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We examine the nature of the spin order in the surface of a semi-infinite Heisenberg magnet. When both

ferromagnetic and antiferromagnetic exchange couplings are present, and the ground-state spin configuration
of the bulk is ferromagnetic, we find the spin arrangement in and near the surface can be more complex in

nature. A magnetic analog of surface reconstruction occurs. For the (100) surface of an fcc crystal with

nearest-neighbor ferromagnetic and next-nearest-neighbor antiferromagnetic exchange in the bulk, we present
detailed studies of the surface spin arrangements. The possibility that the exchange interactions in the surface

may differ from those in the bulk is taken into account. A stability diagram for the ground state is

constructed through study of the excitation spectrum of surface spin waves. For a selected set of parameters,
we present results of a mean-field-theory description of the dependence of the surface spin configuration on

temperature and external magnetic field.

I. INTRODUCTORY REMARKS

There is a considerable theoretical literature
on the surface properties of magnetic materials.
With the exception of the few papers cited below,
it is generally presumed that in the surface, the
spin configuration has the same nature as that
of the bulk material. That is to say, if a ma-
teria1. is ferromagnetic in the bulk, it is assumed
that the spins in the surface are ferromagnetica1. ly
aligned also, although the order parameter and
response functions appropriate to the surface
region differ from the bulk.

It is not obvious that the surface spin configura-
tion need be the same as that of the bulk. Indeed,
in an earlier paper, ' it has been pointed out that
if the surface exchange interactions are antifer-
romagnetic in sign while those in the bulk are
ferromagnetic, then magnetic analog of the phe-
nomenon of surface reconstruction occurs. The
surface spins order in an arrangement with lower
symmetry than the bulk, and the unit cell of the
surface layer of spins is larger than that of a
layer of ferromagnetically aligned spins in the
bulk. A brief discussion of surface spin insta-
bilities in the surface of a simple cubic ferro-
magnetic with antiferrom3gnetic surface exchange
has also been presented by Wolfram and
de Names. '

It seems unlikely that the surface exchange can
differ in sign from that in the bulk, although this
might happen in the europium chalcogenides where
the sign of the exchange in the bulk is a sensitive
function of distance between magn. etic ions. ' In
the model considered in Ref. 1, only nearest-
neighbor exchange interactions were included.
Blandin4 has suggested that if the nearest-neighbor
exchange is ferromagnetic, but there is appreci-
able antiferromagnetic next-nearest-neighbor

exchange, then even when the surface exchange
interactions are unchanged from their bulk values,
the ferromagnetic arrangement may be unstable
in the surface, whil. e the bulk is ferromagnetic.
The idea is that in some surface configurations,
a surface spin has a larger ratio of next-nearest
neighbors to nearest neighbors than a bulk spin.
Blandin illustrated his suggestion by considering
a square two-dimensional lattice of spins that
cover a half plane.

Blandin's suggestion 1eads to the possibility
that the phenomenon of magnetic surface recon-
struction may be a more-common phenomenon
than one would suspect from the model used by
Trullinger and Mills. ' The purpose of the present
paper is to explore this question for a semi-in-
finite fcc lattice of spins with nearest- and next-
nearest-neighbor exchange. We construct a sta-
bility diagram of the ground state, for the case
where the exchange interactions in the surface
differ in value from the bulk. We find surface
spin reconstruction for a rather wide range of
parameters. In particular, in line with Blandin's
suggestion, surface spin reconstruction can occur
even when the surface exchange is the same as
in the bulk. After we construct the stability dia-
gram for the ground state by searching for soft-
surface spin waves, "we use a mean-fieId theory
to examine the dependence of the surface spin
arrangement on temperature and magnetic field.

In Fig. 1, we illustrate schematically the pos-
sible arrangements of the surface spins, for a
(100) surface of an fcc lattice. In Fig. 1(a), the
spin arrangement is what one finds in the surface
when the ferromagnetic configuration is stable.
In Fig. 1(b), one of the reconstructed arrange-
ments is illustrated. As one moves from the
surface into the bulk, theangle 0 decreases to
zero within a few atomic layers. As the temper-
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gestion must be regarded as tentative.
In Sec. II, we discuss the surface-spin-wave

study, and the mean-field theory is presented in
Sec. III.

