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The spin-1 Ising model on the square lattice with nearest-neighbor ferromagnetic exchange interactions [both
bilinear (J) and biquadratic (K)] and crystal-field interaction (5) is studied via a renormalization-group

transformation in position space. The phase diagram in J, K, 5 space is found to have one surface of critical

phase transitions and two surfaces of first-order phase transitions. These surfaces are variously bounded by an

ordinary tricritical line, an isolated critical line, and a line of critical end points. These three lines join at a

special tricritical point corresponding to the transition of the three-state Potts model. The over-all phase

diagram is qualitatively similar to that obtained with the mean-field approximation, except in the vicinity of
the Potts transition where a four-phase coexistence line in mean-field theory shrinks into a special tricritical

point in renormalization-group theory. Symmetry considerations guide the construction of our truncated

renormalization-group transformation. The global connectivity and local exponents of the thirteen separate
fixed points underlying this quite complicated structure are determined. Local analysis with respect to
magnetic field (8) and another odd interaction (L) is performed. A one-adjusted-parameter version of our
transformation yields remarkably quantitative results, predicting the Potts transition temperature, for example,

within 0.3% of the exact value.

I. INTRODUCTION: POSITION-SPACE RENORMALIZATION-
GROUP METHOD AND THE aLUME-EMERY-GRIFFITHS

MODEL

The direct application of Wilson's renormali-
zation-group approach' to phase transitions' in
lattice systems, using a rescaling' transformation
in position space, has lately received consider-
able attention. '~ Such transformations are con-
structed by associating one collective spin with
each group of neighboring initial spins in the lat-
tice, and then by summing in the position-space
representation of the partition function over all.

degrees of freedom orthogonal to the collective
spins. In this process, one usually resorts to
some truncating" approximation to control the
arbitra, ry interactions otherwise generated.
Niemeijer and van I eeuwen, ' Kadanoff and co-
workers, "and others' " solidly established this
method through the study of the critical phase
transition in the two-dimensional spin--, Ising mod-

el, where Onsager's exact solution" is available
for comparison.

These very impressive results have spurred ap-
plications to more complex problems about which
there is little exact information, such as phase
transitions in systems with higher lattice dimen-
sionality, ' "more complicated spin kinematics, '6 '9

or random bonds. ~ Most work on these lines has
focused on a single nontrivial fixed point and con-
centrated on calculating critical exponents and
critical interactions. By contrast, in the research
reported here we use the position-space renor-
malization-group (PSRG) method to study a model

with a very rich phase diagram, exhibiting a wide
variety of transitions of first and higher order.
%e find a total of 13 different fixed points, yielding
first-order phase boundaries, critical and (ordi-
nary and special} tricritical points, and critical
end points. All of these arise from a single, very
simple set of recursion relations. The global
phase diagram is determined by the topology of the

PSHG flows linking the various fixed points. " Lo-
cal analysis of the recursion relations near the
fixed points gives all the exponents, with a pre-
cision which appears remarkably good in those
cases where comparison with other data is pos-
sible.

We study the Blume-Emery-Griffiths (BEG}
model2' on the square lattice (1=2}. This is just
a spin-1 Ising model with the Hamiltonian

Q(j ff Q; (s)) =jQ s(s. +Kg s( s~

-gQ s,', s, =0, +1, (1.1)

where (ij) indicates summation over nearest-
neighbor pairs (we restrict this studv tot, Ko-o).
The usual -1/est factor has been absorbed into
this Hamiltonian. The terms on the right-hand
side are, respectively, the bilinear exchange, bi-
quadratic exchange, and crystal-field interactions.
In order to obtain a complete description of the
phase transitions, vanishingly small magnetic-
field-like (odd) perturbations

8] +I 8)8) + 8; 8-
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must also be considered.
Blume, Emergy, and Griffiths" introduced this

model to describe phase separation and superfluid
ordering in He'-He mixtures. The BEG model
was subsequently reinterpreted to describe phase
transitions in simple ' and multicomponent" "
fluids. References 28-31 used the mean-field
approximation (MFA) T. he BEG model on the
(d = 3) fcc lattice was studied by series" and Monte
Carlo" methods. Two other works treated the
square lattice: Arora and Landau~ performed a
Monte Carlo calculation. Burkhardt ' has recently
obtained local ordinary tricritical properties by
a PSRG transformation' different from ours. He
has not obtained the unified global phase diagram
and other local features presented here.

The plan of our presentation is as follows: Sec.
II collects several items of exact information on

the phase diagram of the BEG model which follow
from simple, general considerations. We then
exhibit (for later comparison with PSRG results)
the MFA phase diagram (Figs. 2, 3). Section III
develops our PSRG transformation. Symmetry
considerations, based on the exact information
of Sec. II, guide this process. We use two ver-
sions of our transformation: one with no free
yarameters, the other with a single parameter
which is adjusted to fit the known" critical tem-
perature of the spin- —,

' Ising model. Section III
can be skipped by readers uninterested in renor-
malization-group technology. Our results are
summarized by Figs. 7 and 8 (phase diagram)
and Tables III-VII (exponents). Most of these
results are discussed in Sec. IV. The J, K, A

phase diagram is composed of three surfaces:
two of first-order transitions and one of critical
(second order) transitions. These three surfaces
meet, with no intervening higher-order transition,
along a semiinfinite line of critical end points,
which terminates at a special tricritical (Potts)
point. Two other lines terminate at this Potts
point: One is a locus of ordinary tricritical
points, which separates the critical surface and
one of the first-order surfaces. The other is an

isolated line of critical points bounding the re-
maining first-order surface. We locate the 13
separate fixed points underlying this quite com-
plicated structure and study the connectivity of
the renormalization-group flows linking them.
Finally in Sec. V we consider the three-state Potts
model, '" to which the BEG model reduces for
specific values of the interaction constant ratios.
Our PSRG phase diagram is qualitatively similar
to the MFA phase diagram except in the vicinity
of this Potts transition, where a four-phase co-
existence line in mean-field theory shrinks into
a special tricritical point in renormalization-

I.'. EXACT INFORMATION AND THE MEAN-FIELD

PHASE DIAGRAM

The BEG model defined by the Hamiltonian (1.1)
has two order parameters, ' "namely the mag-
netization M and the quadrupole order parameter
Q:

M(J, K, A)=(s,.) =Z 'ps, . e~e

fs)

q(Z, fc, a) =-(s,'. ) =Z 'g s-,'e&,
fs}

(2.1a)

(2.1b)

where the sums are over all spin configurations,
the translational invariance of (1.1) makes i arbi-
trary, and Z is the partition function:

Z(J, K, h) =Q e~. (2.1c)

We restrict this study to J,K &0, so that no sub-
lattice order parameter must be introduced. We
begin by extracting from simple, general con-
sicferations several items of exact information,
which in Sec. III will guide the construction of our
PSRG transformation. We shall accumulate these
in Fig. 1. Then, the MFA phase diagram will be
recalled (Figs. 2 and 3).

