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The magnetic properties of a spin-glass system interacting with a set of Gaussian-distributed exchange
potentials are obtained using the self-consistent mean-random-field (MRF) approximation. It is shown that for
this distribution the magnetic properties obtained from the MRF approximation are identical with that
obtained from the n—0 expansion of the free energy of Edwards and Anderson and of Sherrington and
Kirkpatrick. The specific heat from the MRF approximation is also linear in temperature T for low T. For
the Ruderman-Kittel-Kasuya-Yosida interaction the n expansion is difficult, however, the therymodynamic
properties of the spin glasses are easily obtained in the MRF approximation. Furthermore, the latter gives
some of the known properties of the system in excellent agreement with experiment. The MRF approximation
predicts the following experimentally measured quantities: the low-temperature specific heat, the low-
temperature low-field and high-field magnetization, the cusp in the magnetic susceptibility, the spin
dependence of the susceptibility near T—0, and the low-temperature resistivity near T—0. It is furthermore
argued that the scaling of the thermodynamic properties with impurity concentration will have a different
concentration dependence at high and low temperatures. A possible reason for the agreement of the Ising-like
model and the disagreement of the Heisenberg-like model prediction with experiment is given.

I. INTRODUCTION

Several years ago I derived'? a self-consistent
method to obtain the probability distribution P(H)
of the random molecular field H of a spin-glass
system in which the spins interact via a Ruderman-
Kittel-Kasuya-Yosida (RKKY)? interaction. We
shall denote this method as the mean-random-
field (MRF) approximation and Ref. 1 will hence-
forth be denoted as I. The method gives a low-
temperature specific-heat linear in temperature
T and independent of the fractional impurity con-
centration ¢, in agreement with experiments on
Cu-Mn.* Similarly, the low-temperature magnetic
susceptibility predicted from the model is in
agreement with the experiments of Franz and
Sellmyer® and of Dreyfus et al.® In spite of this
agreement with experiment the theory was de-
ficient in the following respects: (i) The results
were derived in an Ising model and it was believed
that the correct treatment should use a Heisen-
berg-like distribution of fields.” Such a Heisen-
berg-like distribution gives that the probability
for small field goes to zero® and results in an in-
ternal-field model which does not explain the
linear- T dependence of the specific heat. Further-
more, experiments by Murnick ef al.® indicate that
the probability for zero fields approaches zero,
not unlike the Heisenberg-like distribution of
fields.® (ii) The molecular-field model did not
predict the cusps in the magnetic susceptibility ob-
served by Canella and Mydosh!® and gave magnetic
order for all temperatures, thus resulting in an
infinite transition temperature.

A significant step towards proper understanding
of the MRF picture has recently been made by
Riess and Klein'! who found that if one restricts
the distance of closest approach between the mag-
netic impurities to be a near-neighbor distance
one obtains a finite transition temperature T,
above which the spin-glass system is completely
disordered. Riess and Klein'! also obtain a cusp
in the magnetic susceptibility at 7=T.

A completely different and more rigorous ap-
proach to the spin-glass problem has been de-
veloped by Edwards and Anderson'? (EA) and by
Sherrington and Kirkpatrick'?® (SK) to obtain the
free energy for the spin-glass system. In order
to evaluate the average of (InZ),, where Z is the
partition function and { ), indicates an average
over coordinates, EA'® use the expression

(InZ) = 1'3:51 % ((Zr-1),,

evaluate (Z" )c for integer » and continue the func-
tion analytically to »n—0. This is denoted as the
n expansion. For a set of random exchange po-
tentials J;; having a Gaussian probability distribu-
tion P(J;;), EA'? obtain a discontinuous derivative
in the magnetic susceptibility. SK!® evaluated the
free energy of the spin-glass system using a
Gaussian distribution of exchange potentials and
showed that the system may undergo a ferromag-
netic (or antiferromagnetic) or spin-glass transi-
tion depending upon the parameters entering the
Gaussian.

The purpose of this paper is (i) to show that using
the SK'? Gaussian distribution of exchange po-
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tentials, the MRF approximation' gives identical
magnetic properties to that obtained by SK (as
well as similar specific heats near 7~ 0); (ii) to
present a new point of view on the physics of the
RKKY system and the MRF approximation; (iii)

to argue that the question of the validity of the
Ising model or the Heisenberg model is most
likely resolved for the thermodynamic properties
of the RKKY spin-glass system; and (iv) to
demonstrate that the MRF approximation explains
many of the experimentally observed data on RKKY
spin glasses. Some of these experiments are (a)
the low- T specific heat is linear in 7 and approxi-
mately independent of ¢ as was found by Zimmer-
man and Hoare*; (b) the low-temperature mag-
netic susceptibility y of the system is y
<[A,+B,(T/c)], where A, and B, are indepen-
dent of T and ¢ as was measured by Franz and
Sellmyer®; (c) the deviation of the low-T re-
sistivity from its 7'=0 value is linear in 7 and
independent of ¢ as was measured by Ramos'*