II. SURFACE-SPIN-WAVE DISPERSION RELATION AND
SOFT-SURFACE SPIN WAVES

{b)

FIG. 1. Surface spin configuration in the Heisenberg
ferromagnet |'a) when the ferromagnetic arrangement is
stable in the surface and (b} in one of the reconstructed
surface spin configurations.

ature is raised, 8 decreases, and we find that
6 approaches zero below the bulk ordering tem-
perature. That is, we find a temperature T,
smaller than the bulk Curie temperature Tc and
one has 8(T) =0 for T, & T& Tc

The work in Ref. 1 and the present study is
motivated, in part, by the anomalous magnetic
fiel.d dependence of the spin polarization of elec-
trons photoemitted from EuO and other related
compounds. ' The spin polarization of electrons
emitted from a clean surface fails to saturate
in high fieMs as expected, and as observed in
EuS. It has been suggested' that a paramagnetic
layer of surface spins is responsible for this
behavior. Such a region. must be confined to the
outermost atomic layer or two, since adsorption
of Cs on the surface allows the spin polarization
to saturate with magnetic field. ' We do not be-
lieve a. paramagnetic surface layer can be present
at the low temperatures used in the experimental.
studies, and we suggest that the kind of magnetic
reconstruction described here may provide a
magnetic surface structure that is responsible for
the effect. Unfortunately, it is very difficult for
us to make quantitative or even qualitative con-
tact with the photoemission data, so this sug-

In this paper, we shall confine our attention to
the (100) surface of an fcc lattice of spine. This
is the geometry appropriate to the photoemission
studies cited in Sec. I. We suppose that in the
bulk, the spins are coupled by nearest-neighbor
exchange interactions J, and next-nearest-neigh-
bor exchange J2. In the numerical calculations,
we shall always presume 4, is ferromagnetic in

sign, and J, antiferromagnetic in sign, or zero.
This is appropriate for the ferromagnetic europium
chalcogenide compounds EuS and EuO. Further-
more, we shall allow the exchange constants with-
in the surface layer to differ in magnitude (and
possibly in sign) from their bulk values. The
spins in the surface are coupled by nearest-
neighbor exchange J~~'~ and next-nearest-neighbor
exchange 42~'~. Note thai this model hag as special.
cases both the situation discussed by Blandin
(J2i'i =J„J~i'=J,) and also that discussed by Trul-
linger and Mills (J, =J2l'i=0, J,&0, JI'&0). We
remark that Blandin examined a semi-infinite
two-dimensional sheet of spins, whil. e here we
consider a semi-infinite three-dimensional crys-
tal.

In previous papers, methods for studying sur-
face spin waves have been discussed. ' We present
a summary of the theory for the fcc lattice with
a (100) surface here, since the nature of the soft
surface wave eigenvector will play a crucial role
in the discussion of Sec. III; we shall see that
the reconstructed spin configuration has the nature
of a "frozen-in" surface spin wave of macroscopic
amplitude.

If J( I, I + &) is the strength of the exchange inter-
action between the spin on site 1 and that on 1 + 6,
and S (I) =S„(i)+ iS, (l), in the spin-wave ap-
proximation S'(I ) obeys the equation of motion
(in units with Ii =1)

dS'
i =S Q J(l, I +5)[S'( l) —S'(I +5)],

or with S'( I ) - p(e-xi Qt ) with 0 the spin-wave
frequency,

DS"( I ) = S P J( l, I + 0) [S' ( I ) —S+ ( I + fi )] .

(2.2)

We apply the equations to the fcc crystal with
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—2J, cos(—,'k„ao) cos(&k,a, )

—J2(cosh„ao+ cosh, aa)], (2.5a)

(100) surface described above. Tile surface ls
normal. to the z axis, and the x and y axes are
oriented as in Fig. 1, i.e., the nearest neighbors
with a plane parallel to the sux face are located
at —,'a, (~x+y). We seek solutions of Eq. {2.2) with
the form

S+(I I I ) &I(aaaola]]a&((a~a])/2])& S(i } (2 2)

where l„and l, are integers that l.abel sites within
the planes parallel to the surface. The suxface
layer is l, =O.

Then fol' R bulk spin (I a 2), the amplitude
S(l, ) obeys

nS(I, ) =4,(k]])S(f,)
—8,(k]] )[S(l, + 1) + S(/, —1)]

-8,(k]))[S(l,+2)+S(1,-2)], (2.4)

where k]~ =xk„+yk„and the coefficients are

8,(k]]) = 2S[6J', +SJ,

0 =8,(k]] }—2J,(k]])cosh(~qs, ) —24, (k]]) cosh((fa, ),

(2.10)

which allows us to solve for cosh(&]faa):

cosh(-, qa, ) =—1 g, (k]] ) 1

&s(k]]) &a( ]])

x[&l(k]] ) + , (k]] )

x[))]I„)+Ra(II)-a]]'~') .