M=+
I

0= I

M=Q

Q=O
~f

6=2(J+K)

M&'Q, Q =
I

M=O, Q=I

I/2

G
+eg

M =0,Q& I/2
M =0,Q & I/2

F2
~g

J=O, rh= A2

FIG. 1. Some exact information on the BEGphase dia-
gram. C and F& are planar segments of critical and first-
or der transition surfaces respectively. G is the Griffiths-
Onsager critical point, and GI"

&
is a first-order tran-

sition line. The relationship between the locations of
C and G is exhibited. These features are obtained in
Secs. IIA—IIC from simple, general considerations.
They guide the construction of our renormalization-
group transformation in Sec. III.

group theory, in agreement with previous Potts
model treatments. ~ " The one-adjusted-param-
eter version of our transformation yields remark-
ably quantitative results: for example, it gives
a Potts transition temperature within 0.3% of the
exact value. "
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FIG. 2. BEG phase diagram obtained with the mean-
field approximation, discussed in Sec. II D. Critical
and first-order transitions are respectively drawn with
dark full and dotted lines. Wavy lines denote smooth
continuation of surfaces ~ The two coexisting ferromag-
netic phases (Ferro) and each of the two paramagnetic
phases (Para~) are separated by the critical surface
CTpE 3L and by the fl.lst-order surfaces F 3TpE3L
(three-phase coexistence) and E2GE2L (two-phase co-
existence). TpE3 is an ordinary tricritical line (tri-
angles), GE2 is an isolated critical line, and E3L is a
critical end line (dash-dotted). E2 and E3, respectively,
are critical and tricritical end points; between, E:E3 is
a four-phase coexistence line. Features along the Potts
axis OA are discussed in Sec. VB. Representative con-
stant-K cross sections of this MFA phase diagram are
in Fig. 3.

A. Regions (D~ )) 1

~(J; (s})=J g s,.s, , s,. = ~1, (2.2)

At ~ «-1, the configurations (s,. = + 1} in which

all spins are nonzero completely dominate the en-
semble averages in (2.1). When we restrict the
sums to these configurations, the second and third
terms in (1.1) become just additive constants
which do not affect further ordering, and the Ham-
iltonian reduces to

FIG. 3. Representative constant-K cross sections of
the BEG phase diagram (Fig. 2) obtained with the mean-
field approximation. Critical and first-order transi-
tions are, respectively, drawn with full and dotted lines.
The ordinary tricritical points (triangles), the four-
phase coexistence point (44), and the critical end point
(CEP) are indicated. The critical and first-order lines
meeting at the tricritical point have equal slopes. The

three first-order lines at the four-phase coexistence
point have different slopes (one has infinite slope). Both
first-order lines at the critical end point have infinite
slope, while the critical line has finite slope.

B. Asymptotic first-order transition

In the 2(j+K)- o, » 1 region, either the config-
uration (s,. = 0}with all the spins zero, or the two
configurations fs,. =s,. = ~ ~ ~ = + 1}with all the spins
aligned completely dominate the ensemble. Their
respective energies are

30(fs, =0})=0, (2.3a)

K((s,. =s,. = ~ ~ ~ = +1})=N [2(J+K) —A], Ã-~,
(2.3b)

where N, the number of lattice sites, it taken to
infinity in the thermodynamic limit. Thus, at

2(j +K) =A» 1 (2 4)
which describes the two-dimensional spin- —,

' Ising
model, exactly solved by Onsager. " Accordingly,
we expect a critical" (second-order) phase tran-
sition at J =J,&,. Thus, the b, « -1 and K ~ 0 re-
gion has a segment of critical surface parallel to
the J = 0 plane at a height J,&, above it. This seg-
ment is labelled C in Fig. 1. Above it, two low-
temperature ferromagnetic phases coexist with
M,'0, Q = 1 (the inverse interaction measures the
temperature); below it, there is a paramagnetic
phase with M =0, @=1.

At a»1 and J,K finite, the configuration(s, =0}
in which all spins are zero completely dominates
the ensemble. Therefore both M and Q vanish.

domination abruptly passes from the zero con-
figuration to the aligned configurations. This con-
stitutes a first-order transition between a para-
magnetic phase (M =Q=0) at 2(J+K) & a and two

coexisting ferromagnetic phases (M = +I, Q =1)
at 2(4+K) & n, . The (three-phase coexistence)
boundary (2.4) is represented in Fig. 1 by the
plane I',.

C. Griffiths symmetry

Griffiths ' pointed out the following feature of
the phase diagram: Consider the J =0 plane.
Since flipping any spin s& -- s,. does not change
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the energy of a configuration, the magnetization
is zero. Define a new variable t,. at each site i by

{2.5)

Substituting into (I.I), one obtains the equivalent
problem

(2.6a)

where the new interaction constants are related to
the original ones by

where critical and first-order transitions meet
with no intervening higher-order transition. Simi-
larly, E, and E, are, respectively, critical and tri-
critical end points. Between, E,E, is a four-
phase coexistence line. Bepresentative constant-K
cross sections are in Fig. 3. The conditions de-
rived in Secs. IIA-IIC above and depicted in Fig.
1 are fulfilled by this MFA phase diagram. 'I'he

PSBG phase diagram, Fig. 7, turns out to be qual-
itatively different in the E~E, region.

III. RENORMALIZATION-GROUP TRANSFORMATION

A. General considerations

J~ = —'K, (2.6b)

H, =K + -', (ln 2 —A) . (2.6c)

This is again the spin- —,
' Ising model (2.2), this

time in a magnetic field H, . All its phase tran-
sitions occur atII, =0, i.e., along the line J =0,6
=2K+ln2, labelled SE~ in Fig. 1. The Qnsager cri-
tical transition takes place at G:

J~ = 0, K(.-= 4J,y„b,~ = 8J,y, + ln2 . (2.7)

Beyond (K&Ko) this point, GF2 is a line of first-
order transitions (two-phase coexistence) between
two paramagnetic (M=-(s,.) =0) phases at H, ', 0 with

(t,.);0, i.e., q; —,'.
This exact mapping between the a «-1 region of

Sec. II A and the J = 0, a =2K+ ln2 line here con-
stitutes a

symmetry

in the phase diagram. ~ This
symmetry will be built into our PSBG transforma-
tion in Sec. III.

D. MFA phase diagram

To show how the above pieces can fit together,
we now give the MFA phase diagram {Fig. 2) which
later will be used for comparison with the PSBG
phase diagram. In MFA each spin feels only the
average presence of its neighbors, which amounts
to ignoring fluctuations. The result can at best
provide a qualitative indication of the true behavior
of the model here. Several authors" -' have pre-
sented MFA phase diagrams for the BEG model.
We have followed their approach to obtain the one
in Fig. 2, in terms of the variables J,K, 4 which
are appropriate for the renormalization- group
calculation.

In this diagram, the two coexisting ferromag-
netic (M &0) phases and each of the two paramag-
netic (M =0, Q&~—,' in Para, ) phases are separated
by the critical o transition surface C T,E,L, and

by the first-order transition surfaces E, ToE,L
{three-phase coexistence) and F,GE, I. (two-phase
coexistence). These surfaces are bounded by the
ordinary tricritical ' line T,E„ the isolated
critical line QE2, and the critical end line E,L

A position-space renormalization-group (PSHG)
transformation is effected' by (i} grouping neigh-
boring lattice sites into cells; (ii) associating with

each cell a new spin variable t'cell spin) which re-
flects a collective property of the initial spins
(site sPins) inside the cell; (iii) summing in the
position-space representation of the partition func-
tion over all degrees of freedom orthogonal to the
cell-spins. In the last step, one usually~ resorts
to some truncating ' approximation to control the
arbitrarily distant-neighbor, many-site interac-
tions otherwise generated. Thus, the site-spin
problem is converted into a cell-spin problem.
One insures that both problems have the same
structure (lattice type, spin kinematics, Hamil-
tonian functional form). The length scale, of course,
is increased due to the thinning out of degrees of
freedom. ' The cell-spin Hamiltonian differs from
the site-spin one by the values of the various in-
teraction constants, so that repeated application
of this procedure corresponds to discrete jumps
in Hamiltonian space, as in Fig. 6. For easy
visualization, we follow the usage of referring to
these jumps as "flows" or "trajectories. " From
their analysis all thermodynamic information on
the initial system can be extracted.

