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Universal relations among critical amplitude. Calculations up to order e for systems
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A general derivation of the two-scale-factor universality is given using the renormalized P theory. As a
consequence ten universal relations among critical amplitudes are obtained, any other universal relations being
a combination of them. The situation is shown to be the same as for the scaling laws for critical exponents.
The calculations up to order e-' for systems with continuous symmetry are performed for some of these
relations such as the specific-heat amplitudes ratio and R,+, which relates the amplitudes of the correlation length
and of the specific heat, etc. Comparison with experiments and series results and, in particular, the discussion
of the superfluid helium and RbMnF, cases, are repeated with our improved numerical results.

INTRODUCTI'ON

The hypothesis of tmo-scale-factor universality. '
which states that for R system neax the critical
point, the length scale is related to the thermo-
dynamic scales, extends the concept of universal-
ity' rela, ted to the scaling hypothesis. ' It has been
shown recently, ' through Wilson's renormalization-
gxoup approach, ' that such a relation among the
three fundamental scales does exist in the critical
domRlQ. IQ th18 pRpeI* me g1ve R genex"Rl derivation
of the tmo-scale-factor universality in the language
of the renormalized field theory developed by
Brezin, Le Guillou, and Zinn-austin {BI.Z).'

As is shown here. these techniques are mell
adapted for the study of critical universality. %6
show that the correlation and thermodynamic func-
tions are fully determined when tmo independent
thermodynamic scales have been chosen. As a
eonsequenee, there exist ten univexsal relations
among the twelve fundamenta. l critical a.mplitudes,
just as there exist ten relations among the twelve
eritieal exponents. The universality of most of
these relations has already been derived. ' Some of
them wex'6 GIlly con]ectured Rs unlvel SRl; me de-
rive these explicitly, Rs mell as a new one mhich
relates tile specific-heat Rnd magnetic-suceptlbil-
i.ty amplitudes on the criticRl isotherm to the am-
plitude of the cox'I'elRt1on length GQ the cl1tlcRl 1so-
chore above T, . %6 extend the order-e' calcula-
tions of some of these universal relations to sys-
tems with continuous symmetry; below T, this re-
quires a treatment different from the Ising case,
owing to the presence of Goldstone modes on the
coexistence curve. For these calculations we use
a technique developed by BI.Z which never breaks
the symmetry. The & expRns1ons extrRpolRted to
d =3 a.re compared to experiments and series re-
sults Rnd lead, in general, to appreciably better

results thRD the first order 1D 6. FlnRlly, I"ely1ng
on these better nuxnerical results we improve the
discussion on physical systems proposed by Ferer'
RQd completed by Hohenberg 8t Qj, : Given R Inea-
sure of the specific heat, and using the results of
the e expansion at d =3, me can predict values for
the transverse correlation length.

In Sec. I, me present the general derivation of
the two-scale-factor universality and the ten uni-
versal relations among critical amplitudes. Sec-
t1on II contains 6 -expRI1slon I'esults up to ol deI' c"
of A'/A, A', , $'/t'r, Rtr, . . . . Section III is de-
voted to a diseuss1on of tmo phys1cal systems:
superfluid helium (n =2) and RbMnF, {n =3). The
deI'1vRtlon of thI'ee Gf the uI11vex'sRl 161at1ons, Rs
mell as some details of the calculations, are con-
tR1ned 1I1 the appe11dlxes.

I. RENORMALIZED THEORY AND UNIVERSALITY;

GENERAL DERIVATION OF THE TWO-SCALE-

FACTOR UNIVERSALITY

In th1S sect1GQ, we use, for the most part, the
notations a,nd results of BIZ.' First, me recall
bI'lefly the I'61Rt1ons between the renormallzed the-
oxy Rnd the physical theory of critical phenomena
without describing all the details and difficulties,
in order to show clearly all the universal charac-
ters of the theories.