(2.11)

%e are presuming here that the next-Bearest-
neighbor exchange J, IO.

There are in general. bvo values of q vrhich
emerge from Eq. (2.11). We shall see that one
can always in fact find two values for which Re(q)
&O. Ne cal. l. these bvo solutions q+ and q, and
~e must super1mpose the ~o 1n order to sat1sfy
both Eq. (2.6) and Eq. (2.V). Thus, the wave func-
tion of the surface spin vrave is given by

S(l, ) =8+ exp(- 2f q+sol, )+S exp(- —,'fq aol,).
(2.12)

g, (k]] ) = 2J,S [cos(-,' k, a,) + cos(-,'k, a,)],

&,(k]]) =SJa

(2.5b)

(2.5c)

%'e pause to comment on the nature of q+ and
]I . I et Q, =paso, and write Kq. (2.11) in the
form

For the spins in the first layer above the surface
layer (/, =1), one finds

QS(1)=[8,{k )-8,(k )]S(l)

-&,(& )[S(0)+S(2)] -&,0 )S(2), (2 6)

cosh(&Q, ) =a ~ I'b.

For the moment, are presume the quantity in the
curly brackets in Eq. (2.11) is negative. If we
write @a = Q(„']+f Q(a], then Eq. (2.13) may be de-
composed 1nto

vrhile for the suxface spins me write

IIS(0) = &,"(k]] )S(o) —&i(k]] )S(1)—&2(k]] )S(2),

(2.7)

cos(a@(,") cosh(-,'Q(,") =s

sin(~Q(2] ) sinh(-,'Q(,") =~ b

(2.14a)

where, with J,"=r,Z, and S,"=r,&„

Ao('](k]]) =S[4(I+r,)J, +(4r, +I)J,
—4r,J, cos(-,'}t,a, ) cos(-,'k„a,)

-2rrf, (cosh, a, +cosh, a,)]. (2.6}

To study the sux'face spin waves assoc1ated "%vith

this geometry, we seek solutions of the system
of equations above with

S(l, ) =S(0) exp(--,'qa, i, ).

The attenuation constant q may be related to the
frequency 0 of the wave and to k~I by insexting
this form into Eq. (2.4). We demand that the real
part of the attenuation constant q be positive
always. Then from Eq. (2.4) we find

If we are given two numbers Q", ], Q(a'] that satisfy
Eqs. (2.14), then —Q(,'], -Q(,"also are solutions.
From this me see that ere can abvays find taro
distinct solutions Q, and Q with Re(Q, }&0and
Re(Q ) & 0, when the argument of the square root
in Eq. (2.11) is negative. Furthermore, one has

Q =Q» - i@2.

(2.15a)

(2.15b)

When the quantity in curly brackets in Eq. (2.11)
is positive„again bvo values of Q may be found.
Again me l;abel thexm Q+ and Q, al5ao@gh they may
not be complex conjugates of each other.

U the form in Eq. (2.12) hs inserted in4o( Eq.
(2.6) Rnd it is noted that Eq. (2.10) is satisfied
by both attenuation constants q, aad q, oae finds
a constraint on the amplitudes 8+ and 8:
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S, sinh(2a„q )
S slllh(psolgy)

(2.16)
8,(k~~ ) = 2S(74, —3 f J,f ) + 2S(Z, + 2( 4, f }cos 8,

Then if the solution is inserted into Eq. (2.7),
after some algebra one finds

sinh(-,'q, a„)
sinh(-,'q a, )

8,(kg) =0,

8,(k, ) = —Si Z, i,

(2.19a)

(2.19b)

(2.19c)

(k )-8"( ii)- ( ii) "'o '- -( ii) ""
&.(kii) -&."(kii) —&,(kii)&'-" ' —&.(ki))e'-"

(2.17)

4ol'l(kp) =S[2(2+3m,)J, —(4r, +1)~ 8, (

+(2Jp, +4r, ( J,~)cos8]. (2.19d)

k„= (1/ao)(2v —8),

k, = (1/ao)8,

(2.18a)

(2.18b)

In general, for the model with next-nearest-
neighbor exchange included, it is not possible
to obtain a closed-form expression for the surface-
spin-wave dispersion relation. However, the re-
lations above all, ow one to compute the dispersion
relation numerically with relative ease. One
chooses a value of k]], and searches for values
of 0 (outside the bulk spin-wave frequency bands)
which satisfy the above relations. One may do
this by picking a value of 0, computing q, and

q from Eq. (2.11), then testing to see if Eq. (2.17)
is satisfied.