This general prescription leaves considerable
freedom, specifically in steps (i) and (ii) above.
As pointed out by van I.eeuwen, symmetry con-
siderations should guide the final choice of a PSBG
transformation. We adopt his approach by incor-
porating into our transformation the following
known symmetries of the problem:

(a) We have seen in Sec. II that the BEG model
reduces to spin- —,

' Ising models in two distinct
regions: ~ «-1 or J =0. This constitutes the
Griffiths symmetry. ~' We insure that our trans-
formation acts in identical manner on either of
these spin--,' Ising models.

(b) As usual, our transformation does not dis-
criminate between positive and negative spin di-
rections. This results in the uP-doun symmetry
of classical spin systems: Any feature at a given
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point of interaction-constant space is duplicated at
the point arrived at by changing the sign of all odd
interactions, for example, (J„H,)-(J, , H, -) in

(2.6a), or (Z, K, n. ,H, L)-(J,K, n. , H, —L—) in (1.1)
and (1.2).

We perform step (i} by grouping neighboring
sites into the simplest square cells as shown in
Fig. 4(a). Each cell is referred to by a primed
index i', and each site byi'a, a =1,2, 3, 4 clock-
wise as in the figure. We fulfill the above require-
ments (a) and (b) in step (ii). This involves sharing
the 3~ site-spin configurations (s, ,„s,, 2, s, „s,, 4)
among the three cell-spin configurations s,', = 0, ~1.
As our basic building block, we use an assignment
scheme applicable to the spin--,' Ising problem.

, 2
I

.4 3.
PSRG

(aj

I 2
J

4 3

B. Spin-2 problem: majority rule

At each site i'a in the cell i', a site spin t;., = ~1
was introduced in (2.5}. We now associate with
the whole cell a cell spin t,', = +1 which is deter-
mined collectively by the four site spins t&,, inside
the cell. The Hamiltonian 3C't, coupling the cell
spins 7t''7 is obtained from a Hamiltonian 36, cou-
pling the site-spins (7j by summing in the position-
space representation of the partition function over
all degrees of freedom orthogonal to the cell-spins

e t~ = e3Ct .
&t jtixed &t '}.

This transformation as usual conserves" the
partition function:

(3 1)

g = e~(' t' = e&t (3.2)

Equation (3.1) may be expressed equivalently
using a projection matrix' ' ":

(3.3)

where the sum over site-spin configurations (7} is
now free. The total projection matrix appears as
an outer product of single-cell projection matrices,
reflecting our earlier choice of having the site
spins t... in each cell determine their own cell
spin t,', exclusively.

P &VI (t; t ) =M (1; t, ) + M (-1;t ) = 1 (3.4)

+7, 7, 7, +7, 7, 7, )]'7. (3.5)

A physically appealing cell-spin assignment is

t', , =sgn(f. ..+7,„+f...+7, , 4. ),

is sufficient for the partition function conservation
(3.2). The most general single-cell projection
matrix obeying the symmetries of the square and
the up-down symmetry (b) of Sec. IIIA is

3I,(t'; t, ) =-,' (I + 7' [p(t, + t, + t, + 7, )

+q(t, 72t, + t, t~t4

4 3

(b) 1,

sgn(x) -=0,
x&0,

x=0, (3.6)

2
I

3

PSRG

I 2

J

FIG. 4. Finite lattices for the derivation of truncated
recursion relations. (a) The two-cell cluster as in Ref.
5; (b) the two-cell cluster with periodic boundary con-
ditions. The latter corresponds to a checker-board
pattern repetition of the two cells. It does not violate
the position of the asymptotic first-order plane of Sec.
II B and therefore is used in this work (see Sec. IIID).
Cells are referred to by the primed indices i', j', and
sites by i'a, j'a, a=1, 2, 3, 4 clockwise as shown. In
this figure, intercell (intracell) site-spin interactions
are shown with dashed (full) lines. The resulting cell-
spin interactions are shown with darker lines.

-1, g(0,

=M,(f; t.) . (3.7)

The right-hand identity defines a projection matrix
M, (t', t,) which will be useful in what follows and

with the simple added proviso" that t', =+1 equally
share the site-spin configurations summing to
zero. (3.1) in conjunction with (3.6) is the form
originally introduced by Niemeijer and van Leeu-
wen' and extensively employed in subsequent
works. "' '""'"' The single-cell projection
matrix (3.5) corresponding to (3.6) has the param-
eter values p =-', , q= ——,', and may be compactly
written

1
M, 7, ,7, (t'; t, ) = —1+7' sgn

a
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site-spin confs.

belonging to

s'=+l

site-spin

confs. so

to be shared

by cell-spin

confs. s'=0, +l

majority

rule

Mo(t';ta)

site-spin confs.

belcnging to

t'=+l, 8=+I

majority

rule

Mo(s =+ lyso)

site-spin confs.

belonging to
s' =-l

FIG. 5. DouMe majority
rule described in Sec. IIIC.
This procedure ls coIl-
densed into the single-cell
projection matrix of Eq.
(3.9). It yields the PSHG
transformation (3.8) con-
taining the Griffiths and
up-dove symmetries of
Sec. IIIA, and the sym-
metries of the square.

site-spin confs.

belonging to

t =-l, s=O

has a meaning independent" of the particular kine-
II1Rtics of the sphls f~. Mo(V; f~) embodies R cell-
spin assignment which vie shall refer to as major-
ity ale.

C. Spin-1 problem: double majority rule

We are ready to proceed with the full kinematics
of the BEG model: each site has a spin-1 variable
s, =0, ~1, connected to the spin-a variable of Sec.
GIB by t, -=2s,'-1; similarly each cell has a spin-1
variable s' =0, + I, connected to the spin-~ variable
t'=- 28"—1. Our object is to construct a single-
cell projection matrix P(s'; s,) for the spin-1 prob-
lem to be used in the transformation

s '=g (lls'(s, ', ;s, ,,))s" .

or equivalently

the nonzero elements of which are collected in
Table I.

The P380 calculation performed arith the dog5/g
majority rule (3.9) is our main-line treatment.
To distinguish it from a later variant ere refer to
it as PSHG (v =0). PSHG (e =0) contains the sym-

TABLE I. Noazero elements of the spin-1 single-cell
projection matrices. The values for negative cell-spin
can be obtained from up-doom sy~~etry: &(s'; s,)
= P(-s'; -s,). e =0 gives the double majority rule of
PSBG (e =0); e =-0.06453 (see Ref. 45) gives the one-
adjusted-parameter version PSHG (~ & 0). Both transfor-
mations are described in Sec. III C.