In the critical don1a, in, me can replace the true
Hamiltonian X by an effective Hamiltonian in terms
of a, local field 5,(x), ' and we are led to a rp' field
theory with Rn ultraviolet cutoff A:

PX = d x3C{x),

X(x) = (V@'(x) +-," r,@x)+(u, /4! ) [502(x)]',

in which S,{x) is an order parameter with n com-
ponents Rnd



50(x) =Q So;(x),

{vs,)'(x) = P g s„.(x)

The presence of an ultraviolet cutoff is the mem-
ory„ in the critical theory, of the microscopic
range a of the interaction (A- I/a), and is re-
flected, in Eq. (1.1), through the A dependence of
xo and eo. All integrals in momentum space are
eut off at infinity by A. In the critical domain, all
dimensioned parameters are measured in terms of
A: ro- A', uo- A' . The ex'itical domain is de-
fined by the large cutoff limit since, with k for
wave numbers and M for magnetization, it cor-
responds to

r, (T') —r„, «A',
Q &&A,

M «A'~'-'.

The hypothesis of univex"sality is generally stated
as the independence of some quantities (such as
critical indices or thermodynamic-amp1. itude ra-
tios) of the microscopic description of the physi-
cal system, here, in particular, of A- I/a and

g, =u, A ' (e =4 —d). Thus universal quantities de-
pend only on Ã Rnd d.

Since we are interested in the large cutoff limit,
it is natural to use the renormalized Q' theory,
which gives us a finite theory in the limit of infin-
ite A.

If we define a new field S, a new "mass" t» a new

coupling constant g» related to So» +o» and go» the
Hamiltonian (1.1), in terms of these new variables,
x'eRds

~(x) =-,'Z(A)(wg)'(x) +-,' 5)n'P(x)

+Z'(A)Z(A)(g/4!) t '{52)'(x)

+-' Z(A)Z(A)t5'(x),

in which

s {x)=Z t~B{x)

0 0(

he functions Z» ~~
» +» Rnd + ar'6 d6flned by

conditions on the renormalized one-particle ir-

x'educible connected Qreen's functions I'~ ' '(q,-;

P, ; t, M g, p, A) (i = I, . . . , J; j = I, . . . , N), in
which X is the number of S fields and 4 is the
number of S' fields appeaxing in the Green's func-
tion; g is an a.rbitrary parameter, M is the mag-
netization. These conditions may be chosen on the
cx'ltlcRl theox'y ln, zero field Rs

I "'"(p, p; O,-O, g, ),A)l&-=. =O, (1.4a)

, r&")(p, -p;O, o, g, t, A)

I' ' '(p; O, o, g, )),A)l), , ),, („2(-,)(~,), =gu', (1.4c)

(1.4d)

Kith these renox'malization conditions, involving
an arbitrary parameter p. , the theory is well de-
fined for all values of the temperature, including
the criticaj point itself.

The relation between this renormal iz ed theor y
and the physical one defined by Eq. (1.1) (the bare
theory) is given by

(J,Ã)I'b~e {q. p( "-'0 r'oc™-0go A)

= [Z(A)] ""[2(A)]-' "I"'(q, ;p, ; t, M„, )), A).

(1 5)

If N=O and L, =2, there is an additive term in (1.5)
which adds a simple constant to the specific heat.

The important result of renormalization theory
is that, with the conditions (1.4), the I'(~'v)(A) func-
tions on the right-hand side of (1.5) have a finite
limit when A-~. This limit will be implied later
for all renormalized quantities. Then in the lax'ge
cutoff limit, we are interested in the leading de-
pendence on A, which is explicitly faetorized. %'6

are thus in a good position to study universality.
%hen taking the lRx'ge-A llmlt» one introduces

two sources of nonunivex'sality: first this arbitrary
pRrRIIletex' p Rnd, second, the Rrbitl Rl lness of the
renormaHzation schem (1.4) [we choose, follow-
ing BI Z, to character ize this freedom by the
parameter I in Eq. (1.4b)].

In order to proceed further in the study of uni-
vexsality, we have to investigate the critical be-
havior of the theory. This is done, in a standard
way, through the renoxmalization-group equation.

Following BI.Z, the I'~~ + functions satisfy a
differential equation,

t( —+W(g) ———, q(g) %+M —— —2 6+t I' (q, ;p;; t, M—, g, t() =5«5~, t), 'B(g),8 8 9 1 (L, N)

BP Bg sM v(g) 9t,

in which W(g), )I(g), and v(g) are calculable in power series of g; B(g) comes from the additive renormal-
ization constant that we have previously mentioned.

