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Inelastic neutron scattering has been used to investigate the spin dynamics of the isotropic Heisenberg
ferromagnet EuO over a wide range of wave vectors and over a temperature range extending from 0.14 to
1.9 '. Below the ordering temperature spin-wave renormalization is found to agree well with the predictions
of Dyson-Maleev theory (including the dynamical but not the kinematical interaction) when both exchange
and dipolar couplings between the Eu' ions are taken into account. At temperatures near Tc broadening of
the spin-wave lines was observed. For hydrodynamic spin waves, the wave-vector dependence of the
linewidths is found to be consistent with the expectations of microscopic spin-wave theory and the
temperature dependence with predictions based on dynamical scaling. At Tc, linewidths were found to deviate
from the q' wave-vector dependence expected on the basis of dynamical scaling arguments when only
exchange couplings are taken into consideration. But when dynamical scaling theory is modified by including
dipolar interactions, it satisfactorily accounts for the weaker q dependence observed experimentally. Current
microscopic theories appear to overestimate the magnitudes of the linewidths at Tc although above Tc theory
properly predicts the temperature dependence of the spin diffusion coefficient in the hydrodynamic regime and
also provides a good estimate of its magnitude.

I. INTRODUCTION

In the first two papers of this series we were
eoncex'ned with neutx'on scattering studies of the
exchange constants and static critical properties
of EuG and EuS. In this paper oux' attention will
be directed to the application of inelastic-neutron-
scattex'ing methods to the study of the spin dy-
namics of EuG. The experiments to be described
were planned with the idea of providing as com-
plete a view as possible of spin motions in EuG
over the widest px aetieal span of wave vectors
and over a broad temperature range extending
from the low-temperature ordered phase, in which
spin-wave modes predominate, through the critical
1eglDle to tIle high-temperature disordered phRse
ln which. spin Dlotlon becoDles primarily dlffuslve
in character. Attention was concentrated on EuG
alone because the magnetic couplings are strongest
in this material and the details of its dynamic be-
havior are therefore easier to x'esolve experimen-
tally.

It is generally accepted that inelastic neutron
scattering is the most direct way to study mag-
netic spin dynRIIllcs on R Inlcl oscoplc scale and~

in fact, magnets of almost every description have
been investigated with neutrons. To mention a few
representative examples, there are data ln the
literature on RbMnFS, '2 an isotropie Heisenberg
antiferromagnet, on the lsotroplc metallic fer
romagnets Fe,' ' Co, e and Ni, v'8 and on the aniso-
tropic Heisenberg ferromagnets CrBr3 s and

MnP." But as fax as the isotropic Heisenberg
ferromagnets EuG and EuS Rre concerned, very
little information is available beyond that con-
tained in preliminary accounts of our measure-
ments "'2 As was noted in paper I, this is be-
cause neutron scattering is difficult in materials
as strongly absorbing as europium. To the best
of our knowledge, the data to be reported here
thus represent the first reasonably complete and

systematic set of experimental observations of the
spin dynamics of an isotropic exchange-coupled
ferromagnetic system.

This system has long been regarded as nearly
ideal from the viewpoint of theory and much effort
has consequently been devoted to models de-
scribing its static and dynamic behavior. For
dynamics in the spin-wave regime below the
ordering temperature T, probably the most
comprehensive of the available theoretical treat-
ments is that of beaks, Larkin, and Pikin'3 but
many others have been presented. Headers will
find references to earlier work on this subject
in the papers of Vaks et aL. and a complete review
of work previous to 1966 in Keffer's monograph on
spin-wave theory. '4 Above T~, in the spin-diffu-
sion regime, there is also an extensive literature.
de Gennes, "Mori and Kawasaki, "and Bennett and
Martin'7 have done work of particular relevance to
the questions of interest here, but many others
have made important contributions. An excellent
summary and critique of the current theory ean be
found ln the x'ecent Rrtlcle of Manson Rnd Sj01-
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lander, "which also contains references to the
earlier literature.

Although the spin-wave and spin-diffusion theo-
ries are generally considered to be successful,
they do not provide satisfactory descriptions of
experimental observations near T~. While such
difficulties were not entirely unexpected when the
theories mere originally yroposed, their full sig-
nificances was not appreciated until relatively re-
cently when Halperin and Hohenberg" extended the
static scaling ideas developed by Wjdom and
Kadanoff" to critical spin dynamics. As formu-
lated by Halperin and Hohenberg, dynamical scal-
ing retains the basic assumption of static scaling,
namely, that the spin correlation. range ~, ' defines
a. natural length scale. This assumption, Halperin
and Hohenberg point out, carries with it the im-
plication that dynamical behavior in the hydro-
dynamic regime, where the wave vector q is small
compared to ~„can be expected to be different
from behavior in the critical regime where q is
large compared to w, . Consequently, it should not
be surprising to find that theories which are ba-
sically hydrodynamic in character, such as the
spin-wave and spin-diffusion models of magnetic
dynamics, do not apply equally well to the critical
regime near T~.

Besides clarifying the distinction between hydro-
dynamic and critical theories, Halperin and
Hohenberg also showed that dynamical scaling
implies that the characteristic (half-area) fre-
quency ~,(v, ) of the spectral weight function

E(q, ~) (defined in Sec. II of paper II) can be ex-
pressed as q" times a scaling function Q(~, /q)
with the scaling exponent g having a value of —,

'
for the isotropic ferromagnet. Subsequently,
Resibois and Piette" calculated the normalized
scaling function Q(z, /q)/Q(0) for both the iso-
tropic ferromagnet and antiferromagnet above
T~. Thus, even though dynamical scaling analysis
does not give the actual form of E(q, e), it does
indicate how the half-area frequency of the spec-
tral weight function can be expected to vary in the
pal amagnetlc regime.

To carry the theory beyond this point has not
been an easy matter. Above T~, the greatest pro-
gress has been made by Hubbard" who developed
a theory of spin correlations which provides a
formalism for calculating the shape of F(q, &u) that
is presumed to be valid for all values of e, /q.
Nothing comparable can be done at present below

T~ although the above-mentioned work of Vaks
et al. does give a prescription for calculating
E(q, &u) outside the critical regime. We will have
more to say about these theories at a later stage.

But before proceeding to detailed discussions it
may be helpful if we outline the organization of the

text to follow. In Sec. II, it is our intention to
summarize the main conclusions of dynamical
theory to give the reader a theoretical perspective
against which to view our experimental observa-
tions. This mill be follomed in Sec. III by a brief
description of the experimental method. In Sec.
IV the data analysis mill be reviewed and in Sec.
V the experimental results presented. Finally,
Sec. VI will be devoted to a discussion of com-
parisons between theory and experiment and to the
conclusions to be drawn from our observations.