The role of p is to allocate for each cell the 3~

site-spin configurations (s. .., ,l among the
three cell-spin values 8' = 0, +1. This is done in
two stages (the following procedure is depicted
in Fig. 3): First, we apply the majority rule
M,(f'; f,) of (3.7). This splits the site-spin con-
flgllrRtlons lllto ' lllaglletlC" Collflgul'R'tlolls (S'
=+1,t' =1) and "nonmagnetic" configurations
(s' = 0, f' =-1). Second, we subdivide the magnetic
configurations into "up" configurations (s' = 1)
Rnd "down" configurations (s' =- 1) by applying
the majority rule Mo(s' = +1;s,). The over-all
effect is the single-cell projection matrix

P,(s'; s,) =M,(t'; t.) [(1-s")+ s"Mo(s';s.)],
(3.9a)

0.5
0.25

Pfs'=0. s )

0.5
0.5
0.5

(s;) any permutation of

+1, +1,+1, +1
+1, +1, +]., -].
+1, +1,-1,-1
+1 -1 -1 -1
+1, +1, +1,0
+1, +1, -1,0
+1 -1 -1 0
-1 —1 -1 0

+1, +1,0, 0
+1,-1,0, 0
-1,-1,0, 0

+1,0, 0, 0

0, 0, 0, 0
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metrics (a) (Griff iths) and (b) (up-down) of Sec. III A,
and the syrQmetries of the square. It is physically
motivated and has no adjustable parametex's. 6""
Its approximate (Sec. IIID} treatment leads to our
global phase diagram (Fig. 7) exactly reproducing
the information of Secs. OA-II C and to transition
temperatures and exponents arith estimated inac-
curacies of roughly 15/~ on the average.

In order to improve~~ the accuracy of our results,
@re have also employed a slightly modified version
of our transformation: PSHG (veO) contains all
the symmetries noted above, but also has a single
adjustable parameter v [PSHG (vxO) reduces to
PSHG (v =0) when v = 0]. We construct PSHG (eg0)
with a slight modification of the majority rule (3.7}
applied to the spin--,' problem;

M„(t'; f,)=M, y~ „—y2 „g2,)8(t', I,). (3.10)

This projection matrix assigns the unanimous
(i.e. , {I,]= {1,1, 1, I) and {-1,-1, -1, -I) and

evenly divided ({1,1, -1,-I] and permutations)
site-spin configurations as previously; hovrever,
an amount v of {1,1, 1, —I] is now assigned to

M„(-1;{I,1, 1, -Ij) = v =M„(1;{-1,-1, -1, I)),
and slIQllarly for QJly permutation of the site-spin
values. The spin-1 single-cell projection matrix
P„(s';s,) used in PSHG (vaO} is obtained by re-
placing Mo by M„ fox all the purely spin-a factors
(those with all site variables +I) in the right-hand
side of (3.9b). Equivalently,

catHlg approxXIQatlon.
%e adapt Niemeijer and van I.eeuvren's' tvro-cell

cluster approximation: The recursion relations,
vrhich give the cell-spin interactions as functions
of the site-spin interactions, are obtained by car-
rying out the PSHG transformation (3.8) on a finite
lattice, viz. , the hvo cells i' and j' shorn in Fig.
4(a). However, note that the number of nearest-
neighbor bonds per site is 1.25 for the finite lat-
tice m Fig. 4(a) whereas it ls 2 for 1Ilfmlte square
lattice. This number directly affects the energy
per site (2.3b) of the completely aligned spin con-
figurations, and consequently the location (2.4) of
the asymptotic first-order plane. Therefore, to
get correct strong-coupling behavior me have used
the periodic continuation of the bvo™cellcluster:
the recursion relations are obtained from the
finite lattice shown in Fig. 4(b). Specification of
this cluster and the cell-site projection P [(3.9)
or (3.12)] makes concrete the transformation
(3.8). Because of the two-cell nature of our trun-
cation, interactions remain nearest-neighbor paix
or single spin. $brthermore, since ere have built
in up-down symmetry, the odd interactions 8,L
of (1.2) are not generated by the PSHG transforma-
tion unless they are initially present, i.e., the even
subspace J,Z, b. of (1.1) is invariant. Examples of
PSBG floves in this subspace are in Fig. 6.

E. Renormabzation-group analysis

As mentioned earlier, the renox malization-
gxoup phase diagram is derived from the global

=M„(f'; f,){(1—s'2) +s'~ [(I—s~ s22s~~s24} Mo(s'; s,)
+sg82sgs4M„(s iso}]]~

(3.12)

the nonzero elements of which are in TaMe I. The
parameter v is then adjustedu until a
—0.064 53 it yields the correct" Onsager critical
interaction (see Secs. II A and II C): Z, &2

= -,
' ln(1

+v 2 ). We shall see in Secs. IV and V that this
modest adjustment improves our quantitative re-
sults up to accuracies of a fraction of a percent f

4
4

i
O.~ l.Q

9
7

6
5

~ 3

2.

5

66
2.0

D. Truncating approximation

The appx oach developed thus far cannot be car-
ried out exactly. Starting, for example, with
nearest-neighbor pair interactions only, such
exact PSBG treatment generates4 arbitx'arily dis-
tant-neighbor

y IQany -site Interactions. For px'ac ™
tical calculations one has to resort to some trun-

FIG. 6. Examples of renormalization-group flows,
obtained in PSHG g =0) (Sec. IUD). The crystal-field
interaction 6 is not shown. Consecutive jumps along
each flow are indicated with numbers. Stars represent
the fixed points 6*, T*, P* which are discussed in
Secs. IV and V C. The closer the starting Hamiltonian
is to a fixed point, the shorter is the jump: in principle,
it takes infinitely many jumps to reach or leave a fixed
point.
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study of flows in Hamiltonian space, which are
governed by fixed points (points invariant under
the transformation). At such a fixed point, the
correlation length ( of the system is either zero
or infinite. ' In the lattex' ease only, the entix'e
domain of attraction (the subspace which eventu-
ally flows into the fixed point in question) shares
the $ =~ property. The two cases usually are
distinguished quite easily by examination of the
fixed-point Hamiltonian. For example, $ =0 is
ruled out when the fixed-point Hamiltonian con-
tains finite couplings. Accordingly, fixed points
and their domains can be classified as follows:
(a) Higher or-der fixed point (]*=~, where the
asterisk denotes fixed point): the domain is the
locus of higher-order phase transitions. (b) First-
order fixed point ($*= 0): the domain is the locus
of first-order phase transitions. (c) Trivial fixed
point ((*=0): the domain is either (i) an entire
thermodynamic phase, or (ii) the smooth continu-
ation of one thermodynamic phase into another.
%e call these "phase sinks" or "continuation fixed
points, " respectively. ~6 %e shall have the oppor-
tunity of illustrating each of these types.

Critical (higher-order) exponents are obtained'
by linearizing the x'ecursion xelations at the
higher-ordex' fixed point whose domain is the locus
of the transitions in question. In our case, the re-
cux'sion relRtions

fixed point (from its domain) along the associated
eigendir ectioI18.

IV. RESULTS

This section contaols most of oux' x'esults. %e
delRy until Sec. V R unjLfied px'eseDtetion of PSRG-
versus-MFA results for the three-state Potts
model to which the BEG model xeduces for specific
values of the interaction-constant ratios. %e shall
be referring in general to results from the double
majority rule PSBG (a =0) (Sec. IIIC). Those from
the one-adjusted-parameter version PSBG (ve0)
will be noted explicitly.