The solution of Eq. (1.6) I can be expressed via an arbitrary parameter X:
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(1.8b)

I
'(") 'N -( ' +L, (l/v( ') —2

,(..., I &)= y — ' ", dg'} )" "&(q, ;),. ;t(Z)M, (Z), g(~), ig), ((.))

in whichg(X), t(X), and M()) are defined by

&(&)

i('(g') '

(,"(k) 1 d g

t()() =t Iexp —
( I)

—2 ~( ))

E(3.) q(gt)
M(i)=MI p ——J ~, dg', ()(() (;.2 ~ W(g'

A simple dimensional analysis and Eqs. (1.7) and (1.8) show that

„„,),, M(~) t() ) „„)p t()() M(~)
«g«& =

M t )(t), ')('p' ' (X((()'/' ' 'g (1.9)

In this equation we change the notation by writing
(p) instead of ((I(, ;p;). Note that the tu dependence
is given by canonical. dimensions and we shall set
p, equal to one, when no confusion may arise.

We can now fix the arbitrary parameter A, in such
a way that a dimensionless ratio, such as t(A.)/

is no longer critical and choose, for example,

t()()/X't(' = 1. (1.10)

Then Eq (1.8b). shows that the limit. t-0 (critical
domain) corresponds to the limit )(-0, and if
W(g) has a nontrivialzero g* with a positive deriva-
tive at g* then A. - 0 corresponds to g-g~.

When )(-0, Eq. (1.10) gives

) = [x(g)t]"= t ",
M(X)/M = j'(g)t ""/',

t()()/t -x(g)t "-',
M(~)/~'/'-'= y(g)M t "('-"»/'=x-

(l.1 la)

(1.11b)

(1.11c)

(1.11d)

This result shows that the microscopic (nonuni-
versal) information carried by g has not totally
disappeared by going into the critical domain,
since the two nonuniversal constants X a,nd F,
which depend on g, are still present. But note also
that all critical amplitudes will be expressed in
terms of X and F and in terms of the values of the
I'~~'~~ at the fixed point g*, so that any quantity in-
dependent of X and P will be independent of g.

X(g) and 1'(g) are two nonuniversal constants (they
depend on g and not just on g*)t v= v(g*), and g
-=q(g*)

Thus using Eq. (1.11), Eq. (1.9) becomes, in the
critical domain,

Zg(l, , ))))(p. t M ) y)(XL p[((-)((d-2+ ) ))/L2)

xf ' (pt '1 x g* 1).

Furthermore, it will be independent of the renor-
malization scheme, since two renormalized the-
ories, with two different renormalization schemes
(say l, and l,), are related to each other through

Z(l, )t, =Z(l,)t„
Z(l, )g, = ~(t,)g„
Z(l„)M', =Z(l.,)M ,',
P(L, s)(P. t M g )() (Z ) N/2(Z )-l

)(I' '"'(P; t„M„„g}),)

in which Z»=Z(l, )/Z(l, ) =(Z») ', and similarly for
Z yp and g 12m

Equation (1.13) is easily obtained from (1.5),
since two renormalized theories have to give back
the same large cutoff limit of the bare theory.
Comparing Eqs. (1.11) and (1.12), we see that a
change of renormalization scheme is totally ab-
sorbed by a change of the two constants X a,nd j.
Since Eq. (1.13) has the same form as Eq. (1.5),
we can say that, in the large cutoff limit of the
bare theory, any changes in the cutoff A or in the
coupling constant g, are absorbed by changing only
two scales: the scale of the temperature (related
to X) and of the magnetization (related to Y). Fur-
thermore, any dimensionless quantity independent
of X and T will be universal.

This ends the derivation of the two-scale-factor
universality. As a, consequence, just as there are
twelve critical exponents and ten relations among
them, we can define twelve fundamental critical
amplitudes and ten relations among them. Four of
these relations involving purely thermodynamic
quantities have been recently reviewed in Ref. V.

We are now in position to give all the relations
among the critical amplitudes. These latter are
generally defined as'

(i) T& T„H =0 (critical isochore):
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X =C't

c.=(A'/a)t-;
(ii) T&T„H=O (critical isochore):

(=h. (-t) ",
x =c ( t}-»-, -

c, =(A /Q')( t)-
M=B( t) 8;-

(iii) T=T„He0 (critical isotherm):

The others are given in Table I.
Note that, for n ~ 2, C is not finite and there-

fore there remains eleven critical amplitudes with
nine relations among them.