(d) the deviation of the very-high-field magnetiza-
tion M(T) from its saturation value, M(T)- M(0)
is proportional to [1+ a(7%/B%]/B for low tem-
peratures, where B is the applied magnetic field,
in agreement with the experiment of Hou and
Coles’®; (e) there is a cusp in the magnetic
susceptibility at temperature T,, with 7, c®
where a= 0.66, not unlike the experiments of
Canella and Mydosh10 (f) furthermore, we find
that the second derivative of the magnetic suscepti-
bility with respect to the temperature for very low
temperatures may be positive, close to zero, or
negative, depending upon the magnitude of the
impurity spin; (g) finally, we argue that the u-
meson-depolarization experiments of Fiory ef al.’
are likely consistent with the MRF model.

II. MOLECULAR-FIELD THEORY FOR THE GAUSSIAN-
DISTRIBUTED EXCHANGE POTENTIAL
In this section we show that for the Gaussian-
distributed exchange potentials used by SK,'3 the
random-molecular-field model gives identical
magnetic properties to that determined by SK.
Consider the Hamiltonian 3C of the form

=-3 ZJ,, Sis (2.1)
it

where J;; is a random variable. SK'? use a prob-
ability distribution of J;; of the form

P(J;) = (2T %) 2 exp[- (J;; - ,)°/27°] (2.2)

for each J;.
Using the molecular-field approximation' we
have for the internal field at site i, H;,

H, = Z Ji;4S,), (2.3)

where (S;) is the thermal average of the spin at
site j in the field H;, as is discussed in I. Using
the statistical model of Margenau'® in the form
developed in Eq. (2.7) of I we obtain

P(H,.)z-[P(R) dam(y,._ ) Jij<s,>>, (2.4)
where for the case considered by SK**

PR)&R= ][] PU,)as,,, (2.5)
it
where P(J;;) is given by Eq. (2.2)
Substituting Eq. (2.5) in Eq. (2.4) and letting
6(x) = (2m)™ [e** dp gives

1 . A .
P(H‘)zz_n femin dp H fP(J“)M”e-wJ”(sj)

-5 ewlin(ni -0 3 5))]
x e=I%0%/ 2 Z S,7, (2.8)

where the dependence of (S;) on J;; is neglected.
We define the average magnetization M by the
relation,

M={(S), = f P(H,) tanhgH, dH, 2.7)

where ((S;)), indicates an average of (S) over the
coordinates of the system. We also define the
spin-glass order parameter m

m=((S,),= [ P(H,) tanh®BH, aH, (2.8)

where as a self-consistency condition we require
that m,;, M;, and P(H;) are independent of ¢.

We remark that our M corresponds to SK’s
magnetization and our m corresponds to SK’s
order parameter g. Using the definitions Eqs.
(2.7) and (2.8) in Eq. (2.6) and letting Z,- S
=zM, 2,(S;*=2m, and integrating gives

PH) = _(zﬂ_m:_‘)TEJ_e-(H-Jon)z/szmz , (2.9)
where z is the effective number of neighbors.

Using Eq. (2.9) in Eq. (2.7), and changing vari-
ables of integration gives

M=(27)1177fe"‘2’2dxtanhB[J(zm)1/2x+Jon].

(2.10)

Using Eq. (2.9) in Eq. (2.8) and letting tanh®x
=1-sech’x, we obtain

m:l-(—z—%mfe"‘z/"‘dxsechZB[J(zm)‘/2x+szM].

2.11)
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The results for the magnetization M and the spin-
glass order parameter m arising from the MRF
approximation are thus identical with that obtained
by SK*? from the evaluation of the free energy
using the n expansion.

We next obtain the low-temperature specific heat
from the molecular-field approximation. We re-
call that for any distribution of exchange potentials
the free energy is

- BF= j P(R)d*R InZ(R) , (2.12)
where for the case considered by SK, P(R)d°R is
given by Eq. (2.5). The internal energy U is

U=+ a(BF) fP(R)d3R<dh£(R)> ,

since P(R) is independent of 7. The specific heat
C, is given by

(2.13)

#1nz
c, f PR) &R~

- f P(R) d°RC,(R) . (2.14)
In the molecular-field approximation C,(R)
EC,,(Z;]. J;;(5;)). Thus we write Eq. (2.14) in the
form

C,,(T):Nf{fé([i- PN j>) P(R) dSR]

x C,(H) dH , (2.15)
where N is the number of spins in the system.