There is a line in the two-dimensional Brillouin
zone along which a closed solution emerges simply.
This line is a key line for our stability consider-
ations. Along the perimeter of the two-dimen-
sional. Brillouin zone illustrated in Fig. 2, we
have that 8, (k~~) -=0. We concentrate here on the
line between the points A. and B in Fig. 2. Along
this line,

With this form one finds
1 1 ~

g g P Q 0 = + Pl lT + Ky

~q go= —2gm+K,

where

(2.20a)

(2.20b)

sinh(K) =& (2.21a}

& = (1/2S'~'I &,P')[&.(&ii ) —2SI ~, l
-&]".

(2.21b)

The combination 8,(ki, ) —2SI ~2[ is the bottom of the
band of bulk waves, with wave vector k =4]]+&4,
for fixed k)]. The surface spin waves we consider
have frequency lower than this value always, so
the argument of the square root in Eq. (2.2lb)
is positive.

The values for q, and q in Eq. (2.20} allow the
quantity S(l, ) in Eq. (2.12) to be cast into the
form

S(l, ) =S(0)(-1)"~'e ", l, =0, 2, 4, 6, . . . ,

where 6) ranges from 0 to a. Then we have, with
S(l, )=0, l, =1,3, 5, . . . ;

(2.22a)

(2.22b)

that is to say the spins in the odd numbered layers
are not excited, and the spin motion is confined
only to the even numbered layers.

After some algebra, the frequency 0, (8) of the
surface spin wave along the line fromm. to B may
be written

n, (8) = 0 (8) —4S( J',
( q(8)'/[1+ 217(8)], (2.23)

FIG. 2. Two-dimensional Brillouin zone for the fcc
lattice with a (100) surface. The point 8 is the point

n (8) =2S(7J„—4i Z, i +J, cos8+2i J, i cos8)

(2.24a)

is the minimum bulk spin-wave frequency de-
scribed above, and

rl(8) = (1/I ~,l) &(~, —3I ~.l 3r,~, +2r. l ~.I)—
+[(1—r, )&, +2(1 —r, )[ Z, (]cos8).

(2.24b)
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To obtain a surface spin wave, one must have

t)(8) & 0.
With the results above, we have studied the

surface spin wave dispersion relation throughout
the two-dimensional Brillouin zone, to search
for values of the parameters that drive A, (ki)
to zero. Before we present the results, we note
that the bulk of the crystal is stable with respect
to the ferromagnetic state whenever (Z, [&J,. This
criterion is obtained by requiring the bulk spin
wave excitation energy to be positive always. Note
that since there are six next-nearest neighbors and
twelve nearest neighbors for the fcc lattice, the
molecular-field theory admits ferromagnetic so-
lutions for ( J, ( as large as Pd, . However, ex-
amination of the bulk spin-wave dispersion re-
lation [obtained readily from Eq. (2.4)] shows
that the bulk spin wave excitation energy becomes
zero when ( J,j =J, at the point It =(w/s, )(1, 1, 1).
For larger values of j J,~, the excitation energy
is negative. Presumably this means the ferro-
magnetic state in the bulk is unstable with respect
to an antiferromagnetic spin arrangement, and
the ferromagnetic state is stable only for

~ 4, (
& Z, .

Three dimensionless parameters enter the
description of the model explored here. The first
is e = —(4, ( /Z„which as we just saw can change
from 0 to —1 in value. The second two are s,
and r, . We have chosen in the interest of sim-
plicity to scale both the nearest- and the next-
nearest-neighbor exchange in the surface by the
same factor, i.e., we take r, =r, =r. This re-
stricted model includes the case where the ex-
change constants are unchanged near the surface
(r =1), and the model considered by Trullinger
and Mills (r& 0, e—= 0).

For the case r =1, in Fig. 3 we show the sur-
face-spin-wave dispersion relation from the I'
point (kt = 0) of the two-dimensional Bri llouin
zone al.ong a straight line to the point I3 in Fig. 2.
This is done for three values of &. From Fig. 2,
one sees that for & = —0.8, the excitation energy
is positive definite. At the critical value &= &, ,
where e, = —,'(~5V —ll) = —0.86, the dispersion curve
just touches zero at the B point. For —i«& 6, ,
the excitation energy is negative near point I3.
A study of the dispersion relation shows that the
dispersion curve first touches zero away from
I' at the B point when & = &, .