In Appendix A we prove universality for Q» R»
and R&~. Apart from the latter, the universality

TABLE I. Universal relations among critical ampli-
tudes.

Among Among
thermodynamic correlation

amplitudes amplitudes

Mixing thermodynamic
and correlation

amplitudes

C+/C-

A+/A-

R =C+DB~ ~~
X

R =A+C+/B»C

R+ (+ (A+) )/tf b
0

Q = (C+/Ct:) gc/(+)2-q c

R =D«+&~/'2D
D

gc=[($+) (A9 ] (Q

' From Refs. 7 and 24.
b From Refs. 1 and 4.

From Ref. 8. In this reference three qu. antities are
proposed as universal, Q( =C &(8 C ) and Q3

=D(g) "/C+, which are of course related to the quan-
titiee defined in Table I; Rr =

(Q~) ~; Q3 =(Rn/Rx}
x[(R+/Rz) j ~ ~~ The third one, Q, is kn this table.

c, = (A'/a') lHl- ~,

H =DM

x =c'IHi-";

(iv} T = T, , H =0 (critical point):

x(p}=Dp" '

in which $ is the correlation length, X is the sus-
ceptibility, C, is the singular part of the specific
heat, M is the magnetization. Note that the mi-
croscopic length a has been included in the defin-
itions of $0 and D.

Since H and y are related on the critical iso-
therm, we obtain the obvious universal relation

6C'D'i' =1

of Q, and Rn (related to Q,) was already conjec-
tured in a previous paper. '

I'I. e EXPANSION: MAIN LINES OF CALCULATIONS AND
RESULTS

In this section we present the re~ts, up to
order c', for some universal quantities for a sys-
tem with an n-component order parameter. The
calculations are more complicated than for the
Ising model. In the presence of a magnetic field
or below T„we define two correlation functions
(transverse and longitudinal). Moreover, below T,
on the coexistence curve, the Goldstone modes
give additional singularities, and the correlations
do not decay exponentiatlly but according to a power
law. ' " However, the steepest-descent method on
functional integrals developed in Ref. 6 gives us a
systematic method of calculation. We shall not
write all the details of the calculations since it
would be lengthy and tedious; we just give in Ap-
pendix B all the graphs that contribute to our cal-
culations. We thus limit this section to the defin-
itions and results with some comments.

With an n-component system, we can separate
the correlation function into a longitudinal and a
transverse part:

rP, 'i=r, v, v, +r,(()„-v, v, ),
in which rP&'(P) = IG(P)],~' is the inverse of the
correlation functicm

G„(x,y) = (S,(x),(y)) .

7, is the unit vector in the direction of the mag-
netization:

v, = M /(M')" .

We are going to define two correlation lengths,
$z and $~, related to 1~ an4 I'~. It is easy to
check that I'~, 1 ~ and the corresponding $~, $~ are
solutions of a renormalization-group equation
which is given by Eq. (1.6) with N=2, I, =0 for
I'~, I'~ and with / =0, L = 0 without the right-hand
side for $~, $ ~.

We can then derive the critical behavior in the
same way for the lengitmlinal and the transverse
parts. However, the procedure will be slightly
different from the one followed in Sec. I.

First, the solutiees for corxelatiea lengths are,
following the same arguments as in Sec. I,

g~, (t, M, g, ii)
t Ar—(& sF'(, , q. . . .

q ... , ,g(zl, 1), (2.2)

which in the critical domain leads to
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This form [(2.3)] is obtained by fixing X by Eq.
(1.10), but we can choose, from Eq. (2.2), another
condition, namely,

(2.4)

which corresponds to Wilson's prescription that we
integrate the renormalization-group transforma-
tions until the correlation length becomes of order
unity.

Then following the same arguments which gave
us Eqs. (1.11) and (1.12) we obtain, in the critical
domain [$(t, M, g)-~],

Consequently, if we want to define a correlation
length which has a zero-field limit, we have to use
another procedure.