II. THEORY

The magnetic inelastic-neutron-scattering cross
section is basically determined by the dynamic
structure factor S(q, a) as we noted in Sec. II of

paper II. It mas also remarked there that this
factor can be expressed as the product of a static
wave-vector -dependent susceptibility g; and a
normalized spectral weight function E(q, ~), the
latter describing the dynamic response of the
system. Previously, our attention mas focused
on the susceptibility X;; here by contrast me are
interested in spin dynamics and the spectral weight
function E(q, ur) will consequently become our
primary concern.

Earlier we remarked that there is a large body
of theory describing the dynamical behavior of
Heisenberg magnets. Since space does not permit
us to attempt to reproduce it in any detail here,
we mill be content simply to outline those parts of
the theory which relate to our experiments and to
quote without proof the formulas of interest.
Those unfamiliar with the expressions cited will
find complete derivations in the papers mentioned
in this and Sec. I which also contain references
to related literature.

But before attempting to summarize the theory,
it may be helpful if we first make a few general
remarks about the form our discussion will take.
In the magnetically ordered regime below T~,
theory leads us to expect that spin fluctuations
along and transverse to the direction of spon-
taneous magnetization will be quite different in
character. Therefore, belom T~ it will be nec-
essary for us to discuss separately the longitudinal
and transverse components of E(q, u&). At and
above Tc, however, it is assumed that the absence
of long-range magnetic order makes such distinc-
tions meaningless, and we will consequently con-
sider F(q, u) to have the same form irrespective
of any locally defined direction. Furthermore,
since dynamical scaling implies that differences
in dynamical response can be expected in the
critical and hydrodynamic regimes, each will
be treated separately. Neverthe1ess, it should
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be borne in mind that the borderline between these
regimes is broad and ill defined, and dynamical
behavior is actually expected to change slowly and
continuously as the transition from q« ~y to q» K,

takes place.
We might also note that we will not attempt to

discuss in this section the influence of dipolar in-
teractions on dynamical behavior. When such ef-
fects are known to be important, however, they
will be included in the data analysis and specific
mention of them made at that time.

T ( T&. Hydrodynamic regime

1. Transverse spin fluctuations

In the hydrodynamic regime below T~ the trans-
verse spin fluctuations are the familiar spin waves
discussed at length in paper I. There, the em-
phasis was on the use of low-temperature mea-
surements of spin-wave dispersion to determine
the magnitudes of the exchange couplings between
spins. Here, by contrast, we will be concerned
with the influence of increasing temperature on the
energies and lifetimes of the excitations.

The theory of spin waves in magnetic systems at
finite temperatures originated with the work of
Dyson'4 whose approach to the problem involved
the use of what is now called the Dyson-Maleev"
transformation. Considering only the exchange
interactions, Dyson rewrote the nearest-neighbor
(nn) Heisenberg Hamiltonian

in terms of the spin operators S' and S', which he
defined in terms of the Bose operators a~ and a.
After Fourier transforming the Bose operators,
the resulting Hamiltonian reduced to a term con-
t3ining products of two operators and a term in-
volving products of four operators of the form

; a; ~~, the first representing the noninte
acting spin waves and the second the interaction
between them. To obtain linear equations of
motion, Dyson decoupled the four operator pro-
ducts into products of two operators times a
thermal average, i.e., into terms of the form
(a&t a& )a&~ a& . From these equations he then found
an equation for the spin-wave energies hv;(T)
which can be put in the form (see, for example,
Marshall and Lovesey26 pp. 264-267)

ha;(T) = 2zSJ, [1—C(T)/S) (1 —y;),
where

and

y;=z ' +exp(iq r), (3)
r

the summation in the last expression being over
the vectors r from a given magnetic ion to its z
nearest neighbors. Spin-wave energies are cal-
culated by introducing the spin-wave spectrum
at T=O K (see Section IV of paper I) into Eq. (2),
computing y; from Eq. (3) and thence he;(T) from
Eq. (1), and then iterating until a self-consistent
result is obtained.

There are two approximations in this theory.
First, the Dyson-Maleev transformation is not
exact since the Bose operators have an infinite
spectrum, whereas there can be at most 2$ spin
deviations at a site with spin S. This is referred
to in the literature as the "kinematic interaction"
and is a rather small effect in EuO because the
Eu" ion has the relatively large spin of -'. Second,
there is the so-called "dynamical interaction"
which arises out of the approximation used to de-
couple the products of the Bose operators. The
error introduced by decoupling is difficult to esti-
mate from Dyson's work, but Keffer and l.oudin"
have derived the same equations from a more
transparent physical model and they find them to
be exact to second order in C (T)/S or, in other
words, to be correct in the limit when [C(T)/S]'

It is evident from the form of Eq. (1) that J, is
renormalized by the temperature-dependent factor
1 —C(T)/S and that the quantity J, (T) =J,[ 1 —C(T)/
S] can be regarded as a renormalized exchange
constant. In cubic lattices it is customary (in the
limit of small q) to express spin-wave energies in
ferromagnets by means of the relation Fi& =Dq',
where the stiffness constant D = 2a'SJ, and a is the
lattice constant, i.e., the cube edge in the fcc lat-
tice. It follows from the theory outlined above that
this relationship holds at all temperatures pro-
vided D is replaced by the renormalized stiffness
constant D(T) = 2a'SJ, (T).

Including the next-nearest-neighbor (nnn) inter-
actions in the Hamiltonian introduces into the
theory a next-nearest-neighbor exchange constant
J, which is renormalized by a temperature-de-
pendent factor of the form 1 —C'(T)/S. Again

C'(T) = N ' Q (1 —y.' )n;

and

C(T) =N 'g (1 —y;)n;,

n; [exp(h~;=/kT) —1] ',
(2)

y.'=z' '+exp(iq ~ r'),
r

the summation in the latter quantity is over the
vectors r' from a given ion to the next-nearest-



O. W. DIETRICH, 3. ALS-NIELSEN, AND L. PASSEI I

I

EuO

o 0.6—
M

0.5—
CO

0.4—
C3

LLI

0.3—
CX

0.2—
Ld

Te—

O. t—

I t I I I j

IO 20 50 40 50 60 70
TEMPERATURE ('K)

FIG. 1. Calculated renormalization of the nearest-
and next-nearest-neighbor exchange constants of KuO
using Dyson-Maleev theory including the effects of dy-
namical but not kinematical interactions.

neighbor positions. For the fcc magnetic lattice
of EuO, the renormalized stiffness constant with
both nearest- and next-nearest-neighbor exchange
taken into account assumes the form D(T)
=2a'S[J, (T)+J,(T}]. Figure 1 shows the renor-
malized exchange constrants J', (T} and J,(T) for
EuO calculated from the theory.