The expression in the large square brackets of
Eq. (2.15) is by definition P(H), as is seen from
Eq. (2.4). We then have

C(T) =N f P(H)C,(H) dH . (2.16)
The internal energy U is U=- 3 HtanhBH and
C,(H)= (H?/k 5 T%) sech®BH. Using this result in
Eq. (2.16) and changing variables of integration
gives
-x2/ 2

C (T) Zk_ZJ‘ W [J(mz)‘/2x+szM]2

x sech?g[J (mz)" 2x+ J zMldx .
(2.17)

For the spin-glass transition with M =0 we ob-
tain,'” for very low temperatures, for the leading
term in the specific heat

B kBT>(2>1/2 7Tz>
Cv_NkB z—n—zj ;T- 'i-z- . (2.183)

The expression obtained by SK'® for T near zero

is
_ kBT><2>”2(7r2 1)
Cv-Nka(znv; 1272/

In spite of the fact that we obtain from the MRF
approximation a leading term similar to SK, our
equations point out the difficulty which arises in
deriving the thermodynamic properties of the
system in the MRF approximation. Equations
(2.12)-(2.14) follow from each other. Had, we,
however, integrated Eqs. (2.12) or (2.13) and had
obtained the specific heat from differentiating the
resulting integral for U with respect to T, we
would have obtained an extra contribution for
dP(H)/dT which is not in the original expression,
Eq. (2.14), for the specific heat. Such difficulties
always arise when one evaluates thermodynamic
quantities using an approximation method, in our
case the molecular-field approximation. It is
still gratifying that the simple molecular-field
approximation gives reasonable agreement with
the » expansion. The agreement for the specific
heat is limited to low temperatures, for at high
temperatures SK'? found that C, 772 and the
molecular-field approximation gives C,=0 for T
>T,, where T, is the transition temperature to
be discussed later on. However, the magnetic
properties from the two methods are identical.
Even though the results obtained from the dis-
tribution P(J;;) of Eq. (2.2) are interesting by
themselves, in order to compare the RKKY system
with experiment one would have to derive P(J; ,)
for the RKKY system self-consistently, and then
use the n expansion to obtain the free energy. The
latter is difficult for the RKKY interaction; how-
ever, thermodynamic properties of the spin-glass
system are easily obtained in the MRF approxima-
tion.

(2.18b)

III. MRF APPROXIMATION FOR THE
RKKY INTERACTION
In this section a comparison between the predict-
ions of the MRF approximation for the RKKY in-
teraction and experiment is made. It is found
that there is very good agreement between theory
and experiment for many of the thermodynamic
properties. One wonders why the molecular-field
approximation should give results which are in
such good agreement with experiment. The most
likely reason for this is that the RKKY potential
is a very-long-range interaction, and at least for
the ferromagnet the molecular-field approxima-
tion becomes exact when the range of interaction
approaches infinity.'® Before we make a detailed
comparison mentioned above, we comment on
the validity of the Ising model calculations of I.
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It was found recently by Riess and Klein'! that
the RKKY spin-glass system undergoes a phase
transition and exhibits a cusp in the magnetic
susceptibility at T=T,, where T, is the spin-glass
transition temperature. Below T, the system is in
an ordered state in which the magnetization M (in
the absence of an externally applied magnetic field)
is zero. However m, the average of the square
of the local magnetization, is nonzero. We shall
argue later that whether the order parameter m
is Ising-like (up or down only) or has some com-
plicated structure (some random spirallike
structure which a Heinsenberg-like model may
predict) may be of no consequence as far as the
thermodynamic properties of the system are con-
cerned. The suggested qualitative reason for this
is that once the system undergoes a phase transi-
tion, the orientations of the local spins are fixed
by the local internal fields experienced by the in-
dividual spins. Therefore, when one calculates
the probability distribution of the internal field at
a particular site one should not allow all other
spins to have arbitrary orientations, but only
orientations which are in accordance with the
direction which the spin-glass order parameter
makes locally. We will come back to a discussion
of this point later. Thus we use anIsing distribution,
and will show later that a simple application of the
Heisenberg distribution gives thermodynamic
properties in complete disagreement with experi-
ment.

The probability distribution P(H) of the internal
field H in an Ising model is given by Eq. (2.14) of
I, i.e.,

P(H) - (277)-1 f eiDH-(N/ 12244 dp , (31)

where N/V is the number of particles per unit
volume, and

V’=41erP(H) dwa[l- cos(pap/r3)]v?dr, (3.2)

where in Eq. (3.2) the distance of closet approach
between the impurities is allowed to go to zero.
Since in a realistic physical situation the distance
of closest approach between the impurities is
limited by y,, where y, is the near-neighbor dis-
tance in the solid, Eq. (3.2) exaggerates the im-
portance of large fields and results in a Lorentzian
distribution of fields. All moments, except the
zeroth, of the Lorentzian diverge, thus a high-
temperature expansion of the magnetization would
give an infinite transition temperature (in other
words such an expansion is not valid). To bring
Eq. (3.2) in accordance with the appropriate
physical situation, we let the lower limit of the

second integral in Eq. (3.2) be y, instead of zero.
Changing variables of integration and letting =,
be an effective number of sites within a unit
cell, Eq. (3.2) becomes

