ni, ""we have the value O' = 0.536 eV for the band-
width. For the exchange splitting 6=nI, the value
6 =0.57 eV was taken according to recent esti-
mates"" for Nz.

The free magnon energies E, calculated for the
directions [100], [110], and [111]are plotted in Fig.
1. For the values of material parameters adopted
in our calculations, the magnons exist for all wave
vectors fl in the first Brillouin zone, i.e. , the mag-
non energy E, always lies below the continuum of
the Stoner excitations E, &mi n(c~ „—@~+6). High
anisotropy of the magnon energy is a feature of our
simple model and makes our final conclusions only
qualitatively applicable to nickel.

In order to solve the integral equation (12), it is
necessary first to compute the kernel V(K, k, q)for
a. given K and for all k and ft in the first Brillouin
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FIG. 1. Magnon energies for the high-symmetry di-
rections [100], [110], [111].

zone. We restrict the calculations only to the case
of K pa. rallel to the direction [111]. Computations
of V(K, k, q) for all points k and i| for a reasonably
fine mesh which spanned the first BriQouin zone
would need enormous computer capacity to give
sufficiently accurate results. Therefore, the fol-
lowing interpolation procedure was used: for a
fixed value of K, values of the function V(K, k, q)
were calculated for several values of k and q, for
k and Q parallel to the high symmetry directions
[100), [110],and [111]. Then an interpolation ana-
lytic formula for V(K, k, q) was proposed in a form
of an expansion into symmetry invariants

V(K, k, q }= Ao + A, (x+y +z) + A, (X+Y' + Z) + A, (xX+y Y + z Z) + A,[x(Y + Z) +y (Z + X)+ z (X+ Y)] + A, (xy + xz +y z )

+A, (XY+ XZ+ YZ}+A, [xX(1'+Z)+y Y'(X+ Z)+zZ(X+ Y)]+A,(xYZ+yXZ+zX'Y)

+A~[xy(X+ Y')+xz(X+Z) +yz(Y'+Z)]+A»(xyZ+xzl'+yzX)+A»xyz+A»XYZ+A»(x+y +z)XYZ

+A„(xyXY+xzXZ+yzYZ) +A„[xyz(X+ Y)+xzY(X+Z)+yzx(Y+Z)]+A„xyz(X+Y+Z)

+A»(xy + xz+yz)XYZ+A„xyz(XY+ XZ+ YZ) + A»xyzXY'Z, (16)

where the following abbreviations are introduced:

x= eosak„, y = cosa%„z = cosa'„
X = cosQq„, Y = eosQq, Z = cosNg~.

The values of the coefficients Ay for different
K= K„(1,1, 1), were determined by the lea.st-
squares fit to calculated directly values of
V(K, k, q). The interpolation formula reproduced

V(K, k, q) within an accuracy better than 5/0.
The kernel V(K, k, q) given by the interpolation

formula (16) is degenerate, it can be written in the
form

V(K, k, q) =g (Ka, k)b, (K, q), (1
1

with 1,x,y, z, ~,yz, zx, xyz as a„.. . , a, and 5,.
easy to find from (16), and the integral equation
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lutions of (18), whereas for each K„ from 2a j3a
= K„~ v/a there is one solution for energy to = &u(K)

lying below the quasieontinuum of energies of free
magnons. The calculated energy spectrum &u(K)

of the two-magnon states is exhibited in Fig. 2.

V. CONCLUSIONS

Fa Sa 2a Pa So a K"

FIG. 2. Energy spectrum of the tv'-magnon bound

states for K=K„(1,1,1). The shaded area repxesents
part of the quasicontinuum of free two-magnon states,
its lower boundary is given by min& (E&~+I, +E&& „).

(12) reduces to solving the set of linear algebraic
equations

Q [&;, —G„(a))]Q b, (R,q)g, =0,

~ a,.(Z, q)f,.(K, q) (19)
(u —Q(K', q)

The energy eigenvalue co, which is the energy of
the two-magnon bound state, is calculated from the
usual condition of the vanishing of the determinant
D(ra&) =det[8& —,.G, , (ap)] of the system (18). For a
fixed value of K we compute G,, (~) and then D(~)
for consecutive values of ~, locating finally that
value af &u for which D(&u) = 0.

The computations showed that in the interval of
K„ranging from 0 to about 2g jsg there are no so-

The energy spectrum of the two-magnon. bound
states in our model of a.n itinerant-electron ferro-
magnet has some resemblance to the bound-states
spectrum in the Heisenberg ferromagnets. ' In both
models, the two-magnon bound states exist for the
total momentum K greater then a critical value K„
typically, K, is near the Brillouin zone boundary
(in our case, for K parallel to the [ill] direction,
K, = 2v(avY). There are also differences. We have
found only one branch of the two-magnon energy
spectrum, whereas in three-dimensional Heisen-
berg ferromagnets there a.re two branches, ' one of
them being doubly degenerate. By our method of
computations we are una, ble to a.ssess any eventua. l
degeneracy of the two-magnon spectrum. Besides,
we have found a shallow minimum in the dispersion
curve for the two-magnon. states, whereas the cor-
responding curves for the Heisenbexg ferromagnets
are monotonic. This result might well be only a
feature of our simplified model.

Our simplified model of the band structure ex-
hibits some unrealistic features as applied to nick-
el, In nickel, the experimentally determined mag-
non energies enter into the continuum of the Stoner
excitations at a critical value q, of the magnon
wave vector. " Therefore, in nickel, the additional
conditions (-,'K+ k~ &q, should be imposed, and the
two-magnon bound states may only exist for K from
the interval K, c Ks yq, . Unf ortunately, the experi-
mental value" of 2q, is quite close to R',.
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