Dyson's approach gives us the excitation ener-
gies at finite temperatures but tells us nothing
about spin-wave lifetimes; in fact the decoupling
procedure he employed precludes the possibility
of calculating the widths of the excitation peaks.
Other methods can be used to obtain this informa-
tion, however. For example, Cooke and Gersch, "
Harris, "and Vaks eI, al."have constructed micro-
scopic theories for calculating spin-wave life-
times, while Halperin and Hohenberg" attacked
the problem from a macroscopic hydrodynamic
point of view. All came to the same basic con-
clusion, namely that spin-wave linewidths should
vary essentially as the fourth power of q within
the hydrodynamic regime.

Since the energies of small-q spin waves are
proportional to the square of q, it is evident that
values of q can always be found small enough such
that the energies of the excitations will be large
compared to their widths. Thus, hydrodynamic
spin waves can be expected to exist as mell-defined
excitations arbitrarily close to T~, and it will be
convenient to have methods of computing their en-
ergies. Unfortunately, although Dyson-Maleev
theory converges rapidly when C(T)/S & —,', i.e.,
T&0.8T~, it fails to converge at higher tempera-

tures. Near T~, however, spin-wave renormal-
ization can be approached from a different point
of view. According to the dynamic scaling argu-
ments of Halperin and Hohenberg, the spin-wave
stiffness constant in the hydrodynamic regime
close to T~ should vary as the v'- P power of the
reduced temperature

~

T —Tc ~/Tc Joi.ning Dyson-
Maleev theory to a power law with exponent t

'

—P =0.69 —0.36 = 0.33 thus provides a method of
predicting small-q spin-wave energies at essen-
tially any temperature below T~. As will be shown
in Sec. V, this combination of methods is ex-
tremely effective for EuO.

Returning to the question of spin-wave lifetimes,
let us briefly outline the predictions of the most
recent theories. Considering first the work of
Vaks eI, al.,"they looked in detail at two con-
tributions to spin-wave damping, one associated
with interactions between transverse fluctuations,
i.e., spin-wave-spin-wave scattering, and the
other with interactions between transverse and
longitudinal fluctuations. Of these the former
turned out to be the more important within the
temperature and wave-vector range of our mea-
sul ements.

In the hydrodynamic regime near T~ Vaks et al.
found the spin-wave-spin-wave damping to be of
the form

I, , (1 —T/T ) 2q4[ln(2/q2)]'

where q' represents the dimensionless quantity
—,[Z„r'J(r)/Z„J(r)] q', which has the value 4.8q'
for EuO when q is expressed in A '. Harris" ob-
tained an expression for the spin-wave damping
with approximately the same q dependence as Eq.
(4a) in the region accessible to neutron measure-
ments.

The damping coefficient I', , has also been cal-
culated by Halperin and Hohenberg using a com-

binationn

of mac roscopic -spin-wave" and dynami-
cal scaling theory. " This led them to predict that
I', , should vary as q' and as the —-& v' power of
the reduced temperature, v' being the exponent
describing the divergence of ~, near but below
Tc. Assuming v' = v=0.69 (see Table IV of paper
II), it then follows according to Halperin and
Hohenberg that

(4b)

The two equations predict nearly the same wave-
vector dependence when q = 0.01, but for larger q
their temperature and q dependence is quite dif-
ferent. In fact when q-0.4, Eg. (4a) predicts not
a fourth-power variation with q but something
more like a power law with exponent 2.4. Con-
cerning the q dependence, Halperin and Hohenberg
themselves expressed reservations about the use
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of macroscopic-spin-wave theory in this applica-
tion. Qn the other hand, with regard to tempera-
ture dependence, it should be noted that Vaks et
al. used self-consistent-field theory which gave
mean-field exponents for static quantities and it
would, therefore, hardly be surprising if their
approach also failed to predict correctly the tem-
perature dependence of dynamic quantities near
T~. Faced with a choice, we are inclined to take
from each theory those results which appear to be
best founded, namely, Vaks et al. 's prediction of
the q dependence of the spin-wave damping co-
efficient and Halperin and Hohenberg's prediction
of how it should vary with (T —T c)/Tc.

Thus we come to view the transverse part of
F(q, &o) as a function with two peaks centered at
energies +k u&», (T) representing propagating spin-
wave modes. The exact analytical form is not
specified by any of the existing theories. To cal-
culate excitation energies we use either Dyson-
Maleev theory [Egs. (1)-(3)] or, at high tempera-
tures and small values of q, the dynamical scaling
relation D(T) (l T —Tc l

/Tc)"
At low temperatures, spin-wave linewidths are

expected to be too small to be detectable with the
techniques currently available. Near T~, how-

ever, spin-wave damping should be experimental-
ly observable. In this regime we expect that the
damping coefficient will vary with q as q4[ln(2/
q')]' and with T as (IT —Tc I/Tc) '"

2. Longitudinal spin fluctuations

As far as we can determine, the only presently
available treatment of longitudinal spin fluctua-
tions in the ferromagnet below T~ is that of Vaks
et al." In their analysis they considered two
relaxation mechanisms, spin diffusion and the
coupling of longitudinal with transverse fluctua-
tions. For spin diffusion they found the static
susceptibility to be of the Qrnstein-Zernike form
(q'+ «', ) ' and the spectral weight function to be a
single Lorentzian peak centered at zero energy.
The second process involving the interaction of
longitudinal fluctuations with spin waves is prob-
ably the more important in the isotropic ferro-
magnet at small values of q and ~ because of the
high density of small-q spin waves. For this
mechanism they obtained a static susceptibility
which varied inversely with q and a spectral
weight function of the form

1 1 —exp[ —(kgb+ Suan )2/45ru; k T]
1 —exp [ —(h~ —k(u; )'/4g(u; kT ]

a function with two broad peaks centered at the
spin-wave frequencies +h(d;. Thus, for a ferro-
magnet Vaks et a/. lead us to expect the longitudi-

nal part of F(q, &o) to consist of a small central
peak associated with spin diffusion and a pair of
much larger peaks at the spin-wave frequencies
owing to the coupling of longitudinal fluctuations
with the spin-wave modes.

8. I' & Tc. Hydrodynamic regime

F( ) w (h(u)'+ (Arq')' '2 ~

o,

which has the convenient property that the diffusion
coefficient A~ and cutoff frequency (d, are related
to {&o') and {&u4) by the simple expressions

Arq' = (w/2WS) ({h(u')'/(K(o4))' ~' (ga)

(o', = 3{(o4)/{(u'). (gb)

Thus the problem of calculating A~ reduces to one
of determining {uP) and {&u4). Alternatively, Mori
and Kawasaki' and Bennett and Martin" chose to
express A~ as a Gaussian function of ~ rather than
arbitrarily truncating the Lorentzian distribution
at a particular frequency (d, . As a consequence
of their differing approaches, the diffusion coef-
ficient as defined by de Gennes is smaller by a
factor of (6/w)'~' than that defined by Bennett and
Martin.