V=t |pa) [ ) | uee) | an

naal |
xf oalu () ,,(1 - cosz)/z%, (3.3)

o
where n,=(d/y,)®, where d is the lattice constant
and a is the strength of the RKKY interaction at
a distance of one lattice constant. The vertical
brackets |x | indicate absolute values of x, and

| wH) |=S|Bs) |, (3.4)
where
Bg(x) = (232“;1> coth <2§s+ 1>x ‘2Ls coth e ,
(8.5)

with x=S(gu,) (H+B)/k,T, where g is the gyro-
magnetic ratio, ug is the Bohr magneton and H
is the internal and B is the external field.

Except for the near-neighbor cutoff Eq. (3.3) is
the same as that used in I and Ref. 11. However,
we now use the Brillouin function, instead of pu
=tanhzx. In this way we can obtain the spin de-
pendence of the thermodynamic quantities. We
now let B—~0 and delete the quantities g and u,
whenever convenient and put them back in the
last step of our derivation.

In order to evaluate Eq. (3.3) we replace the
value of | u(H)| in the upper limit of the integral
by its average value m, where

m=f PH) | u(H) | aH

= [ Pes Byt | an. (3.6)

The approximation by which we replace the average
value of | u(H) | by m we denote as the modified-
MRF approximation. For the distribution function
with no cutoff the two are identical, however, with
a cutoff the two are somewhat different. The
physical meaning of the modified- approximation
is that the spin which occurs as an argument of
the cosine in Eq. (3.2) is replaced by its average
magnitude.

Substituting Eq. (3.6) into Eq. (3.3) and the re-
sult used in Eq. (3.1) gives

P(H) = ;17 jox cospH exp[-(3m)cn.ampf (pn,am)]dp ,
(8.7a)

£( pnoam)=f‘mom (1 -~ cosz)/z%dz . (3.7b)

0
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Let y =pnsam, changing variables we have
P(H) = (wanom)"f cosy(H/n,am)
0

x exp[—(3 m)evf (v)]ay.
(3.7¢)

Using Eq. (3.7c) to evaluate the nth moment of the
distribution function 7, gives

n,= [ pw) | o | an (3.82)
=(7ran0m)'lf dyf dz P(z)z" cosyz

x exp[ - (£ mevf (v)]
= (an,m)"g,(c), (3.8b)

where 7, is the magnitude of the nth moment of
P(H) and g,(c) is a function of the impurity con-
centration ¢ only. This result will become im-
portant when we consider the behavior of the
system near the spin-glass transition.

For small values of H the behavior of Eq. (3.7)
is approximately Lorentzian in the sense that the
behavior of P(H) for small H (and low c¢) is ap-
proximately given by

P (H) z% ﬁ , H<ngam (3.9)
where A, =27%an,cm =vy,cm, with m given by Eq.
(3.6).

Equation (3.9) is identical with Eq. (3.3) or I
where no cutoff was introduced in the exchange
potential. Equation (3.7) was solved using a com-
puter, and for small H and for impurity concen-
trations of the order of 1%, Eq. (3.3) of I differs
from Eq. (3.9) by only a few percent. The dif-
ference could, however, be possibly detected
when measuring low-temperature quantities
which strongly depend upon the very-low-field
behavior of P(H). We note that m in Eq. (3.6) is
analogous to the order parameter of SK.'*

For very high fields (H >n,am), Eq. (3.7) drops
off approximately like a Gaussian and is of the
form

P,(H) < A, exp[— 3 (H/A,)?], H>»ngam  (3.10)

/2y, where m is again given

where A, =(2 1)/ 2anct
by Eq. (3.6).

One important difference between the low-field
and high-field probability distribution is the con-
centration dependence of their width. This will
have an important effect on the scaling of the ther-
modynamic properties of the system with impurity
concentration. The very-low temperature propert-
ies of the spin glass are primarily determined by

very small fields, where Eq. (3.9) applies. Since
A, is proportional to ¢, these low-T properties
will scale differently with the impurity concentra-
tion than the high-T properties. The latter depend
more on the high-field distribution, whose width
is proportional to ¢}/2. Thus our results show that
the generally accepted scaling argument, accord-
ing towhichall thermodynamic properties of the
Ruderman-Kittel spin glass depend upon 7/c only,
are incorrect. Rather, the scaling with T/c
should be reasonably good for very low 7, but fails
completely near the spin-glass transition tem-
perature T, where we find that T, c®, where «

~ 0.66.