From Eqs. (2.5)-(2.7) and dimensional analysis,
it is easy to convince one's self that one can define
(~ by the small-P limit of 1"~,

"such as

r,(p)I„=, P'((,)' '/M'+O(p'). (2.8)

We could have chosen another definition for $~, but
the definition given by (2.8) is very useful since it is
related (for n =2) to the superfluid density p~ of
4He 11

7

r, ,(p;t, M, g) $ r = (k '/m'„ks T)Pq, (2 g)

- 1' (5z, r)"

xr. ..(p(g, r tie'."r'M''x. r"" "~'
in which the constants X and Y are the same for
the longitudinal part and the transverse part.

Thus, it is possible to define a correlation length
as the second moment of the spin-spin correlation
function:

Z(o 2)d
dp

""(P'=0) (2.6)

r, (P') - H/M +0(p'). (2.7)

as long as I'"(P' =0) is not zero.
However, for the transverse modes, we know that

for p small I'r(p') behaves as"

in which m~ is the 'He mass.
Of course, P, ~, which satisfies the usual renor-

malization-group equation, combines with the
specific heat below T, to give the universal quan-
tity

R T
~ (

2I tC-)1/d (2.10)

Below T, the transverse part dominates the
longitudinal part, '4 so that in Table I, we only re-
place $ by g~. Above T„we can define $' by
(2.6), as usual.

Then with these definitions, and using the cal-
culations brieQy summarized in Appendix B, we
have calculated Rt, ]g(„A'/A, and R, up to
order e'. The results are

(

nS n —1, (n + 2}(3n'+ 50n +28) n'+ 8n +48 3(n + 2)

12(5n + 22) 3(n + 14)
(n + 8)' 2(n + 8)'

A' 2„n 1,3n'+74n'+708n'+3264n+64QQ 4 —n 3(5n+22) g(4 n)
A 4 2(n+8)'

4n+2 2 8n — n~'2+ nB'+13 n-8+ 625' n4 ++n12
S' '(n+8) (n+8)' (n+8)~ 8(n +8)'

3n(5n+22) g(n+12)' 2("8) '"' 8(n+8)'

(2.11)

(2.12)

(2.13)

(2.14)

1 2d 1 d/PP(1 y)

I is given by the integral

ln[x(1 -x)]
1 -x(1 -x)

(2.15)

in which S is the surface of the d-dimensional
sphere divided by (2w):

I

and r (2) = —,
' vr', g(3) =1.202 06.

The result (2.14) is obtained from the others
[(2.11}-(2.13)] since

gT A- 1/d
~+ ~S

K
(2.16}

We have checked that our results [(2.11)-(2.13)]
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are in agreement with the large-n limits. "
Note that the powers of 2 in front of the right-

hand side of Eqs. (2.12)-(2.14) differ from those
in Eqs. (43) and (44) of Ref. 4. Although they lead
to the same result at order e, they are different
at order &'; this will lead to somewhat different
numerical values.

Extrapolated values of these quantities at d =3
are displayed in Table II. Comparison of e series
with experiment is ambiguous, for instance, it is
very different to set c =1 in the e expansion of
A'/A or in that of A /A'. We choose the e ex-
pansion which minimizes the oscillations between
the first and second order. This can be achieved
by calculating the quantity itself, its inverse, or
its [1, 1] Pads approximant, according to the par-
ticular case.

The agreement with experiments or series re-
sult (Table II) is better than for the first-order
result, except for A'/A whose extrapolated val-
ues are far from experimental results. A similar
situation has been observed for exponents": When
one computes graphs with three loops, the results
become worse than at a lower order (two loops).
This observation combined with the fact that the &

expansion of R& leads to good agreement with
series and experimental results, in spite of the

contributions of some three-loop graphs (A' up to
order e'), shows that the more the three-loop
graphs are calculated, the farther away the nu-
merical results of the e expansion are from the
experimental value (three-loop-graph contribu-
tions are larger in A than in A').

For n = 1, $', /g, has been calculated up to order
e': (Ref. 17)

We have also calculated RD up to order e:

RD = — 1+ —1 —ln2 — ln3

+O(e'),

in which

6e 3(3n + 14) 1
1+g +0 En+8 (m+8)' 2

and

6 =3+~ +O(e') .