This shows that when the surface exchange con-
stants are unchanged from their values in the
bulk, a ferromagnetic arrangement of the sur-
face spins is unstable with respect to a recon-
structed arrangement. A surface superlattice
with the wave vector k~~ forms. We see from
these considerations that 8 landin's argument
works in three dimensions, as well. as in the semi-

0.6-

QQ-

s
SJ}

Q. Q

( ——)~o'~o

FIG. 3. Surface spin wave dispersion relation for the
case r& =r2= 1, and various values of the parameter
~ =-~J't~//t. For e &e, , the surface wave excitation
energy is positive, while for —1««, , it becomes
negative in the near vicinity of point 8 in Fig. 2.

infinite plane of spins considered in his paper.
We shall explore properties of the reconstructed
surface spin configuration in Sec. III.

By varying both & and r, one may construct
a phase diagram which shows the regions in the
&-r plane where the ferromagnetic arrangement
of surface spins is stable, and where it is not.
We have done this, and we find for all values of
& and r, the surface-spin-wave frequency always
touches zero first at either pointA or point B of
Fig. 2. The results of this study are summarized
in Pigs. 4 and 5. In Fig. 4, the results for a wide
range of r values are displayed. For large values
of r, one might presume we have a description
of a magnetic overlayer with strong exchange
coupling on a more weakly interacting host spin
system. We show in Fig. 4 the regimes of the
parameter space where the surface frequency
at the 8 point is negative, the A point is negative„
or the frequency is negative at both. The boundary
between the cross hatched regions and the un-
shaded region delineates the ranges of parameters
for which the ferromagnetic surface spin con-
figuxation is stable. In Fig. 5, the same informa-
tion is displayed for a more restricted range of

This range may be more appropriate for a
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—IO

---02

.--Q„4
r =~ LIMIT

A POINT UNSTABLE

8 POINT UNSTABLE

A ANO 8 POINT UNSTABLE
r(rI =r&=rj

-5 0 5 IO

by presuming r, =~, in the interest of simplicity,
we may have been led to underestimatethetrend
to surface spin instabilities. It would be most
interesting to know what one would expect for
values of the surface exchange interactions within
the framework of theoretical investigations such
as those described in Ref. 3.

This concludes our discussion of the stability
of the ferromagnetic configuration in the surface
at T=0. In Sec. III, we explore the temperature
and field variation of the surface spin arrange-
ment in mean-field theory.

FIG. 4. Stability diagram for the surface region, in the
~-~ plane. Jesuits are displayed for a wide variation of
the parameter x.

semi-infinite crystal with no overlayer present.
One sees from the information in Figs. 4 and

5 that the ferromagnetic surface spin arrangement
is unstable for a rather wide range of parameters.
With r = I (surface exchange the same as the bulk),
the B point instability occurs for a rather large
value of

~ J, ~ /J, . If the surface exchange is stif-
fened (&& I), the critical value value of ( J, ~ /J, is
lowered considerably. For example, it drops
from 0.86 to roughly O. V when r = 2. In addition,
if near the surface, one does not have ~, =r„but
rather 'r, & r, by a considerable amount, the ten-
dency toward thesurface instability can be en-
hanced significantly. For example, if r, =1 and

r, = 2, then we find that the surface instability
at the 8 point occurs at I J, ~ /Z, =0.467. Thus,

A POiNT UNSTABLE

~~//~ B POiNT U~S~ABLE

r (rI = r~ =r)

FIG. 5. Portion of the stability diagram displayed in
Fig. 4 for —1&r & 2.

III. NATURE OF THE RECONSTRUCTED
SPIN CONFIGURATION

In Sec. II, we saw that the ferromagnetic ar-
rangement of spins in the surface of our model
ferromagnet is unstable with respect to a recon-
structed spin configuration, for certain values
of the model parameters. The method used in
Sec. II can only delineate the phase boundary in
the parameter space which separates the regime
where surface ferromagnetism is stable at the
absolute zero of temperature, and where it is not.
The spin-wave theory is the magnetic analog of
the harmonic approximation of lattice dynamics;
anharmonic effects must be included before the
new spin configuration can be found. In this sec-
tion, we present an approximate description of
the reconstructed spin arrangement and its de-
pendence on magnetic field and temperature.

We shall base our discussion on the use of
molecular-field theory. The application of mo-
lecular field theory to the semi-infinite ferro-
magnet' gives results in qualitative accord with
those obtained from more rigorous considera-
tions. ' In the present case, we see that our in-
terest will be primarily in the temperature region
below the bulk Curie temperature. In this region,
crudely speaking, the spins near the surface feel
an effective exchange fieM from the aligned bulk
spins that is strong. In conditions such as this,
the use of mean-field theory seems reasonable.