A. Cusp in the magnetic susceptibility

For high temperatures A, and A, of Egs. (3.9)
and (3.10) approach zero. Riess and Klein'! ex-
amined the behavior of the order parameter m
in the presence of small applied fields B and find
that lim 5. ,(m/B) -~ as T — T,, indicating the ex-
istence of a nonzero m below T,, where Riess and
Klein used the MRF approximation to obtain T,.
They found that

T, =3 S(S+1)[n,(0)]*/%,

where % in the MRF approximation was either 1 or
2. Thus in the MRF approximation there is an
ambiguity is the determination of the transition
temperature. In the modified-MRF approximation
no such ambiguity arises. When going through the
same procedure as was done in Ref. 11, we ob-
tain

TC=§(S+ 1)n,(0), (3.11)

where 7,(0) is the magnitude of the kth moment of
the distribution function evaluated at T=0. Or

n0)=2 [ P(H,0)H*aH , (3.12)
0
where P(H,O0) is the expression for the probability
distribution at 7=0. The value of 7,(0) is pro-
portional to S* as can be seen by substituting Eq.
(3.6) into Eq. (3.8D).
The magnetization per impurity M*(B) is

M\B)= [ PH)SBy[gus8|H+B[laH. (3.13)

and the single- spin susceptibility x,(B) is
d -
100) = lim —&_
(@ =lim — [ PE)SBw)an

“um [ : ) = [SB()]dH.  (3.14)

Expanding Eq. (3.14) in a power series of B for
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high temperatures we obtain.

P 2824+25+1
R R U BCAT)

where P2, =[S(S +1) (guB)é]. For T>T,,m=0 and
we obtain

X'=P/3kyT, T>T,. (3.16)

We thus obtain a 7~ dependence of the paramag-
netic susceptibility rather than the usual (T - T,)™
dependence for ferromagnets. The slope of the
susceptibility for T> T, is

ar - @k, 1)

Solving Eq. (3.6) and (3.10) for m?® near the
transition temperature and substituting the result
into Eq. (3.15) gives for the derivative of the
susceptibility just below T,

(3.17)

dy' _ Piif (3772(0)7) (0) >
7= W 773(01 -1). (3.18)

We note that since 7,(0) is proportional to S*, the
spin-dependent factors in the large parentheses
of Eq. (3.18) cancel, and the only remaining spin
dependence is in P2,.

A comparison of the slope of the susceptibility
above T, from Eq. (3.17) to that just below T, in
Eq. (3.18) shows that even though the susceptibility
is continuous at T=T, it has a discontinuous de-
rivative at 7,. For our distribution the slope of
the susceptibility still remains negative below T,.
Thus the MFR theory gives a cusp inthe suscepti-
bility with a concentration-dependent slope on the
two sides of T,. The maximum in x occurs, how-
ever, at a temperature below T..

After this paper was prepared for publication it
came to the authors attention that Rivier and
Adkins [ Amorphous Magnetism, edited by H. O.
Hooper and A. M. de Graaf (Plenum, New York,
1973), p. 215] obtained an analogous result to that
of Held and Klein.® In their result m is a constant
and thus agrees withour 7'=0 derivation only,
whereas our solution is for all 7. Similarly,
Adkins and Rivier®® obtain a cusp in the suscepti-
bility. Their®® cusp arises from introducing an
average magnetization which exists only within
a correlation length, thus being of definite short-
range nature. In our derivation the cusp occurs
because of long-range order in the spin-glass
order parameter m.

B. Comparison with experiment

We have calculated the various moments of the
distribution function given by Eq. (3.3) directly
using a computer. A log-log plot of the moments

as a function of the impurity concentration is
shown in Fig. 1. Since the transition temperature
is proportional to the first moment 7, (0) it is in-
teresting to examine its behavior. We find

7,(0) = 0. 12(naS)c?’®, 1%<c<5%

(3.19a)
n,(0) 0. 38(ngaS)c*’?, c>6%.
Similarly, we have
1,(0) = 0. 042(ngaS)%c, 1%<c<19% (3.19b)
and
n5(0) =0.024(nqaS)’c*?, 1%<c< 4% (3.19¢)

75(0) = 0.22(,aS)3c*®, ¢>5%.
For 1%<c <5% we have
T,=4% S(S +1) (0.120) (z,@)c?’3, 1% <c < 5%.
(3.20)

This concentration dependence of T, is in reason-
able agreement with the experiments of Mydosh'®
(who quotes T, c®u, where 0.55<a,<0.75 for
0.1%<c<10%). For c>6% the character of the
first moment becomes more Gaussian with T,

<c!/2, The value of y at T'=T, is predicted from
our model (taking k=1 for low ¢)

X(T)=NocP2/3k T, cc? | 1%<c<5% (3.21)

and the slope of the susceptibility just above T,
(T=T)) is

d by N,CcP,
X(TC):_ oC et OCC-l/S, 1%<C< 5%

2
aT 3kp T
(3.22a)
| % 3% 10 % 30 %
I T T T 71
-
=z
w
= SLOPE=€=~15
o
=
4
=) z
z
g 3
& ol 401
n <
o
% €x12 %
<T pd
o- FIRST MOMENT/(ngya$S) -
-
e 0- SECOND MOMENT/(no aS)?
W a- THIRD MOMENT/(noas)®
001 1 | 1

00
1 % 3% 10 % 30 %

FIG. 1. Computer-calculated values of the first three
moments of probability distribution as a function of the
fractional impurity concentration ¢. Note the break in
the slope € of the first and third moments near ¢ =5%.
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Using Egs. (3.19) in Eq. (3.18) gives

ax(T>) _ NoCPyy
dT 3ky T2

(0.63¢c%% 1), 1%<c<5%.