(2.19)

f„'/ $, = 2" [1 + ~2, e + ~+a '( ~2', + 2I )]+0(e '). (2.17)

Then we can obtain Rt from Eci. (2.16) in which
"T" is replaced by "-":

6 e +e [&296 ++2~6 &(2)+&(3) av I])
(2.18)

TABLE II. e expansion for ~ =1 compared with series and experimental results for some
universal quantities.

n=l
Series ~ expansion

n=2
Series ~ expansion

n=3
e ' Series e expansion e &

A+/X- 0.51'

(p+/$0 1.96

0.17

hp

Order e: 0.23
Order e 0.27 ~

0 55 108a
0.48 g

~2. 1.91'
E: 0.09
e . 0.18~

c 030
0.36 &

0.99 '
~'. 0.88 ~

0.27 ~

~' 0 33g

0 360.42 ' '
0 450.42 g

1.07 1.52 1.461.24 g

0.30 0.5—0.7e: 0.38 ~

R
K

RD 14.18 ' e'. 11.02 g

(2 ... h

0.95 b
e2. 0.96&

e: 8.22 g

0.88 '
0 90 g 1.8-1.2

See, in Ref. 4, Table I and references therein.
From Refs. 18 and 19.

d

' From Refs. 18 and 19 and series values of R+.
K

See, in Ref. 4, Table II and references therein.
~ From Ref. 8 and, in Ref. 7, Table HI and series values of R+&.

From Ref. 22.
g From this work.
"Q& has been calculated for n =1 up to order e, but since Rz is not known at this order we

cannot give the result for RD.
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FIG. 1. Longitudinal and transverse Feynman propa-
gator s.

P
swmw e mewl

FIG. 2. Feynman propagator for counterterms.

IH. APFLKATMN T0 FRYSKAL SYSTEMS

Relying on our better rmmerical results, ere can
improve the comyRrisoe with experiments dis-
cussed inl Refs. 4 and 8. we cs:n, throeghl the nu-
merical vs.lues of the g~tit~es calculated ie Sec.
II, and with a reeasure of the specific heat, give a,

theoretical evaluation of $~ ami comyare with ex-
periments. The experimeatal values and the rea-
soning are the same a,s those of Ref. 4.

A. LiquM heber

From a mes. surement of the suyerQuj. d density, '8

p~ =0.35(-f)'" cm', and the relation (2.9) with
7 =2.1V K, we obtain an experimental estimate of
the transverse correlatloIn length:

(3 1)

From the c explsnsion we have two ways to calcu-
late $ . The first uses A& and a measurement of

, while the secoad uses 8', $'/(, and a alea-
sure of A'/A . Using the experimental results at

aturated vayor preeamre '9

assert that superQuidity is not due to the conden-
sation of pairs of helium atoms, "since this would
give an experimental value four times as big as in
Eq. (3.1) and would be in a too large disagreement
with the e exyansion

In the isotropic antiferromagnet it is possible to
measure g' directly and E~ through the spin-wave
velocity; followiag Ref. 4 we have, from experi-
ments, "

+ =2.1] 0,71 A

g'=6.2(-f) '"A, (3.6)

for which the scaling law v= v' is violated.
our estimates of $' and ( from experimental

values, "
A' =9.87X10 ' cm, g'/g =1.46, a=-0.135,

(3 7)

A =1.65X10"cm ', A'/A =1.065,

n = -0.0154,
(3.2)

and e expansion of 8&', R&, and )'/$r for I =3 and
& =1 listed in table are

and the c expansion given iz Table II for e = 1, the
first method gives

("=3.9(-t)-'" i,
and the second method gives

~*=4.3(-f)-'"A. (3.4)

These two results are closer to each other than
those evaluated up to first order in e (Ref. 4)
(-I instead of 3), but they still differ appreci-
ably from the experimental estimate [Eq. (3.1)j.
(Note that in Ref. 4 there is an error in the experi-
mental estimate of 8&.' %e find 0.85 for B~& instead
of 0.90, and 0.41 for (,'/$, instead of 0.39.) If the
order ~' does not bring the theoretical estimate for
gr closer to its experimental value (3.1), we can

(3 9)

(3.10)

The values (3.9) and (3.10) correspond to the two
possible ways to calculate E~.

The results for E' are in good agreement with
(3.5). It ls llltel'es'tlllg to llote tllat tile estllllate fol'
$+ from series gives the same value" as (3.8).