A. Over-aB description

The BEG phase diagram, Rs obtained in the posi-
tion-space renormalization-group treatment, is
presented~ in Fig. V. The volume of the two quad-

SF Sr

[Jl K~ ns] p[g K ~] (3.13)

etc. , where Tzr is the derivative sJ'/sK evaluated
Rt the fixed point. The eigenvalues A, , of this re-
cursion matrix T~Ir Rre written

where the length x'escaling factor Q is 2 in our
case. A similar, independent linearization at the
fixed point is performed by considex'ing small de-
viations of the odd interactions II, I. from their
zero value, resulting in y„ys. Unlike the eigen-
values A.„the "eigenvalue exponents" y, are in
principle transformation independent, ~ but not so
in truncated calculations. We shall refer to the

y, simply as eigenvalues. The relevant eigen-
values y, &0 give" higher-order (critical and tri-
critical) exponents from simple relations as seen
in Secs. 1V and V. Benormalization-group trajec-
tories flow away from the fixed point along the
eigendirections associated with these relevant y, .
The irrelevant eigenvalues y, &0 give correction-
to-scaling exponents. ~' Trajectories flow into the

FIG. 7. BEG phase diagram (discussed in Sec. IVA)
obtained in the position-space renormalization-group
tx'eatment PSBG f = 0). Critical and first-oxdex tran-
sltlons are, respectively, dragon wit dark full and dot-
ted lines. Wavy lines denote smooth continuation of
surfRces. TIle two coex18tlng ferromagnetic phRses
(Ferro) and each of the two paramagnetic phases (Para~)
are separated by the critical surface CTOPI. , and by
the f list-oldex' surfRces E3TOPI (three-phase

coexist-

encee) and Il PPJ (two-phase coexistence). TOP is an
ordinary tricritical line (txiangles), GP is an isolated
critical line, and PI. is a critical end line (dash-dotted).
P is a special tricritical point corresponding to the
three-state Potts transition. On the Potts axis L4 (Secs.
V B and V C), the cross maxks the exact location of this
transition„and the square marks the location of the
first-order tx'ansition pxedicted by MFA. G, P, T axe
also the locations of the respective fixed points shovm
ln Flg, 9 To 18 the lIltex'section of the tricritical line
with the %=0 (Blume-Capel) plane. In the PSHG g &0)
vex'sion of oux' tx'Rnsfox'xnRtion» one parameter 18 ad-
justed so that the Griffiths-Onsager critical point Q
moves to its exact location. Some consequent changes
are indicated with arrows, Bepresentative constant-E
cross sections of this PSHG phase diagram are in Fig.
8.
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FIG. 8. Bepresentative constant-E cross sections of the BEG phase diagram (Fig. 7) obtained in the position-space
renormaligation-group tx'eatment PSBG (v =0). (Portions of the corresponding MFA cux'ves are also shown; an arrow-
head denotes smooth continuation of curve). Critical and first-order transitions are, respectively, drawn with full
and dotted lines, The Blume-Capel tricritical point pT) and the critical end point {CEP) axe indicated. The critical
and first-order lines meet at the tricritical point with equal slopes. The two first-order lines at the critical end point
have equal slopes, different from the slope of the critical line. The location of the tricritical point in our one-ad-
justed-parameter version PSBG (e & 0) is marked with V. In this figure, it is indistinguishable from that reported in
Bef. 23. Its Monte Carlo location (Bef. 34) is marked with .
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rants (J,K~O) under study is divided by transition
surfaces into thxee regions. Two of these are
occupied by paramagnetic (M=—(s, ) =0) phases:
One (labelled Para+) has large quadrupole order
parameter Q=—(s,'), the other (Para ) has small

In the remaining volume (Ferro), two ferro-
magnetic (M', 0) phases coexist. Thus, this whole
region is actually a locus of first-order transi-
tions between up and down magnetizations. These
transitions would be manifest and the two ferro-
magnetic phases would be separated if an odd di-
rectioQ such as the Inagnetlc field II wexe added to
the phase diagram. The two paramagnetic phases
Para+ are separated by the first-order transition
surface E,GPL (two-phase coexistence), but merge
at the isolated critical~0 line QP. Para and Ferro
ax'e separated by the first-order transition surface
E,T,PL (three-phase coexistence). Para, and
Ferro are separated by the cx"itical transition sur-
face C Tor I . Top ls a llIie of ordinary trlcl ltl
cal~o'~3 points. PL, is a line of critical end points
(critical end line) where critical and first-order
transltloQs meet with Qo intel vening hlghex'-ol dex'

transition. The three lines GP, ToP, and PL,
join at the special tricritical point &, correspond-
ing to the transition of the thxee-state Potts mod-

The vicinity of P differs qualitatively from
the E2E, four-phase coexistence found in MFA
(Fig. 2). This feature is discussed in Sec. V. The
conditions derived in Secs. IIA-IIC and depicted
in Fig. 1 are fulfilled by this PSHG (v =0) phase

FJ ~~~ei~ie~i~e~eieo! P
0 ~O ~~4

0 ~0
4 ~0 ~

4 ~ ~
4 4 ~t1

~0
1 0

0 ~4
0 4 0

4 4 40 0
0 +1 0

0 e + e'
~ ~l

~ 4
0~en'

FIG. 9. Global connectivity of the l3 fixed points un-
derlying the phRse diagram ln Flg, 7 BenorIYlalization-
group trajectories flowing through crltlcal RIld first-or-
der phase transitions are, respectively, drawn with
dark full and dotted lines. The triangled and dash-dot-
ted trajectories flow through the ordinary tricritical
line and the critical end line, respectively. Light trajec-
tories do not colnclde with any phase transition. The
classification and locations of these fixed points are
given ln Table II.

diagram. Representative constant-E cross sec-
tions are ln Fig. 8.

Thirteen fixed points underlie the phase diagram
in Fig. V. Their global connectivity is shown in
Fig. 9. Their classification and locations are
given in Table II. Linearization at fixed points
with infinite interaction is done through appropx'i-
ate changes of variable, ~ for example, e~ instead
of Q at C +. Crltlcal and fix"st-ox'dex' transltlons
and critical end-line behavior are discussed in
Sec. IV 8 below. The ordinary tricritical prop-
erties are in Sec. IVC.

B. Critical and first-order transitions, critical end-line behavior

The fixed points C * and C *, respectively, pro-
vide the critical surface C T,PI. and the isolated
critical line CP. As seen in Table II, C* occuxs
in the 4«-j. region of Sec. IIA, and C* occurs
in the J =0 region of Sec. IIC. Therefore, their
locations are connected by the Griffiths symmetry
(2 '0:

The transition interaction J l~~ of Secs. IIA and
IIC is equivalent to Jc*. hex'e, and turns out to be
0.5275 in PSHG (v =0), 20% larger than the exact"
value —,

' In(1+&2) =0.4407. The parameter v in
PSBG (vgo) is adjusted so that this Onsager tran-
sition occurs at the exact value. ~' Then G* moves
to its exact location(0, 21n(1+v2), 41n(I+&2)
+ ln2).