Collins and Marshall" have given prescriptions
for calculating the moments of Heisenberg sys-
tems in the high-tempex ature limit and used them
to obtain general expressions for both {&o') and
{~'). Applied specifically to simple cubic lattices
with nearest-neighbor interactions, their expres-
sions reduce to those earlier derived by de Gennes.
When substituted into Eg. (Sa), Collins and Mar-

More than 20 years ago, Van Hove" suggested
that the magnetization density M(r, f) in a para-
magnet obeys a diffusion equation of the form BM/
Bt = A~V'M, and showed that in the limit of vanish-
ing q and (d this led to a spectral weight function
of the form

)
1 Arqa

w (ku))'+ (Arq')'
'

Somewhat later de Gennes" calculated the second
and fourth moments of the spectral weight function
for a simple cubic magnetic lattice with nearest-
neighbor couplings and found that both (ur') and {&o4)

had finite values and were proportional to q' in the
small-q limit. Thus it was evident that Van Hove's
Lorentzian form, which has infinite second and
fourth moments, puts too much of the spectral
weight at large values of v. To remedy this,
de Gennes suggested a truncated Lorentzian
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shall's formulas yield for cubic polycrystals with
nearest-neighbor interactions the expression

vJa S(S+1)
3 z —1 —3/[8S(S + 1)] (9)

C. Critical regime

Earlier, we remarked that existing theory can
tell us little about dynamical behavior in the crit-
ical regime below Tc. At and above Tc, however,
the theory is sufficiently well developed to provide
a qualitative and even, to some degree, a quantita-
tive picture of critical spin dynamics. There are
two basic approaches which will be of interest to
us here; dynamical scaling as embodied in the
work of Halperin a,nd Hohenberg" and mode-mode

(details of the derivation of this expression are
given in Ref. 26, p. 496). For EuO, S=.&, 4= J,
+J, = 0.063 meV, a = 5.14 A, and z = 12. Inserting
these values into Eq. (9) and multiplying the re-
sult by (6/v)' 2 we obtain A„= 2.9 meV A'.

To gain some insight into the temperature varia-
tion of A~, we turn to the work of Bennett and
Martin" and of Kawasaki. " Near Tc both find that

A =0.15z' 4[S(S+1)]' 'Ja""(v/a')' '[lt (T)/y ] ' 4

(10)

where v represents the unit-cell volume and the
other quantities have either been defined above or
in Sec. II of paper II.'~ Dynamical scaling argu-
ments suggesting that the diffusion constant should

vary as the ——,
' power of the reduced susceptibility

also support this relation. The coefficient of

[X,~(T)/)t, ] '~4 in Eq. (10) has the value 3.2 meV A'

for Euo. Using the customary power law g, o(T)/
g, = C(1 —Tc/T)~ to describe the temperature de-
pendence of the reduced susceptibility together
with Ritchie and Fisher's" series-expansion val-
ues C =0.87 and y = 1.375, we obtain as the best
current estimate of the diffusion constant of EuO
near Tc.

Ar = 3.3(1 —Tc/T)"'4, (11)

expressed in units of meV A'.
Thus theory leads us to expect a, Lorentzian

spectral weight function like that of Eq. (6) in the
hydrodynamic regime above Tc. The spin diffusion
constant, given near Tc by Eq. (11), is predicted
by Eq. (9) to approach a limiting value of about
2.9 meV A' at high temperatures. It should be em-
phasized that these equations apply only when
q&& Ky Within this limit, however, the half width
of F(q, ~) is expected to vary quadratically with q
(kinematical slowing down) and as the 0.34 power
of the reduced temperature (thermodynamic slow-
ing down) in the paramagnetic regime near Tc

sf(q t)
k(q, t —t')f(q, t') dt', (12)

where the quantity k(q, t) is the memory function
which relates Sf(q, t)/St at a particular time t to a
weighted sum over its values at earlier times. The
central problem in the theory is thus to obtain a
realistic representation of k(q, t).

Of the methods for doing this, the one of most
direct interest to us in terms of our investigations
of EuO is that of Hubbard. " Using the equations of
motion of a system of exchange-coupled spins,
Hubbard derived for k(q, t) an expression of the
form

k(q, t) = ' Q (~, ~, , )X;f(q', t)f(q-- q', t) (»)2k~T

Xq

where J,=Z,.J,, exp(iq r, ,). When Eq. (13) is sub-
stituted into Eq. (12) an integro-differential equa-
tion for f(q, t) results. This Hubbard solved nu-
merica11y for the special case of a simple cubic
ferromagnet with only nearest-neighbor exchange.
The spectral weight functions were then obtained
by Fourier transforming the solutions.

Hubbard also investigated a number of general
properties of his formalism. First, he found that
it leads to the expected diffusive behavior in the
limit of small q and that the diffusion coefficient

coupling theories associated with the names of
Kawasaki, "'"Wegner, ' de Leener and Resibois, "
Blume and Hubbard, "Hubbard, "Reiter, "and
Manson and Sjollander. "

Considering first the dynamical scaling approach,
we already noted that at the ordering temperature
it tells us that the characteristic frequency of the
spectral weight function should vary as q' ' for
ferromagnets. This is evident from the basic
scaling equation 2,(v, )=q' 'Q(14, /q) since Q(~, /q)
becomes independent of q in the limit K, -O. We
also mentioned Rdsibois and Piette's calculation
of the normalized scaling function Q(a, /q)/it(0) and
remarked that this permits the scaling equation to
be used to predict the variation of the characteristic
frequency of F(q, ur) everywhere above Tc. But
Resibois and Piette's theory, although a consider-
able step forward, still leaves undefined the actual
form of the spectral weight function. To determine
F(q, ~) we must turn to the microscopic theories.

It is usual to approach microscopic spin dynamics
through the Fourier transform of F(q, e), the so-
called relaxation function f(q, t) which represents
in this case the time decay of the magnetization
following the switching off at time t=0 of a spatial-
ly periodic magnetic field with wave vector q.
It is convenient to express the time derivative of
f(q, t) in terms of Mori's generalized Langevin
equation4'
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(14)

with e being the volume of the unit cell. The quan-
tity cr depends on the strength of the exchange and
on the lattice structure and is only weakly tem-
perature dependent. On the other hand, f is to be
regarded as a universal function in the sense that
it is independent of crystallographic direction,
lattice structure, spin, and the strength and range
of interaction (provided the interaction is not truly
long ranged). From the form of E(q, &u) it follows
that the characteristic frequency will have the tem-
perature and q dependence required by dynamical
sealing. Thus Hubbard's theory is consistent with
all presently known limiting conditions on dynam-
ical behavior.