For g, the same remarks as in the helium case
can be made: The two values are closer to each
other (compared to the first-order results') and
seem to converge towards a number that is still
not very close to the experimental estimates (even
if we take into account the strong violations of the
scaling law, as was done in Ref. 4).

d'q
(p+ q) + g+ x q + Q+

6(2~) N4 FIG. 3. Illustration of
the Feynman rules for two
graphs.
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1 r x 3

f—M+ )

2 d
P

dp
K. 2

p

-3t Q--W +3 Q- +t

(b)

means
2 —!

ip + t)

means
2 —

1

(P + ~. )
1

p means (p')

means
2

p
2 2

(p + t:)

(c'j
d

d q -2 -2
(P + q)

(2it) 2= 2
p

P) + P2 1gi
d

d q

(2 )

d
d q

4 2 2 2. -2
1 1 2 1 2 ' a) 2 2 3 2

(
2 1 1 2 1 2 g 2 p =p

FIG. 4. (a) Finite combinations of graphs for e =0, following renormalization conditions [Eq. (1.4)]. (b) Feynman
propagators used in Fig. 4 (a). When there is no index associated with the lines of a graph, then each propagator
has been the same "mass" t. (c) Two contributions to counterterrns in which the subtraction point p, enters.
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c, = -r('-"&(o; t, t(/2, g),
H=r("&(t, M, g),

& =$(t, M, g)

(A2)

(Aa)

(A4)

Then from Eqs. (1.12) and (2.3) it is easy to see
that for t&0 (i.e. , T&T, ) and x =0(H=Q),

FIG. 5. Equation of state.
{c')-'=Y'x&'r(")(0;1,o, g ),
(,' =x '((l, o, g*);

(A5)

(A6)

ACKNOWLEDGMENTS

The author acknowledges the helpful assistance
of G. Girardi, during a part of this work, a.nd

would like to thank E. Brezin for enlightening com-
ments a.nd reading the manuscript and P. C. Hohen-
berg for a. stimulating discussion.

H= Y "I'''(0, 1,g*)M',

)(
' = Y ''I'('')(0 0 1,g*)M'

(Av)

(A8)

X2Y n(6+ O/ndr(2, 0)(P. Q 1 8) 1fn(6+ 1)/d& (A9)

and for t = 0 (i.e. , T = T, ) and Hw 0 we obtain, sim-
ilarly,

APPENDIX A: UNIVERSALITY OF g2, RD, AND R~t.

x '(p) r" "(t=; t, M', g), (A1)

In this appendix we do not prove the universality
of all the quantities listed in Table I, since for
seven of them this has already been done else-
where. We only give the proof of universality of
the quantities ((), (introduced by Tarko and Fisher' ),
HD (related to (&), '), and H„n, which has never been
done. The proof for the seven others would follow
the sante arguments.

In our notations we have

y-(5+ 1)/d((O 1 gg)~ -(()+ I)/d

Then it. follows that

{C')-'=Y("'&/'r("&(0. 0 1 g*)

x Ir(n, u(p. l g g)](&-4)/6

w' = -x' Y ("'/'"'r("&(o. o, I,g «)

x]r(o, i)(0 I, ~)] -n(e+ i)/u4

~c Y(6+ 1&/d 6
~ (Q I g g)[r(0, &)(0 I gi)J(6+ &)/2 6

D= Y"'r(")(o 1 g*)

(A10)

(A11)

(A12)

(A13)

(A14)

L
(p, t, M, g)

2
2 gM n-] ] gM gM

p +/+ —+ g2 6
+

2
——(n-])]8 2

2 gM 2(n —(), 4(n-&)+g(6) 3
' +

n-], n-], 3

2
2 ((( 2 ~, 4(n-() ~i

&

~ 4(n —&)

/'

+ ]8

]
+

4

2 (n-]) 2 n" —
I n-] n-]

2 2
gI ] n ] 2 n-1 3 2+ g — (6 ]8 +

3
+- ( ) +(n-])

+o(g )
3

FIG. 6. Longitudinal part of the correlation function.
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2
2 gN n+1 ei1 2I' ( P t && g ) = P + ~ + —g — + — — g6 6 6 6 3

2 n+1
)8

2 g".I
&

(n+)), 218~ 6' g ~ I

n-1, n+1, j

g ~ ia ~ g
FIG. 7. Transverse part

of t;he correlation fUnction.