(3.22b)

Thus the MRF model perdicts for the RKKY in-
teraction that there is a discontinuous derivative of
the susceptibility at 7= T,; however, the predicted
slope of x¥ from our calculation continues to be
negative at least for some ¢ below T,. Thus the
MRF model predicts amaximum in y for 1%<c
<2.5% below T,. The temperature of the max-
imum, T, ><c as was found inI. To our
knowledge, such a maximum was not yet observed
experimentally except possibly in the measure-
ments of Lutes and Schmit,'® but in this case!®
the magnetization was measured in appreciably
large external fields, which suppresses the cusps
as is discussed in Sec. III D.

For a Gaussian P(H) we obtain that dy(T;)/dT
=0, in agreement with the results of SK*3 for the
Gaussian. Whereas one expects reasonable agree-

M(B,T) =M{§ +:—2 In(2S+ 1)( kBT) + [3

Y ycS

For T near zero we have
M(B,O)E;igl M(B)=NB(gug?/y. (3.24)

Thus the T=0 magnetization is predicted to be
independent of impurity concentration and of the
impurity spin and is inversely proportional to the
RKKY interaction strength. For T #0 the slope
of the magnetization is proportional to 7/c. This
result as well as Eq. (3.24) has been found to
agree with the experiments of Franz and Sellmyer®
on dilute magnetic alloys.

The coefficient of the T'2 term gives the most
information on the spin dependence of the im-
purity, since everywhere else in Eq. (3.24) only
the product Sy appears, thus S can only be de-
termined when ¥ is known. We note that for small
values of S the coefficient of the 7'2 term is
negative, but becomes positive for large values
of S. Lety=Fk,T/ycS, we then define the quantity

y d*M 16 4T

— —— 2———'——
SN B T~ @S+ UF-gmeay
(3.25)

we find that #=- 1.85 for S=3, t=-0.773 for S =1,
t=-0.0563 for S=3, #=+0.50 for S=2, and ¢

ment with experiment for the first moment and the
transition temperature, it would be surprising if
Eq. (3.22b) were to agree well with experiment
since it involves three different quantities, 7,(0),
1,(0), and n,(0), the value of each of which is ob-
tained only from the molecular-field approxima-
tion. Also, our powers of ¢ were obtained from

a graphical analysis, and the reader is cautioned
not to jump to the conclusion that our exponents of
¢ are rational numbers.

C. Low-temperature low-field magnetization

The expression for the low-temperature low-field
magnetization for the spin- 3 Ising system is given by
Eq. (4.8) of Ref. 2. In this section we give the
result for general spin S obtained by Fischer
and Klein.?° The expression for the total mag-
netization of M(B) for N=N,c impurities, where
N, is the total number of sites in the solid, B is
the external field, is given by Eq. (15) of Ref. 20.
For ugB<kyT and ky T << yc, where y is given
by Eq. (3.9) we have

s

2].n(28+1)>2 4n MkaT>2}+O(T3), (3.23)

T 3(25+1) ycS

—

=+ 0.96 for S=3. Thus for spin 3 the curvature

of the very-low-temperature susceptibility should
be close to zero, whereas for spin 3 the curvature
is positive. We remark that Mydosh® found a
positive curvature for Ag-Mn and a curvature close
to zero for Au-Cr. Recent measurements of the
susceptibility of Au-Fe by Guy?' show clearly that
for this system the curvature of x below T, is
close to zero. This again is in agreement with
our prediction if we assume that the spin of the

Fe impurity dissolved in Au is 3.