The half width of F(q, a) is given by Hubbard in
terms of a relation of the form

(15)

where g(y, /q) is a function with the same tlualita-
tive behavior as the scaling function of Resibois
and Piette" exhibiting a broad shallow minimum
near v, /q =1. Hubbard's computations do not ac-
curately determine 9(v, /q) in the limit v, -0, i.e.,

when T- T~, but he estimates its value to be
between 4.1 and 4.5. For EuO, 0=1.64 meVA' '
at Tc. Thus according to Eq. (15) the half width
of the spectral shape function of EuO at T~ should
be

H'(q, T ) =7q'!' meV
0

when q is expressed in A '.
It is of interest to compare this prediction with

one made at about the same time by Riedel. ~' On
the basis of the mode-mode approximation he ob-
tained an expression for the linewidth of the iso-
tropic ferromagnet at T~ of the form

(16)

hI'(q, Tc) 4.10qqs!2

where (in our notation) the quantity

Q' =g!ksTc(i!sg) r, /6v le,

~, being the correlation strength defined by the re-
lation y, o/Xo=(r, w, )'. For EuO, @=1.56 meVA'~'.
Equation (17) therefore leads to the prediction

A~ calculated from the theory in the high-tempera-
ture limit agrees well with that obtained by other
methods. Second, he showed that in the critical
regime near T ~ the diffusion coefficient is pre-
dicted by the theory to be proportional to [lt, ,(T)/
lt, ] '~', consistent with dynamical scaling. Finally,
for small values of q Hubbard showed that the spec-
tral weight functions are of the form required by
dynamical scaling, i.e., E(q, ur) ~f(«u/oq' ~', ~, /q),
where

SF(q, Tc) =6.4q'~' meV, (18)

in quite reasonable agreement with Hubbard's es-
timate.

The spectral weight functions Hubbard computed
for the simple cubic ferromagnet with nearest-
neighbor interactions are very nearly Lorentzian
when v, /q =-1 except at Tc where the shape be-
comes somewhat squarer. At temperatures above

Tc and for values of v, /q&1, the spectral weight
functions also tend to be squarer than the Lorent-
zian form. Ultimately, at the largest values of q
they evolve into a shape with a peak at finite fre-
quencies reminiscent of damped propagating
modes.

Before concluding this discussion of Hubbard's
theory, it might be well to also take note of its
more important limitations, especially with re-
spect to application to EuO, First, there is the
question of whether calculations for a simple cubic
lattice with only nearest-neighbor interactions
are applicable to EuO which has a fcc magnetic
lattice and significant next-nearest-neighbor ex-
change. Second, and probably more important,
Hubbard assumes that nearest-neighbor spins are
not strongly correlated. While undoubtedly ac-
ceptable at high temperatures, this approximation
is almost surely unrealistic at lower temperatures
and raises questions about the reliability of the
line shapes calculated near T~. Finally, Hubbard
considers spin couplings to arise purely from ex-
change mechanisms, ignoring dipolar interactions
which are known to be important in EuO.

III. INSTRUMENTATION

All of the measurements to be discussed were
made with a triple-axis spectrometer operated
in the constant-q mode. Fixed neutron energies
of either 4.8 or 13.5 meV mere employed, depending
on whether energy resolution or intensity was
more important experimentally. Higher-order
contamination was removed from the 4.8-meV
beam by mounting in it a liquid-nitrogen-cooled
polycrystalline beryllium filter; for the 13.5-meV
beam a pyrolytic graphite filter was used.

With 4.8-meV incident neutrons, horizontal col-
limation was 40' in front of the monochromating
crystal, 20' between the monochromating crystal
and sample, 40' between the sample and analyzing
crystal, and 40' between the analyzing crystal and
detector. With 13.5 meV the corresponding col-
limations were either 20, 35, 35, 35, or 20, 35, 40, 25
depending on the circumstances. Both monochro-
mating and analyzing crystals were pyrolytic
graphite and had mosaic spreads of about 25'.

Details of sample preparation and sample char-
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acteristics, thermometry, etc., are given in paper
I, Sec. IIIC, and will not be repeated here.

IV. DATA ANALYSIS

A. Background corrections

In paper II we discussed at great length the
sources of background in two-axis neutron scat-
tering measurements. Here, we will be involved
with three-axis spectroscopy and we can anticipate
that background problems will be somewhat less
severe because energy analysis will allow us to
separate the elastic from the inelastic part of the
scattering. Also, we can expect to be able to take
advantage of the fact that some scattering mech-
anisms are temperature dependent. This, as will
soon be evident, is very helpful in identifying and

separating the various sources of background.
In general, in experiments of this type we can

anticipate three major background contributions.
These are (i) inelastic nuclear (phonon) scattering;
(ii) room hackgroundl and (((() elastic (1Ilcoherent)
scattering from the sample and possibly from the
sample cell, radiation shields, etc.

Phonon scattering will not be of concern to us
here for the following reason: %'e can estimate
the energy transfers involved in phonon scattering
in EuO from the ultrasonic measurements of its
elastic constants" and, according to these mea-
surements, the sound velocity is never smaller
than 2560 m/sec. This means that the initial slope
of the phonon dispersion curve of EuO is never
less than 16.8 meV/A '. All of our measurements
were made with considerably smaller energy
transfers than 16.8 meV/A ' and thus were not
within the range where single-phonon scattering
could be observed. The same argument also ap-
pJ.ies to phonon scattering from the sample cell
and

radar

at ion sh Ae lds .
Room background is not expected to be energy

dependent since it comes from neutrons which
reach the detector without being reflected by the
analyzer. Of course, the scattering from the
room can, and often does, change in intensity as
the position of the detector changes during an en-
ergy scan. To estimate room background we used
two independent methods. First, by measuring
the counting rate with the neutron beam stopped
by a cadmium shutter mounted in front of the
analyzer and, second, by determining the inten-
sity in the far wings of the observed energy spec-
tra. Both led to the same basic conclusion, name-
ly, that the intensity of this part of the background
was constant over the energy transfer range under
investigation.

The third source of background, elastic inco-
herent scattering, is of greatest concern to us

I T T

E. = I3.5 rneV
f

(20)- q = 0.72 A

E, = 4.8rneV
0

4 =Q, I8 A

~l
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FIG. 2. Incoherent elastic background as observed at
various temperatures, incident energies and wave vec-

torss.

here because one of our major interests in this
experiment is the study of magnetic line shapes
near Tc where both transverse and longitudinal
spectral weight function can be expected to center
around zero energy transfer. Thus, if we wish
to identify properly the magnetic contribution to
the qua. sielastic scattering it will be essential to
know, under given conditions, just how much of
the observed intensity comes from elastic inco-
herent background.