The eigenvalues of the two critical fixed points
C~ and G~ are given in Table III. By Griffiths
sylnmetryq Y2t =$2~ and pig =p~~. Theses x'e-

spectively, are the tIIermal and magnetic eigen-
values of the Onsager critical transition, and their
exact valuesae are also given. The thermal eigen-
value is off by —27% in PSBG (@=0), —6% in
PSHG (Ugo). The magnetic eigenvalue is off by
+4% m PSBG(v=O), -0.2% m PSBG(~~0). y„
and y, z are probably redundant eigenvalues, ~'

which do not correspond to any new singularity or
crossover in the free energy. "

Five fixed points in Table II provide the first-
order transitions in our phase diagram. These
fulfill the Nlenhuls and Nauenbex'g coQdltloQs fol
seeing first-order transitions in PSBG. Specifi-
cally, the largest eigenvalue y whose eigenfield
couples to the discontinuous order parameter
must equal the lattice dimensionality of the system
(d =2 in our case). This is exactly fulfilled for
the five fixed points in question: The largest odd-
interaction eigenvalue is 2 for each of Ee*,Ef,A*,I', yielding a discontinuous magnetization M.
The largest even-interaction eigenvalue is 2 for
each of EP,A*,EP, Eg (also for I.*, see below),
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TABLE II. Classification and locations of the fixed points underlying the phase diagram in
Fig. 7. In PSRG (v & 0) G* moves to the exact location (0, 1.7627, 4.2186) of the Griffiths-
Onsager critical point. Correspondingly, P* moves to (0.5319,1.4761, 4.0119), to be com-
pared with the exact location (0.5025, 1.5076, 4.0202) of the three-state potts transition.

Fixed point PSRG (v =0) location
(Jg Kg Qg)

Domain in
J, K, 6 space
{see Fig. 7)

1. Higher-order fixed points

pg

Critical

Critical

Critical end

Ordinary tricritical

Special tricritical
(three-state Potts)

(0.5275, —0.1618,—~)

(0, 2.1100,4.9132)

(0.5275, , 2K+ +1.0778)

(1 ~ 1390,0.9944, 4.2449)

(0.5822, 1.7562, 4.6779)

Surface CToPL

Line GP

Line PL

Line ToP

Point P

2. First-order fixed points

Fe*

2

Discontinuous M

Discontinuous M, Q

Discontinuous M, Q

Discontinuous M, Q

Discontinuous Q

(~, 0.4030 —J*,—~)
Jg/ Qg —p

(-,-, 2{J*+K*))
3J*—K* =~,
(3J —K+)/6* = 0

(oo Qo 2(J + K+))
3J =K*

(-,™,2(J*+K*))
K* —3J*=~,
(K' —3J')/S* = 0

(0, ~, 2K*+ln2)

Volume
Ferro

Portion of
surface
F3To PL

Line in surface
3ToPL

Remainder of
surface
F3ToPL

Surface F&GPL

pa*,

pa*

Sink for (M=Q,
large Q) phase

Sink for (M=p,
small Q) phase

3. Trivial fixed points

(p Q oo)

(0, 0, ~)

Volume
Para+

Volume
para

Smooth continuation
between preceding
two phases

(0, 0, ln2) Surface
SGPTo

TABLE III. Critical eigenvalues {Sec.IV B). y2C; =y&&=y2z and y4&=y&z =y&z are the thermal
and magnetic eigenvalues of the Onsager critical transition. The negative infinite eigenvalues
y6& and y~ belong to deviations from e c =0 and e & =0; we found this typical of infinite in--IC

teractions at fixed points. y&~, y3&, and y3z are probably redundant eigenvalues (Refs. 49 and
50) which do not correspond to any new singularity or crossover in the free energy.

PSRG
(v =0)

Gg

PSRG
(v ~0)

Exact ' PSRG
(v =0)

Exact '
Lg

PSRG
(v =0)

y4

yg

y3

0.7267
1.9416

—1.8338
0.5748

—0.7327

0.9419
1.8697

—1.6375
0.6628

—0.6731

1
1.875

0.7267
—1.0492

1.9416
0.3792

1.875

0.7267
2

1.9416
0.2355

~ Reference 26.
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yielding a discontinuous quadrupole order param-
eter Q. All other eigenvalues in our treatment
are less than 2.

A schematic representation of the fixed-point
structure yielding critical end-line behavior is
in Fig. 10. The end-line fixed point L* occurs"
at J~ =0.5275, A~ =2K+*+1.0778 =~. The end line
is in Fig. 7 the junction of the one critical and
two first-order surfaces. J * is correspondingly
unstable (Fig. 10) towards C* (critical), F,*(first-
order in Q), and Fp (first-order in M and Q). The
two-dimensional domains of these three fixed
points meet along and are bounded by the one-
dimensional (critical end) domain of L*. The two
first-order surfaces have equal slopes at the
end line [Figs. 8(c) and 10]. As seen in Table III
and Fig. 10, L, * has exactly the same relevant
eigenvalues as C*, namely the Onsager thermal
and magnetic eigenvalues: y~~ =y, ~ =y~ and y, ~

y, c =ye. L* also has another relevant even
eigenvalue y~~ =2 =d characteristic of a first-
order transition, which causes its additional in-
stability. Thus in tmo distinct infinite interaction
limits, ~ «-1 and 6-2K»1, the recursion re-
lations reduce in mays which yield the exact
eigenvalue equality between the respective fixed
points, and also the additional instability and
first-order eigenvalue y =d for J *. This in gen-
eral will be an appropriate mechanism for end-
point behavior. In our case, y~ gives the critical
singularity when L* is approached along the dotted

curve in Fig. 10, and y~z =2 =d gives the first-
order transition" in Q when L~ is approached
along the full line. In summary, L* appears as
a hybrid of the one critical and tmo first-order
fixed points it mediates.

t . Ordinary tricritical properties

As seen in Figs. 7 and 8(b), the critical surface
C T,P and the (three-phase coexistence) first-
order surface E,T,P are separated, mithout dis-
continuity in slope, by the line T,P of tricriti-
cal4~ ~' transitions. To distinguish from the
"special" tricritical Potts transition in Sec. V,
these are referred to as "ordinary" tricritical
transitions (ordinary omitted in remainder of
section). The fixed-point structure yielding them
is schematically represented in Fig. 11. Thus,
in J,K, A space, the two-dimensional (critical
and first-order) domains of C* and Fz* are sepa-
rated by the one-dimensional (tricritical) domain
of T*.

The location of the K = 0 (Blume-Capel ') tri-
critical point To, and the tricritical eigenvalues
are given in Table IV, along with data from other
works. ""~" There are no exact results for
comparison; however, the close agreement of our
PSRG (ve0) [expected to be more quantitative than
our PSRG (v =0)] with Burkhardt's2' entirely dif-
ferent' PSBG on the same system, is quite en-

,/

: Fe

~4

4

)t
T

~07

FIG. 10. Schematic representation of the fixed-point
structure yielding critical end-line behavior, discussed
in Sec. IVB. Critical and first-order boundaries are
respectively drawn with dark full and dotted lines. y &

is the thermal eigenvalue of the Onsager transition.
Each fixed point here is stable with respect to a third
direction which, schematically, can be visualized as
perpendicular to the figure. Thus, in J,K, 4 space, the
two-dimensional (critical) domain of C* is bounded by
the one-dimensional (critical end) domain of L*.