D. High-field low-temperature magnetization

As the external field B becomes very high it is
expected that the magnetization of the system will
reach its saturation value, provided py,B>kgT.
However, because of the competing interaction in
the RKKY potential there will be important de-
viation from saturation. The magnetization in the
presence of large internal fields for a spin-3
Ising system has already been derived previously
and is given by Egs. (4.8) and (4.9) of Ref. 2. For
a general spin S the low-temperature low-con-
centration magnetization is given in Eq. (16) of
Ref. 20, and is
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M=NocgusS {1‘ B Lt 3Es D) \7n, B
2\?/ ycS >2 kyT 272 k8T>31 .
+In(2S+1) (;) (guBB [gu.BB + 305 +7) (guBB +0(c*T)+0(cTY} . (3.26)
In order to compare with experiment, we substitute the value of y in Eq. (3.26) and keeping terms to
order c? only we have
4 w(an,)cS { 2m k T>2}
=N S{1l- = 0 1 B . 3.27
M=Nocpp { 3 gn,B L " 3@s+ 1)<gp.BB (3.27)

Recalling that a is the average RKKY interaction
at a distance of one lattice constant, then

2 /2 2V
an, = Vo(;)/’ cosx dx = T" )
o

where V is the strength of the interaction used by
Larkin and Khmel’nitsky,?? we obtain for spin 3
the identical numerical value (but not the same S
dependence) as Larkin.?

Equation (3.27) is to be compared with the ex-
perimental results of Hou and Coles.!®> We find
that for spin 3 our expression agrees exactly with
Hou and Coles’s second equation. However for
spin S#3 our results are different from theirs.
Since the spin was not varied in the Hou-Coles'®
experiment our Eq. (3.27) agrees, at least qualita-
tively, with their experiments on Ag-Mn.

Considering the term proportional to ¢® in Eq.
(3.26) we find that this term gives an increase in
the magnetization with temperature. At first this
may seem contradictory to physical expectations,
since one normally expects that as T increases the
magnetization decreases. But a more careful
analysis will show that our results make good
physical sense. The spin-glass properties of the
RKKY system arise because of the antiparallel
nature of spin alignment resulting from the oscil-
lating RKKY interaction. Thus two spins will,
on the average, give zero contribution to the mag-
netization. However, a third spin, whose con-
tribution will be proportional to c¢® in our self-
consistent treatment, will tend to interfere with
the antiparallel alignment and thus give an increase
in the magnetization. It may be useful to perform
experiments at somewhat higher concentrations
than was done by Hou and Coles’® to see whether
our prediction is observed. Before leaving this
subject we wish to comment on Smith’s*® com-
parison with our Eq. (3.27) as shown in Eq. (4.6)
of Ref. 2. We obtain a term linear in T but pro-
portional to ¢®, whereas Smith’s?® term is pro-
portional to c2.

E. Magnetization and its derivative for finite fields

The cusp in the susceptibility is obtained only
in the limit as the externally applied field is zero.
However, when the magnetization and its deriva-
tive are measured in reasonably large fields, the
order parameter m defined in Eq. (3.7) is nonzero
for all T, and the cusp in y is absent. Such is the
case in the experiments of Lutes and Schmit.!®
In this case one observes a well-rounded maximum
in the susceptibility. The behavior of the distribu-
tion function for large fields is unimportant for this
case since m is always nonzero and P(H) can be
approximated by Eq. (3.9). This case was ex-
amined in detail in Refs. 1 and 2, where it was
found that the temperature of the maximum in y,
Tmax < €. Similarly, x(Tp.,) <c® for very small c.
The deviation of the susceptibility for 7> T,
from its Curie-law behavior was found by Klein
and Shen®* to be approximately proportional to
c?/T? in agreement with the experiments of Lutes
and Schmit®® on Au-Fe and Au-Cr.

F. Heisenberg versus Ising model and the muon depolarization
experiments on dilute alloys

The Ising model?® gives an internal field where
P(H) is finite for H=0. The Heisenberg distribu-
tion of fields® gives, on the other hand, that P(H)
-0 for H—0. The latter is consistent with polar-
ized p-meson experiments on dilute alloys by
Fiory et al.’ Fischer and Klein*® have examined
the detailed behavior of the high-B and the low-T
magnetization of spin glasses in the simple Heisen-
berg and Ising models and found that in each case
the Ising distribution gives results which are in
excellent agreement with experiment, whereas
the Heisenberg distribution always disagrees with
experiment. Similarly the low-temperature
specific-heat experiments agree with the Ising
prediction and disagree with the Heisenberg-
model results.® It was also shown recently by
Riess and Klein'! that the MRF approximation
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gives a well-defined transition temperature and
cusps in the susceptibility of the spin-glass sys-
tem.

These facts force us to give a new physical in-
terpretation to the spin-glass state which indicates
why the Ising-model calculation gives the correct
properties of the system even though the fields are
Heisenberg-like distributed.