Elastic incoherent scattering appears in our
scans as a peak centered at zero energy transfer
with a width characteristic of the spectrometer.
This width is easily determined by replacing the
sample with vanadium which is a purely incoherent
scatterer. Since we are dealing with incoherent
scattering of nuclear origin, we can expect the
temperature and wave-vector dependence of this
scattering to be solely determined by Debye-%aller
factors which are essentially constant over the
wave-vector and temperature range of interest.
Hence this source of background should be inde-
pendent of both temperature and wave vector while
the magnetic scattering with which we are con-
cerned will depend strongly on both quantities.
For example, at low temperatures the inelastic
magnetic scattering originates from the excitation
of spin waves and, at finite values of the wave vec-
tor q, spin-wave scattering will be associated with
finite energy transfers. Therefore, the incoherent
scattering (occurring at zero energy transfer) will
not be contaminated by magnetic scattering. At
temperatures above T~, however, the magnetic
scattering also centers at zero energy transfer
but, at large values of q it spreads over so wide
a range that the incoherent scattering is still dis-
tinguishable as a well-defined elastic peak on top
of the broad magnetic line.

All of this is illustrated in Fig. 2, which shows
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examples of the incoherent peak as observed under
various conditions. The measurements labeled (a)
and (b) were made with an incident neutron energy
of 13.5 meV and with rf = 0.72 A ', while (c) and (d)
were made with E,. =4.8 meV and q=0.18 A '. The
dashed lines indicate the intensities observed when

the neutron beam was stopped with a cadmium
shutter in front of the analyzer; the solid lines
represent Gaussians with widths determined by
the vanadium scans referred to earlier. At the
low temperature (5 K) at which the (b) and (d) scans
were made, the incoherent scattering appears as
a well-separated peak. Curve (c) shows measure-
ments made at 0.5T~ under experimental condi-
tions otherwise identical to those of (d). As might
be expected, the incoherent peak is not as well
resolved at the higher temperature. This is due
to scattering from slightly renormalized spin
waves {in this case at about 0.4 meV) which is in-
tense enough at the higher temperature to spill
over into the neighborhood of the incoherent peak.
Curve (a) shows results at Tc. These should be
compared with (b) which was measured under the
same conditions as (a) but at a temperature of 5

K. Obviously, the intensity is unchanged but at
T~ the incoherent peak appears to be sitting on a
broad, flat background. This is actually the mag-
netic scattering which (at the large value of rr at
which the measurements were made) is spread
over a wide range of energy transfers.

computational complexities. These can be most.

easily understood by referring to Fig. 3. There,
in (a) we show the line shape which would be ex-
pected at q = 0.2 A"' in a powder sample of EuO
at low temperatures if it is assumed that exchange
interactions alone are responsible for the magne-
tic couplings. As is evident, exchange interactions
do not produce any significant anisotropy in the
spin-wave energies at this small value of q. What
would actually be observed with neutrons, how-
ever, would not be the sharp line of (a) but one
which was "powder broadened" by the anisotropy
of the spin-wave energies, the broadening arising
in this case from dipolar rather than exchange in-
teractions. Section (b) of the figure illustrates the
effect of dipolar anisotropy on the powder-aver-
aged spectrum. The line shape shown was ob-
tained by calculating the spin-wave energies from
Eq. (19) over a net of surface elements on a sphere
of radius @=0.2 A ' and grouping the energies into
a ten-box density-of-states histogram. Both the
broadening and the asymmetrical shape result from
the variation of the factor sin'8; in Eq. (19) with
the direction of propagation. When this calcula-
tion is repeated for other values of q it is found
that histograms like that of (b) are equally satis-
factory representations of the orientationally aver-
aged spectral distributions. As can be seen from
Eq. (19), the relative width of the spectrum
E,„(q) scales with q according to the relation

B. Influence of dipolar interactions

We have already considered in Sec. IV of paper
I how the spin-wave energies at low temperatures
are influenced by dipolar interactions. There we
noted that in general the effect of dipolar couplings
is to increase the excitation energies except for
modes propagating along the direction of sponta-
neous magnetization {the (111) direction in EuO)
which are not influenced by dipolar forces. Ac-
cording to Eq. (5) of paper I, spin-wave energies
are determined by an expression of the form

hrd(q) =E,„(q)[I + y (q) sin8tp r',

where E,„gq represents the exchange part of the
spin-wave energy, 8; is the angle between q and

the direction of magnetization M, and

(19)

rt (q) = 4rrgrr, s M/E„(q).

Equation (19) includes both exchange and dipolar
forces but assumes that no external magnetic
field is present. In principle, if both M and E,„(q)
are known, it is an easy matter to calculate the in-
fluence of dipolar interactions. In practice, how-
ever, the fact that we are concerned with mea-
surements made on powder samples introduces

PURE EXCHANGE
O

EXCHANGE AND

D! POLAR

rPURE F. XCHANGE

WITH DAMPING

2I—

EXCHANGE AND

DIPQLAR WITH

DAMPING

Q. 2 Q,4 Q.6 Q8 I.Q I.2 I d Q.2 O.4 Q.6 Q.8 I.Q i.2 I.4
R E LATIVE ENERGY hei E

FIG. 3. Influence of dipolar interactions on the spin-
wave line shape in a powder sample. {a) Sharp spin-wave
line shape of a purely exchange-coupled idealized fern. -
magnet at small wave vectors and low temperatures.
(b) Histogram representing the dipolar-broadened line
shape. The width is typical of EuO at q=0.20 A ~. Icc)

Line shape of small-q damped spin waves in a purely
exchange-coupled ferromagnet. (d) Schematic repre-
sentation of line shape when both dipolar broadening and

damping are taken into account. The actual line shape in
EuO at q=0.20 A ' would be computed by replacing each
box in the histogram in (b) by a bell-shaped curve like
that of (c) but with identical area, not identical height
as shown.
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with W'being t'he full over-all width of the spectrum
as shown in the figure.

Since in what follows we mill only be concerned
with small values of q, it wHl be sufficient for us
to assume that dipolar anisotropy is the sole source
of line broadening. It should be kept in mind, how-
ever, that exchange interactions play an increas-
ingly important role at larger values of q and ul-
timately become the dominant broadening mech-
anism near the zone boundary.

What we have described thus far is the situation
at low ten1peratures where the spin waves are
well-defined excitations. At higher temperatures
the excitations interact and broaden. The sharp-
lllle spec'tl'unl of (a) accordingly acqu1res an in-
trinsic width 2I' as shown in (c)—the damping co-
efficient I' being, of course, one of the quantities
of particular intex est to us here. The appearance
of an intrinsic width means that the orientational
averaging will now involve a weighted sum of many
broadened lines representing spin waves propa-
gating in different crystallographic directions. We
originally chose a histogram to represent the low-
temperature spectral distributions rather than a
continuous function 'because the higher-tempera. -
ture distributions were then easily generat:ed by
simply replacing each box in the low-temperature
histogram by a broadened curve of the same area
with width 2F. Thus, for purposes of analysis the
powder-broadened spectral distributions at finite
temperatures (with dipolar interactions included)
were represented as the sum of ten broadened
curves distributed a d weighted according tc the
low-temperature histograms but with an over -all
width 8' which vax ies with temperature because it
is dependent on both the magnetization and the re-
normalization of the exchange part of the spin-
wave energies. Three of the ten broadened curves
which together are intended to represent the spec-
tra distribution observed in our neutron experi-
ment are shown in (d).