Ne believe the results in the present section
have pedagogica1. value that extends beyond the
magnetic surface problems explored here. There
have been recent lattice dyna, mica, }theoriesxo
which explore the stability of reconstructed atomic
arrangements in and near the surface. These
studies are the analog of the analysis in Sec. II,
in that they explore a region of a parameter space
to find where surface phonon excitation frequencies
vanish. These lattice dynamical models are ex-
plored within the harmonic approximation, and to
date no study of the displaced surface positions
has been performed. The present discussion is
a spin analog of how one might proceed with an
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analysis of the atomic displacements in the re-
constructed state.

We shall presume that in the reconstructed
state, the spin arrangement near the sur face has
the same symmetry and nature as the eigenvector
of the spin-wave mode which first goes soft. That
is, in Figs. 4 and 5, we presume that if the pa-
rameters are such that the "system point" lies
within the regime where the surface spin wave
excitation energy is negative at theA. point and
positive at the 8 point, then the surface spin con-
figuration is similar to a frozen inA point sur-
face spin wave with macroscopic amplitude, Our
task then is to find the temperature and magnetic
field variation of the parameters which describe
the surface spin arrangement.

In Fig. 6, we show the spin configuration in the
surface layer, for both the A. -point and B-point
surface spin structures. In the numerical. results
presented in this section, we shall confine our
attention to the case r, =r, = 1 and the B-point
configuration, although the equations displayed
allow r, and r, to differ from unity. Ne assume

that in the surface, the angle between the spin
and the 2 direction is 6)o." The spins in the first
layer inside the crystal are presumed perfectly
aligned along z, since the eigenvector in Eq.
(2.22b) vanishes for I, = l. Indeed, we take 8„
6)„64, . . . to be nonzero, but 6), =0 for all odd l,
as suggested by Eq. (2.22b).

We next write the equations of the molecul. ar-
field theory. There are two conditions that we
impose, in contrast to the usual single self-con-
sistent molecular-field equation. Suppose we
imagine a given spin configuration characterized
by the angles 6)0, 6„&,. . . , and suppose in this
spin configuration the expectation value of (S )
in layer 1 is a vector with magnitude Sq, , i.e.,
in layer 1, we have

(S), =Sr), (cos8, z ssin8, x),

(3.2)

where p. is the magnetic moment per spin, and we
shall find S,(1) H, ( I) =S (1) H (1). Here
B~(x) is the Brillouin function

where the + sign is chosen for spins which lie
on one of the two sublattices of Fig. 6, and the
minus sign for those that lie on the second. Then
for a given set of the q, , and the angles 6), , one
can compute the molecular field H, (l) felt by a.

spin on the plus or minus sublattice in layer l.
Then we have the usual equations of molecular
field theory that must be satisfied. In the present
case, these read

gS, ( I ) ' H, (1)'k T'
B

B~(x) = (I + Ij2S) coth(S+ ~)x —(I/2S) coth(~x).

If the 8, all vanish, then Eq. (3.2) may be used
to solve self-consistently for the magnetization
profile near the surface. This has been done in
a number of papers, near I'c, ' or at lower tem-
peratures where the full Brillouin function must
be used. " However, when the 8, ar e nonzero,
we have too many parameters and too few equa-
tions. One must impose the additional require-
ment that the torque on each sublattice vanish:

S,(1)&&H,(1)=D. (3 4)

FIG. 6. Configuration of the surface spins in the
region of (a) an A-point instability and (b) a B-point
instability.

This leads to further relations between the q,
and 6, that supplement Eq. (3.2).

We illustxate the procedure outlined above, for
the spin configuration illustrated in Fig. 6(b). We
presume an external. field is present and is paral-
lel. to the 2 axis. Its magnitude is Ho. A spin
in the surface layer canted to the right in Fig. 6(b)
(call this the "+"sublattice) feels the field H+(D)
given by
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p H, (0) =z iij Ho+SZ, [(4r, + 4er, )gocos80

+ 4q, + &q, cos 8, ])
—x SZ, (4er,q„sin 8, + eq, sin8, ),

while in the first layer (recall 8, =0 so there
is only a, singl. e sublattiee in layer one)

(3.5)

p H(l) = z f p 8, +Z, S[ 4', cos 8,

+4(1+e)ti, +4q, cos8, + eq, ]j. (3.6)