FIG. 11. Schematic representation of the fixed-point
structure yielding ordinary tricritical behavior, dis-
cussed in Sec. IVC. Critical and first-order boundaries
are, respectively, drawn with dark full and dotted lines.
Each fixed point here is stable with respect to a third
direction which, schematically, can be visualized as
perpendicular to the figure. Thus, in J,E, A space, the
two-dimensional (critical and first-orderj domains of
C* and P~ are separated by the one-dimensional (tri-
critical) domain of T*. The domain of the trivial fixed
point 8* is a smooth continuation between the Para+ and
Para phases.
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TABLE IU. Ordinary tricritical eigenvalues and the X =0 (Blume-Capel) tricritical point
&0 (Sec. IV C).

PSRG
(v wo) Other I SRG ' b

c=—3 —d expansion, '
Monte Carlo

1.9201

0.7192

—0.6654

1.9707

0.6785

2.0960

4.1689

1.8373

0.9181

—0.6875

1.9296

0.8683

1.7317

3.4127

1.7966 '
0.7983

1.9275

1.1063

1.724 '
3.4QQ

1.852 '
0.652 "

2 ——e' =1.968 '
f25

1+—E =1.2
5

&2 1 999 c
2 2 iOOO

—+ —~ =1.83 3 = c
2 jo

1.5'
2.8'

'Reference 23: PSRG on the same two-dimensional spin-1 Ising (BEG) model as in our work,
but with a quite different truncating approximation.

Reference 22: PSRG on the two-dimensional spin-
2

Ising antiferromagnet, which by uni-
versality should have tricritical eigenvalues equal to the BEG model ones.

Reference 53: momentum-space renormalization group on continuous, n =1 spin models,
by expanding downwards from dimensionality three. Again, comparison is justified by uni-
versality.

Reference 34: Monte Carlo study of the two-dimensional BEG model. &TO is deduced from
their 'Fig. 1; then for 4T, their quoted ~T /44T =0.485 tcompare with 0.493 in our PSRG

TO& 0 0
(e &0)l is used.

couraging: The locations of To differ only by
0.4/o, y» and y2T by +0.1% and +2%. We note
that the latter two percentages parallel the ac-
curacies of the two critical eigenvalues given in
Sec. IVB. In general, magnetic eigenvalues seem
most accurate. The smaller tricritical eigenval-
ues differ in the two works more: y~T by + 13%,

y» by —27/0. The slow convergence of nonleading
eigenvalues has been observed previously. ' We
can also compare with Nienhuis and Nauenberg's"
tricritical eigenvalues for the two-dimensional
spin- —,

' Ising antiferromagnet, which by universal-
ity should equal those of the BEG model. Similar
conclusions emerge. On the other hand, almost

TABLE V. Ordinary tricriti. cal exponents (Sec. IV C).

Singular behavior '

2

M-h 1

@ ferro @para ~4"

Relation to
eigenvalues b

Pg = (d —$(T)/52T

7g = (23'g T -d)/$2T

~~ =S~T/(~ —S~T)

~„= (d -»T)/y4T

), = (2y2T -d)/'y2T

Exponents

PSRG
(~ «)
0.0383

1.0119

27.40

0.177

0.911

Monte Carlo 'd

0.09+0.12

1.0 +0 3
1.1 +0 4

10.8 +0.7

0.65 + 0.10
O.58+ O.11'
0.53+O.14 '

i
4

' The notation of Ref. 32 is used for exponents. w& (A, ) are small even (odd) interaction devia-
tions from tricriticality: T2(h&) along the strongest tricritical direction, 7'4 along the first-
order phase boundary.

d =2 is the lattice dimensionality.
Reference 34: Monte Carlo study of the two-dimensional BEG model. Both the paramag-

netic (lower entry) and ferromagnetic deters&»tions of the susceptibility exponent y& are
given. These are exactly equal in renormalization-group theory.

Reference 35: Monte Carlo study of the two-dimensional spin-
2

Ising antiferromagnet.
Comparison is justified by universality.
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V. THREE-STATE POTTS TRANSITION

A. Three-state Potts model as special case of BEG

The full BEG model Hamiltonian with both even
(1.1) and odd (1.2) interactions reads

=jQ s;sj +K Q s( s —6 Q s( +H Q s;

+L P(s, s2+s,'. s&), s,. =0, +1. (5.1)

all our tricritical exponents (Table V) deduced
from these eigenvalues fall outside the error bars
of Monte Carlo studies. ' " The Monte Carlo'
tricritical point T, is also away from ours (Table
IV). We have no insight into this discrepancy.
Finally, the e -expansion tricritical eigenvalues,
obtained" from momentum-space renormalization
group on continuous, z = 1 spin models by expand-
ing downwards from dimensionality three, are
also given in Table IV. Again, little quantitative
contact is established with our results.

L =4(-3J+K+2L), (5.3f)

K =3J, 5 =2zJ =8J, H =L =0, (5.4)

where each point mays onto itself. It can be ar-
gued' from three-state permutation symmetry
that, if there is a higher-order transition on this
line, then each odd eigenvalue y, „+, should also
occur as an even eigenvalue. This eigenvalue
degeneracy is of immediate concern to our study
(see Sec. VC).

Furthermore, substitution of (5.4) into (5.1) re-
veals that on the line (5.4) the BEG Hamiltonian
reduces to

where z is the number of nearest neighbors of a
site, e.g. , four in our square lattice. This means
any feature at a given point (j,K, n, ,H, L) of in-
teraction-constant space is duplicated at (J,K, n,
H, X,) as in (5.3b)-(5.3f).

What does the symmetry (5.3) imply for our
present study? Almost all points with zero odd
interactions map by (5.3b)-(5.3f) onto nonzero odd
interactions, which is of no direct interest to our
phase diagram in Fig. 7. The only exception is the
line OA in Figs. 2 and 7:

0,

1, when si — 0, (5.2a)

or equivalently

(5.2b)

Substituting (5.2b) into (5.1), the following relation
is easily derived:

for

z (j,K, n„H, L) =z (J,K, Zi, ,H, L), (5.3a)

We have mentioned in Sec. III A the up-down symmetry
(built into our PSRG} of the corresponding partition
function(2. 1c): Z(J,K, E,H, L) =Z(J,K, n, , -H,
—L}, which follows from the change s, --s,. at
every site, i.e. , a relabeling of spin states which
interchanges -1 1. This in fact is part of a more
general symmetry" "following from a relabeling
of spin states which arbitrarily permutes s, =0, +1.
We call this the three-state permutation sym-
metry. We complete its description by consider-
ing the interchange 0-1: Define a new spin u, at
each site as

(5.5a)

where 5, , is the Kronecker 5, and for J~0
i j

R Ja (j2+K2+g2)1/2 (5.Sb)

measures the distance along the line from the
zero-interaction origin. This is the three-state
Potts ' ' ' 6 model. It can also be visualized
as composed of ferromagnetically coupled spins
restricted to point into the 0', +120 directions of
a plane. For a detailed description of three-state
Potts phenomenology, the reader is referred to
Straley and Fisher. ~ In the following Sec. VB,
we see the MFA prediction for this model by
analysis in Fig. 2. In Sec. VC, our PSRG re-
sults are presented. In both sections other
works" "~ """will be recalled.