C. Instrumental resolution

Like aO observational instruments, the triple-
axis neutron spectx'ometer is a device of limited
resolution and as a consequence when it is set to
observe a particular wave vector and energy
transfer it actually samples a finite region of wave
vector and energy space around the nominal set-
ting. Our major interest is, of course, the dy-
namic structure factor S(q, ur). To determine it
accurately we have to unfold from the data the ef-
fects of instrument resolution. . Normally this

would be regarded as a straightforward procedure
ln triple-axis spectroscopy and would not be con-
sidered worthy of more than a passirg comment.
But our measurements wex e performed on a pow-
der sample near the forward direction, i.e.,
around the 000 reciprocal-lattice point, and there-
fore differ to some extent from conventional triple-
axis measurements. Fox' this reason we will de-
scribe briefly the method used to unfold instru-
mental effects from the data. .

Because of orientational averaging, the scatter-
ing function in a powder will depend only on the
modulus of the wave vector q and the unfolding
procedure (normally a four-dimensional unfolding
involving q„, q„q„and the energy transfer 5&v)

need therefore only be performed in two dimen-
sions, i.e., ~ q ~

and h~. It was consequently to
our advantage in the long run to express the in-
strumental resolution function in terms of ~q~ and
h(d rather than the conventional four dimensions,
although this did cause some initial complications
because the four-dimensional resolution function
can be treated as a product of four Gaussians while
there is no equivalent simple analytic form in
which the two-dimensional function can be cast.

To see why this is so consider the following:
Assume that the spectrometer has been set at a
nominal wave-vector transfer q. Bestx'lct, lng our

attention for the moment to the scattering plane,
there are wave vectors both smaller and larger
than q which contribute to the scattering and these,
when transformed to ~q~ produce a symmetric dis-
tribution around q. But because of finite vertical
resolution, the distribution of wave vectox's is
shifted so that the average q is larger than the
nominal q, or expressed in other words, the q
distx'ibution will always have greater weight on
the large-q side of its nominal value.

To determine the "
~q~ -resolution function, " we

divided the four-dimensional resolution ellipse
into a fine grid and gave each subvolume (q, E) a
specific resolution weight calculated using the
Nielsen and MI(lier formalism. ~ Then the weight
of each subvolume (q, h~) was transferred to the
appropriate subvolume ( ~q ~, Kv) in the correspond-
ing two-dimensional network. Separate two-di-
mensional networks were calculated for each mea-
sured point and stored in the computer for subse-
quent use in the unfolding process.

Unfolding was done by convoluting an assumed
cross section containing adjustable parameters
with the two-dimensional resolution function and
then comparing the result with the measured in-
tensity. A generalized linear least- squares meth-
od was used to find values of the cross-section
parameters which minimized the weighted mean-
square deviation between the calculated and mea-



NEUTRON SCATTE RING FROM TFiE HEISENBERC1. . . III, . 4933

sured intensities. Quality of fit was judged by cal-
culating the quantity

~,. I,. meas —I,. calc
0 N —n

which, for a statistically satisfactory fit, should
have a value of the order of unity. As is custom-
ary, the weight factor n),. in the above expression
was assigned a value equal to the inverse of the
square of the standard deviation of the measured
intensity; N and n represent, respectively, the
number of experimental points and the number of
fitting parameters. Aside from an acceptable val-
ue of b,', we also checked to see that the calculated
intensities did not deviate systematically from the
measured values.

V. EXPERIMENTAL RESULTS AND COMPARISONS KITH
THEORY

quantities for Euo. From paper II we have

T~ = 69.15 K,
q= 0.043,

a„„=3.63 A,

a„„v,= F (1 —TjTc)"= 5.6(1 —T T )co "6,

y'=@=1.39 .
The value of q is the series-expansion estimate

of Ritchie and Fisher. 3' To evaluate the last two
quantities it was assumed that v'=- v and y'=y as
required by static scaling and consistent with the
experimental observations discussed in See. VI of
paper II.

For the transverse part of the static suscepti-
bility below T~ we use the expression

A. Spin-wave renormahzation and damping
T/T,

X. (a..q)' " ' (23)

Xo [(a„„x,)'+ (a„„q)']' "-' ' (22)

wlllcll ls a simplified vel'sloll of Ell. (5) of papel II
indistinguishable experimentally from the original
form. All of the parameters in Eq. (22) are known

Below T~ it is evident from the general form of
Ect. (1) of paper II that the neutron cross section
depends on how the scattering vector 7 is oriented
with respect to the direction of magnetization.
Because our measurements were made on a mul-
tidomain powder near the forward direction where
g= q, what we will actually observe experimental-
ly is the orientationally averaged cross section.
In the notation of paper II, this can be written as

d'o I:& K~ jks T
dfI dE' fz,. 1 —exp( If'/ksT)—

xXD'[ —',Xg'(q, ~) y 4Xqf' '(q, ~)],

where the superscripts t and / refer, respective-
ly, to the transverse and longitudinal response.
[Details of the derivation of Eq. (21) can be found
on pp. 242 and 243 of Ref. 26.) The coefficient A.

includes the magnetic form factor 6:(q) and a num-
ber of trivial constants. Since 6(q) does not de-
part significantly from unity with the q range of
our measurements, A is expected to be independent
of both wave vector and temperature and is there-
fore treated as a normalization parameter when
fitting Ell. (21) to experimental data.

y,
' and g,', the longitudinal and transverse parts

of the static wave-vector-dependent susceptibility,
were discussed in detail in paper II. This discus-
sion suggests that below T~ the longitudinal part
ean be adequately represented by the expression

which is essentially Eq. (3) of paper II but modified
so that X,

' becomes identical to X,
' in the limit T

—T~. It may be arguable whether the q dependence
of the transverse susceptibility is actually q

""
rather than q ', but since q is a small quantity the
difference is not important in practice. It should
be noted that there are no adjustable parameters
in either Eqs. (22) or (23)—all are either known
from other experimental studies or are fixed by
our two-axis measurements or theory.

The normalized spectral weight functions I'(q, e)
and E'(q, u) are the objects of major interest in the
present study. But as was remarked previously,
it is necessary to assume analytic forms for these
quantities in order to unfold instrumental resolu-
tion effects from the experimental data. In an
earlier analysis" we tested three different ana-
lytical forms for E'(q, u); (i) a double Lorentzian,
(ii) a. damped harmonic oscillator, and (iii) an
expression suggested by Halperin and Hohenberg. "
All gave satisfactory fits to our experimental data
when folded with the instrumental resolution but
different values for the excitation energies and
linewidths, particularly near T~ where the spin
waves are heavily damped. While not in itself
surprising, this difficulty does lend emphasis to
a point which is often overlooked, namely, that
near T~ it is not enough for a theory to predict
spin-wave energies and linewidths —it must also
specify the analytic form of E'(q, e) before precise
comparisons with experiment can be meaningful.