2 i, li 2 2(n-i)
g ( 6 ) —

g

g — + +

Finally at f =0 (T = T,) and H =0 we have

X-'(2() =y')g' 'r" "(1;0,0, g*),
from which it follows that

D '= Y'I"')(1 0 0 g*) .

(A15)

(A16)

are dimensionless (independent of g, if we restore
the )I dependence) and independent of X and Y, a.nd

thus, following the discussion in Sec. I, are uni-
versal.

APPENDIX 8: c EXPA&l SION (c = 4 —d)
With these definitions, it is now obvious to check
that the combinations

A„. = [(~,') '(A')'1'(C')",

D( 5+ ])/'&D
D

3n n ~ n(n~2) [~j2 n(n+2)
(f-n)I2, 2 ~ ~ I2

( +2) 2 n (n+2) 2 n(n+2}
g + R

2 n(n+2) 2 n(n+2)

) —
I

{p + t)

FIG. 8. (a) Specific heat above T, . (b) Above T, , for
H=O, M=O, there is only one I'eynman propagator:
(p2+t) ' (see Fig. 1).

We use for' the 6 calculatj. ons ln the CRse of R

system with 0(II) symmetry, the steepest-descent
method, developed in Ref. 6, applied to functional
integrals. With this methodth, e O(n) symmetry
is never broken by a translation on the mean value
of the order parameter, Rnd we do not need Ward
identities to restore the symmetry.

We start with the Hamiltonian given by E(l. (1.3)
and renormalizai. ion conditions given by Eq. (1.4).
As was mentioned in Sec. II, there are two corre-
lation functions (transverse and longitudinal), so
there are two Feynman propagators (see Fig. 1).
The counterterms (i.e. , Z, Z, 5)II'-, and so on) are
calculated from renormalization conditions (1.4)
at (lie cl itlcal polllt (Flg. 2).

For d =4, the integrals given in Fig. 3, for ex-
ample, Rnd counterterms, are built in such a way
so as to subtract all the divergences of all the di-
vergent graphs (integrals). Figure 4 exhibits all
the divergent graphs (for d =4) we shall use, with
their subtractions following the conditions (1.4).
These subtractions will be now understood and the
finite combinations of graphs will be represented
by the divergent graphs themselves.

Using the expression for the equation of state
(Fig. 5), the longitudinal (Fig. 6) and transverse
(Fig. 7) parts of the correlation functions for g
=@*, and the ~ expansion of g~, ' we have calcu-
lated, above T, in zero field (i.e. , M=O), the cor-
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(a}

+ gt ~ + l2 + 12
3

FIG. 9. (a) Specific heat
below T~ (t & 0). (b) Below
T, in zero field, the
Feynman propagators are
those given in Fig. 1 with

p
]

(p —2&)
p 2 —)

{p )

relation length defined by Eq. (2.8), and, below T,
in zero field (i.e. , M is obtained from the equation
of state for H=. G)t the transverse correlation
length defined by Eq. (2.8).

We thus obta. in $, j$, [Eq. (2.12)]. In order to ob-
t.ain 8,'- up to order e. ', we need A

"
up to order &'.

The specific heat above I', in zero field has the
form

C =(A'/n)f +B .

Figure 8 gives its expression in terms of graphs.
Note that there are graphs with three loops.

Fortunately, to obtains' up tn order e' we have to
know only the 1/c terms of these graphs at t =0.
Since their counterterms have already been calcu-
lated"' and by requiring a finite limit at d =4 of the
combinations given in Fig. 4(a), we can extract the
contribution of these graphs to the second-order in
e for A.

The spec if ic heat is def ined up to a constant;

following BLZ, we fit this constant in such a way
that C satisfies exactly the renormalization-group
equation by introducing the term -Sn/(4 —n)g*.'

Having A' and (,' we obtain Rt given by (2.11).
Below T, in zero field, the specific heat has the
following form:

where B is the regular part of C and is the same
constant as in Eq. (Bl). Since n =~', we calculate
B using the specific heat above T, (Fig. 8), A' up
to order e', and ~ up to order &', which has been
already calculated. " Having B, we calculate g
up to order e' through only two-loop graphs. Fig-
ure 9 gives the expression in terms of graphs of
the specific heat below T, in zero field.

Then we obtain A'/A [Eq. (2.12)]. And finally,
combining R&, (QF„, and A+/A, we obtain Rt
[Eq. (2.14)].
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