B MFA prediction

Let us scan along the Potts axis OA in the MFA
phase diagram of Fig. 2. 0 is the infinite-tem-
perature (inverse temperature-R =0}point and
the Potts system is completely disordered. This
disordered phase persists until the Potts axis in-
tersects the four-phase coexistence line E,E3 at

j= 4(j+K —2L)
&

K=4(9J +K+6L),

n = —,'(3zj+zK —A + 3H +4zL),

H = —,'(zJ' -zK+A +H),

(5.3b)

(5.3c}

(5.3d)

(5.3e)

RMqA =4@ ln2 =ln2. (5.6)

AtRM~„, three ordered phases, each with net
alignment in one of the three directions of the
planar visualization mentioned above, come into
coexistence with the disordered phase. Beyond
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R«A, only the ordered phases coexist, while the
Potts axis stays within the three-phase coexistence
surface F,T,E,L. Evidently 8«„ is a first-order
transition point.

We now hasten to discredit this MFA prediction.
Potts' proved by a dual transformation for the
square lattice that, if (5.5) has a single phase tran-
sition, this is exactly located at

R,„,,, =In(1+M) =1.0051, (5.7)

so thatRMF„ is —31% off. More seriously, Straley
and Fisher~ concluded from low-temperature ser-
ies analysis that the transition is higher order,
instead of first order. Noting the unusual geome-
tries of the phase and composition diagrams, "
they suggested that it is a special tricritical"
point. Indeed, Baxter" showed that the square
lattice, q-state Potts model is equivalent to a
staggered ice-type (six-vertex) model, thereby
deducing a first-order transition for q&4, but a
higher-order transition for q «4 covering our case.

C. PSRG results

TABLE VI. Potts special tricritical eigenvalues (Sec.
V C). See Eq. (5.8) for values of the potts transition
interaction.

PSRG
(v =0)

PSRG
(v «)

Other
PSRG

e=d —1
expansion b

&4m

&3~

1.9416
0.8327
0.4645
1.9362
0.3846

1.8704
1.1063
0.5248
1.8692
0.5304

1.8715
1.1806
0.4570

1+a=2 b

&=lb

Reference 19(b): PSRG directly on the two-dimen-
sional three- state Potts model, with a truncating approxi-
mation quite different from ours.

Reference 56: Migdal's method (Ref. 57) applied to
Potts models.

The three-state Potts transition enters our PSRG
treatment in the form of the completely unstable
(Fig. 9 and Table VI) higher-order fixed point P*.
The ordinary tricritical line, the isolated critical
line, and the critical end line join at P (Fig. 7).
Thus, the four-phase coexistence line E,,I:3 ln
mean-field theory (Fig. 2) shrinks into a special
tricritical point in renormalization-group theory.
This is the realization within the two-dimensional
BEG phase diagram of what other authors"'" have
predicted within strictly Potts context.

Our PSRG transformation does not incorporate
the complete three-state permutation symmetry
(Sec. VA): although it contains the up-down sym-
metry following from -1-1 spin-state relabeling,
it does not contain the symmetry (5.3) following

from 0-1 spin-state relabeling (5.2). In general,
if one were capable of pursuing an exact calcula-
tion, ~ a r enormalization-group transformation
not containing a particular symmetry of the par-
tition function would still yield such symmetry in
the resulting physics. Our calculations are of
course not exact, so we can anticipate deviations
from the consequences (discussed in Sec. VA) of
three-state permutation symmetry. However, we
can benefit from this violation by using its mag-
nitude as an indicator' of the extent of damage
done by our truncation. The outcome is quite
favorable, as seen below. Local PSRG treatments
directly on Potts models, including their permuta-
tion symmetry, have been performed by Harris
et al." and Dasgupta. "

The location of P' (Table II) gives the Potts
transition interaction Ro „as in (5.5):

R, =1.1696 in PSRG (v =0),

R„=1.001535 in PSRG (vWO),

versus
(5.8)

R,„.„,, = 1.005 053.

Thus, while R, is +16% off from the exact value,
R„ is only —0.3% off. Because of the symmetry
violation of our approximate calculation, discussed
above, P* does not exactly occur on the Potts axis
OA (5.4): in PSRG (v =0), P* is away from the
3xis by 6x10 of its distance from the zero-inter-
action origin 0; in PSRG (ve0), by 1.0%.

The eigenvalues of the Potts special tricritical
point are given in Table VI. The eigendirection
of y» is along the ~ axis by 99.97% in PSRG
(v = 0) and 99.6% in PSRG (vg0), so that it cor-
responds to an external field coupling to the order
parameter Q. The eigendirection of y~ p is approx-
imately along the Potts axis:

(0.13, 0.34, 0.93) in PSRG (v =0),

(0.15, 0.32, 0.93) in PSRG (v+ 0),
(5.9)

compared to (0.12, 0.35, 0.93) for the Potts axis, so
that it corresponds to the temperature of the Potts
system. The eigendirection of y~ corresponds to
crossover to the tricritical fixed point T* on one
side, and crossover to the critical fixed points G*
and L* on the other side. Again the close agree-
ment of our PSRG (vg 0) this time with Dasgupta's"
entirely different' PSRG directly on the Potts mod-
el, also in Table VI, is quite encouraging: y~,
y~, y,~ differ by -6&10 ', —7, +13', respective-
ly. Agreement gets better with higher eigenvalue,
as with tricritical ones. The Potts exponents de-
duced from these eigenvalues are in reasonable
agreement in Table VII with low-" and high-tem-
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TABLE VII. Potts special tricritical exponents (Sec. V C).

Singular
behavior ' Relation to

eigenvalue s

Exponents
PSBG
(» 0) Series c' d

Speci6c heat - 7'4"&

7ep
@aligned @p 4

0.05+0.10 '
0.10 + 0.01

1.5 +0.2'
1.42+ 0.05

&~=&2ph'4p 1.58 + 0.15

'
~4 is a small deviation along the eigendirection of J4p, which corresponds to the tempera-

ture of the Potts system.
d =2 is the lattice dimensionality.
Beference 38: lour-temperature series analysis.
Reference 55: high-temperature series analysis.

perature55 series analysis. Each of the odd eigen-
values should by three-state permutation sym-
metry be degenerate~ with an even eigenvalue.
Indeed, g~ and p~, g,p and Y,p differ only by +6
&10 ', -lginPSRG (seO) [+0.3%, +17k in PSRG
(~ =0)l.

Finally we point out that in both PSRG (v =0) and
PSRG (v e 0), the magnetic eigenvalue of the Onsag-
er transition. is numerically between the very close
y~ and y~ (which should be equal by three-state
permutation symmetry): InPSRG (vs 0), y, o is
only 2 parts in 10' more than y», and 4 parts in
10' less than y~. On this basis we speculate that
the magnetic eigenvalue y~ =1.875 of the two-di-
mensional Ising critical tr'ansition is equal to its
counterpart in the two-dimensional three-state
Potts transition. This would imply the equality of
the exponents determined solely by the magnetic
eigenvalue: 6 and q. An analogous situation oc-
curs along a line of transitions in the eight-vertex
ice-type model, where it is believed" the expo-
nents involving the thermal eigenvalue continuously
change from their Ising values, whereas 6 and g

remain fixed at their Ising values. (Baxter"
showed that the square-lattice Potts model is
equivalent to the six-vertex ice-type model. )
Furthermore, Stephen~ has recently performed an
expansion in c =—d —1 for the Ising-Potts models by
using Migdal's method. " To first order in &, he
finds that both the magnetic and thermal eigen-
values in the two models are respectively equal.
However, an approximate calculation~ he does at
d =2 yields a thermal eigenvalue 11% larger for
the three-state Potts model than for the Ising mod-
el, in agreement with our results.
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