At T>T, the order parameter m given by either
Eq. (3.7) or Eq. (3.10) is zero. For T<T, the
order parameter m is nonzero, which shows that
the magnitudes of the spins become correlated to
each other and become aligned in some compli-
cated fashion (may be some complicated set of
random spiral structures) and the direction of
the local field at a particular site is random and
varies from site to site. Thus if d(») is a unit
vector in the direction of the order parameter at
site » U(r) is expected to vary from site to site.
The internal field at site » will be H(r;)
=2,v,;m;; and will have a well-defined value
and direction at site ». Next we want to consider
the internal field distribution from two reference
frames: (a) a direction fixed in the laboratory, as
in the case of the polarized-muon experiment;

(b) reference frame of any one impurity in the sys-
tem. With respect to a fixed external direction,
the fields are all oriented randomly (in direction
as well as in magnitude) and the probability is
similar to that found for the Heisenberg model.®
This explains why the probability for zero fields

is close to zero in the polarized u-menson ex-
periment. The sudden increase of the field as the
temperature is lowered is, on the other hand,
explained by the existence of the spin-glass transi-
tion.™

Next we consider the field distribution with re-
spect to the local impurity. A spin-glass transi-
tion occurs at some temperature T,, and the
transition occurs in the Heisenberg- as well as in
the Ising-model MRF approximation. Now in the
Heisenberg model, the direction of the vector
spin changes from site to site, however, each
spin, regardless what its direction is locally, con-
tributes to the buildup of the nonvanishing order
parameter below 7,. At T near zero the spins
are frozen-in in their random directions. The
magnetization is a function of T and is a vector
quantity M(¥) depending upon the local position T
such that fi\./f('f') dr=0. Now consider the spin at
F=T,. M(T;) has a certain well-defined di-
rection, because the field at ¥; has a well-defined
direction, the direction being dictated by the N ¢
-1 other spins. The Heisenberg distribution was
obtained® by assuming that each spin may be
oriented in an arbitrary direction, thus resulting
in a degeneracy of the field as a function of the

angle, and thus the probability of the field H is
proportional to H? dH. When the system orders,
some particular component H(K) of the vector field
H predominates the system, presumably resulting
in some complicated structure of the spins. Since
the system is now ordered, the local spin at a
particular site ¥;, M(F;), will not have an arbitrary
direction of orientation (i.e., will not have all
possible orientations with equal probability) but
will be frozen-in in the direction determined lo-
cally by the order parameter. Thus when one cal-
culates the probability distribution, the volume
element will no longer be H>dH, but rather closer
to an Ising distribution. Clearly these arguments
are hand-waving and no proof for a realistic
system.

G. Low-temperature specific heat

That the MRF approximation gives a low-tem-
perature specific heat C, which is linear in T and
independent of ¢ has been discussed in detail in I.
This argument still holds since the major contribu-
tion to the low- T specific heat comes from small
internal fields, where Eq. (3.9) is the right ap-
proximation to P(H) provided k2, 7/A, «< 1.

Had we used the Gaussian, Eq. (3.10), to cal-
culate C, we would have obtained C, < Tc*’/? in
disagreement with experiment. Similarly, the
distribution used by EA' and SK*? as well as the
calculation of Fischer?” should give a low-T
specific heat proportional to Tc'/2. The fact that
the very-high-field contribution depends upon
A, ct’? and results in a T,xc®%, and that the
low-temperature specific heat and magnetization
depend upon small fields for which A xc¢, in-
dicates that the scaling of the thermodynamic
properties of the spin glass has a different concen-
tration dependence for high 7 and low 7.

H. Low-temperature resistivity

The low-temperature resistivity p(7) was cal-
culated in the molecular-field approximation by
Harrison and Klein?®*'*® using an Ising-like dis-
tribution of fields. They found that

. dp>~A3cJ2[ 3J< ky ﬂ
5‘%‘(77? S e\t

(3.28)

and since A, is proportional to ¢, Harrison and
Klein obtain that the deviation of the resistivity
from its 7'=0 value is independent of the impurity
concentration and is proportional to the tempera-
ture. Recent measurements of the resistivity by
Ramos'? agree with this prediction of the
molecular-field model.
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IV. CONCLUSION

We find that the mean-random-molecular-field
approximation used with the Gaussian-distribution
exchange potentials of SK*? gives identical magnetic
properties to the »n expansion of EA!? and SK.'®
The very-low-T specific heat is linear in T as in
the n» expansion, however, at high temperatures
the n expansion gives a specific heat C, pro-
portional to T2, whereas C,=0 for T>T, from
the MRF approximation.

The MRF approximation applied to the RKKY
system gives the following properties in excellent
agreement with experiment: (i) the concentration
and temperature dependence of the low-tempera-
ture specific heat; (ii) the concentration and tem-
perature dependence of the low-T low-field and
high-field magnetization; (iii) the low-temperature
susceptibility; (iv) the 7' dependence of the

susceptibility for high 7. Further experiments
which are in good qualitative agreement with the
MRF approximation are (v) the concentration de-
pendence of the temperature of the cusp inthe
susceptibility; (vi) the spin dependence of the
curvature of the low- 7 magnetization; (vii) the
concentration and temperature dependence of the
low- T resistivity; (viii) the concentration and
temperature dependence of dM/dH in reasonably
large fields; (ix) finally, the data on the u-meson
polarization experiment in dilute alloys seem to be
consistent with the MRF approximation.
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