For l„~2, in the even numbered layers the
moleeul. ar field becomes

0 H+(l y ) =z [pHo+ SÃq[ eg( 2 cos 6( 2 + 4(7J ( ~ +'0( pq) + 4(l + e)'0( cos8( + E0) +2 cos8( p2])

+X S~&e(7) l -2 sln8t -2 + 4/i sln8I +Tel +2 Sin61 +2).

x [ —,'h+ (r, +2er, )q, cos 80+@,], (3 6)

For odd-numbered layers with f, ~3, H+(l, )
is found from Ecl. (3.6) with the replacements
10 1l -1r 11 1l ~ 12 1l +l) 1g ~1 l +& + «1/ -2)
Ho Hi x, and finally (92 Hr +& ~

Consider the form assumed by the zero-torque
condition in Eq. (3.4). For each layer, the ap-
plication of the condition to the + and —sublat-
tices leads to the same result. If the condition
is applied to spins in the surface L, =0, the re-
sult may be arranged to read

sin(8„+ 8, ) = —(4sin60/&q, )

where

h=pH /SZ, .

We will use an iterative method to find the so-
lution of the system of equat. ions generated from
Eqs. (3.2) and (3.4). Note that if we begin with
an initial. guess for the g, and 0„, then H2 may be
found from Eq. (3.6).

The zero-torque condition is satisfied identically
in all the odd-numbered layers, and for l, =2,
we have

sin(8, +, +8, ) = —(1/eq, +,)[h+eq, , sin(8, + 8, ) +4(vi, , +q, +, ) sin8, +2(1+2e)q, sin28, ] . (3.9)

Thus, for a given guess for the q, and H„ the
angles H~, within the interior consistent with these
parameters may be generated from Eqs. (3.8)
and (3.9).

We have proceeded by presuming that qo-q,
differ from their bulk values while q, for 1~10
assumes the bulk value q obtained from mean-
field theory applied to the bulk material. In a
similar way, Hp Hyo were allowed to be nonzero,
while L9» was taken identically zero for l~6.

The iteration procedure was applied in stages,
in a manner which al. lowed the above range of
variabl. es to be computed. First, an approximate
value of Ho is required. If one chooses a. value
too far off the correct one, the iteration procedure
leads to a sequence of 0» which diverge as I- ~.
So we began by allowing q, -q, onl. y to differ from
the bulk, and only Ho, H„H~, and H6 to differ from
zero. The truncated equations were solved to
convergence by repeated iteration, for one hundred
values of H, from 0 to & ~. It was found that only
within a, narrow range &60 around a particular val-
ue of Hp one had H6 & H4 H (9p as expected from

physical considerations. The procedure was re-
peated by allowing Ho, H~, H„H„and 6', to differ
from zero, along with qo-q, . This narrows the
acceptable range of Ho still further, by use of
the requirement H, & &,«H„. Successive it-
erations with an increasing number of uncon-
strained variables were carried out to the point
where qo-q„were allowed to differ from the bulk
variables, as well as 6)o-610 In all the calcula-
tions reported here, H„was found to be very
small, and the difference between q, and 71„quan-
titatively insignificant.

In al. l the calculations reported here, we chose
r, =r, =1, so then only e= —

) Z, ~ /J„h, and the
spin S are left as parameters. With the divalent

7
europium ion in mind, we have taken 8 = —, always.

In Fig. 7 we plot the angl. e Ho as a function of
temperature for & = —0.9 and & = —0.95 in zero
magnetic field, and c= —0.9 in a magnetic field
with h =—0.28. One sees that a surface phase tran-
sition occurswith , 8,(T) -0 as T- T, , a surface
transition temperature lower than the bulk Curie
temperature I'&. The results displayed in Fig.
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same two temperatures considered in Fig. 8. The
parameters q, differ appx'eciably fx"om their bulk
values only very near the surface. A striking
feature present in these results is the appearance
of a maximum in q, just inside the Surface, i.e.,
we always find thRt neRr the surfRee, Tfl rises
to a maximum value greatex' thRD 'g . This effect
occurs when antlfe rromagnetxc next-nearest- neigh-
bor exchange is present. We illustrate this in

Fig. 9(c), where we compare curves calculated
for &= —0.9 and &=O. In the latter instance, there
is no surface reconstruction. %e have verified
that the maximum in 'gf hRs its origin iD the px'es-
enee of antiferromagnetie exchange rather than.
surface I econstruction by comparing curves with
e = —0.5 (surface s pins ferromagnetic) with e = 0.
AgRin a maximum is found„although lt ls less
prominent than that illustrated in Figs. 9(a) and

9(b).
%'e conclude with an expanded discussion of the

effect of an external magnetic fi.eld on the sux face
spin arrRngement. We see from Fig. 7 that 8o

depends on k. Of course, all the 6), '8 will. be af-
fected by the application of a field, as will the
g, 's. If h is small. , then we can introduce a set
of susceptlbillties by writing

Qg
8 (h T) —B (0 T)+ ' +h+'

LAYER NUMBER

4 6 8
LAYER NUMBER

FIG. 11. (a) Val latlon of (&0]/M)0 %'ltd layer nMnber
aQd (b) varlatlon of (Bfjg/Bk) 0 %'le lapel l1uHlber. Tke
calculations take c =-0.9, and T =0.285T&, a temipera-
tux'e close to the surface transition temperature.

(3.10b)

4 0--

Q. I0.0 0

Tc

FIG. M. TGIQperature variation of (M 0/BA) 0 fox'
~. =-0.9.

The susceptibilities introduced in Eg. (3.10)
may be eal.culated in the following manner. The
6), and q, parameters are found by solving the set
of nonl. lnear equations generated fI'om the zex'o-
torque condition, and the mean-field equation for
q, . In each equation, h appears explicitly. We
may differentiate each equation with respect to
h, and set h to zero when this is complete.
This l.eads to a set of l.inear, inhomogenous equa-
tions for the (Bq, /Bh), and (BB, /Bh), . The co-
efficients may all be expressed in terms of the
q, '8 and 6), '8 appx'opriate to the case h =0. We
shall not give the explicit form of these relations
here, since the expressions are cumbersome and
their dex" ivation straightforward from the expres-
sions displRyed Rbove.

In our case, where qo-q, is al. lowed to differ
from q„as weH as &0-&», the generalized sus-
ceptibilities may be CRleulated by inverting R

1,5 X 15 matrix.
In Fig. 10, we plot the value of (BB,/Bh), as a

function of temperature, for & =-0.9. The di-
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vergence in this quantity as T- T, is evident.
Again it is hard for us to extract a critical ex-
ponent from these numerical. results. It is ap-
parent that as T- T, , the restructured surface
spin configuration becomes quite sensitive to
field.

In Fig. 11, we show the magnitude and variation
with distance from the surface for (89, /Sh)„and
(Bri, /sh)o. This is done for e= —0.9 again, and
the temperature 0.285T&, a value quite close to
T, . We see that although (a8,/sh), becomes large
as T- T, , the susceptibility drops to zero within
a few layers of the surface.

IV. CONCLUDING REMARKS

In this paper, we have shown that under certain
conditions, the spin arrangement within the sur-
face of a ferromagnet may have symmetry lower
than that in the bulk of the material. We have
explored this phenomenon for a particular model.
of a ferromagnetic crystal. . Whether or not this
"magnetic reconstruction" wil. l. occur in real.
crystals is hard to predict at this point, since
we know littl. e about the magnitude of exchange
constants near the surface of magnetic crystals.

%'e do note that one could detect the reconstruct-
ed spin configuration described here through con-
ventional low-energy-electron-diffraction (LEED)
studies. It would not be necessary to use a spin-

polarized electron beam for this purpose, since
the presence of the magnetic reconstruction would
give use to fractional order Bragg peaks well
s epar a ted from the nonmagnetic 8ragg peaks.
(Actually, there would be some displacement of
the nuclei in the presence of the magnetic surface
reeonstruetion. by virtue of the spin-phonon cou-
pling terms in the Hamiltonian. The half-order
Bragg peaks thus arise from the nuclear dis-
placements, as wel. l as from the magnetic cou-
pling between the electron and the spin array. )
We believe it would be of very considerable in-
terest to carry out I EED studies of the surface
of the europium chalcogenides, if this may be
done at temperatures well below the bulk ordering
temperature. This would provide a direct test
of our conjecture that the magnetic surface recon-
struction is responsible for the anomalies ob-
served in the spin-polarized photoemission ex-
periments. Even if our conjecture is not correct,
we note that I EED studies of these surfaces at
l.ow temperatures should prove of very great
interest, in view of the above-mentioned anoma-
l.ies.

Finally, there is no reason to believe the phe-
nomenon of magnetic surface reconstruction is
confined to ferromagnets. In principle, it should
occur in antiferromagnets also, although the con-
ditions under which this may occur have not been
examined to date.
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