In the majority of theories of spin dynamics be-
low T~ a I orentzian line shape is either explicitly
or implicitly assumed for damped spin waves. We
have therefore chosen to use a double-I. orentzian
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form for the transverse spectral weight function in
Eq. (21), i.e.,

1 h I'
2 v (8' I')'+ (k(o —tf(u, )'

(24)

where k~, defines the spin-wave energy and @I'
represents the linewidth [half-width at half-maxi-
mum (HWHM)]. In our fitting procedure both
h(d, and kI' were considered to be free parameters,
or rather, to be more precise, the exchange part
of the spin-wave energy, i.e. , E,„(q) in Eq. (19),
and SI' were regarded as free parameters to be
determined by fitting to the data.

Difficult as is the choice of the proper analytic
form for F'(q, |d), the question becomes even more
perplexing for F'(q, v). It is evident from inspec-
tion of Fig. 6 of paper II that the longitudinal con-
tribution to the magnetic scattering is only really
observable within a narrow temperature range
extending no more than four or five degrees below

T~, a temperature range within which the existing
theory is probably not applicable. Ignoring this
difficulty for the moment, we note that according
to Vaks et gl. ,

"F'(q, ur) should contain a central
peak associated with spin diffusion and a pair of
side peaks at +k~, due to the interaction of lon-
gitudinal with transverse spin fluctuations. We
therefore attempted to fit our data to a three-
peaked Lorentzian function —a central peak and

a pair of side bands —but failed to obtain satis-
factory fits in the neighborhood of zero energy
transfer where the predicted line shapes always
showed more intensity than was actually observed.
Thus we were forced to conclude that the central
peak, if it exists, is too small to he detectable in
EuO with the techniques available to us and that the
longitudinal part of the spectral weight functi. on is
of the same general functional form as the trans-
verse part, namely, a pair of peaks centered at the
spin-wave energies. At a later stage we will want
to discuss this important conclusion further, but
for the moment it will suffice simply to say that
all of the line shapes we observed below T~ could
be satisfactorily reproduced by assuming that both
F'(q, v) and F'(q, u) had the double-Lorentzian
form of Eq. (24). No doubt there are other two-
peaked functions which would have fitted the data
equally well, but the addition of a central peak of
any significant weight does not appear to be ac-
ceptable from the experimental point of view.

A preliminary analysis of all of our measure-
ments made not only below but also at and above

T~ revealed that the best-fitting value of the
normalization coefficient A in Eq. (21) was al-

ways close to 15.9. Therefore, in the final data
reduction A was kept fixed at this value and only

E,„and 8 I' were regarded as free parameters to
be determined by fitting to the experimental ob-
servations.

Figure 4 shows typical line shapes observed
below T~. On the left-hand side of the figure are
measurements made at various temperatures with

q held fixed at 0.20 A '; on the right-hand side
are scans made at a constant temperature (Tc
—T)/To=0. 05 with q varying. The measured in-
tensities (corrected for background as described
in Sec. IV A above) are indicated by the open
circles while the solid lines represent the best
least-square fits obtained by folding Eq. (21) with
the instrumental resolution function. Equations
(22) and (23) were used for It,

' and g„' and Eq. (24)
was taken to represent both F'(q, v) and F'(q, ~).
Table I gives the best-fitting values for E,„and
AI" for all scans made below T~. Note that the
values of 6' show no indications of systematic
changes in the quality of the fits over the whole
temperature range.

We will defer discussion of the spin-wave ener-
gies and linewidths to the following sections and
only pause at this point to remark that the con-
stancy of the normalization coefficient A is an
indication that Eqs. (22) and (23) properly account
for the temperature and wave-vector dependence
of the static susceptibility. Furthermore, since
at T~ one-third of the total intensity comes from
longitudinal fluctuations, it is difficult to avoid
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TABLE I. Exchange part of the spin-wave enex gies E„„and line widths kI [half-width at
half-maximum (H%HM)] for EuO as determined by the fitting procedure described in the text.

indicates the weighted mean-square deviation as defined in Sec. IVC. Numbers in paren-
theses are the estimated uncertainties.

10
20
20
20
30
30
30
30
30
3Q

58.79
62.25
62,25
62.25
62.25
62.25
63.98
65.71
65.71
65,71
65.71
65.71
65.71
67.10
67.79
68.48
68.82
68,82

0.855
0.711
0.711
0.711
0.566
0.566
0.566
0.566
0.566
0.566
0.150
0.100
0.100
0.100
0.100
0.100
0.075
0.050
0.050
0.050
0.050
0.050
0.050
0.030
0.020
0.010
0.005
0.005

Q.20
0.12
0.15
0.20
0.09
0,12
0.15
0.18
0.20
0.22
0.20
0.09
0.12
0.15
0,18
0.18
0.20
0.12
0.15
0.18
0.20
0.22
0.25
0,20
0.20
0.20
0.20
0.25

2.11
3.55
2.66
2.13
1.78
1.78
1.31
1.66
1.33
1.11
1.00
0.91
0.80
0.70
0.54
0.33
0.21
0.17

0.79
0.42
0.81
2.20
2.79
1,19
0.83
1.56
0.75
2.52
1.48
2.73
3.87
2.46
1,11
1.94
1,32
0.98
1.94
1.64
1.60
1.84
1.11
0.97
0.50
1.76
0.61
1.51

Q

0
0
0
0
0
0
0
0
0
O.o20(5)
0.013(3)
0.020(4)
0,022(5)
o.o27(5)
0.033(6)
0.046(5)
0.020(3)
0.027(3)
0.045(5)
0.057(6)
0.060(7)
0.10(2)
0.058(5)
0.070(4)
o.o63(8)
0.063(5)
0.17(3)

O.43(1)
0,165(3)
0.238(6)
0.43(1)
0.075(4)
0.152(3)
o.230(4)
0.347(8)
0.423(6)
0.52(2)
0.268(4)
O.O48(2)
0.085(5)
0.127(5)
0.203(6)
0.182(8)
0.214(6)
O.O61(2)
0.097(3)
0.143(5)
0.182(6)
0.221(8)
0.30(2)
0.146(5)
O.128(3)
0.096(7)
0.079(5)
0.13(4)

concluding that the contribution of longitudinal
fluctuations to the intensity slightly below Tc is
contained within the double-Lorentzian function
used to represent both E'(q, &u ) and E'(q, &u). This
appears to rule out the possibility that E'(q, ~) is
actually a very broad central peak indistinguish-
able from background on the scale of our mea-
surements. Fox' if this were in fact the case, the
broad peak would at some point have had to narrow
rapidly to match the observed l~newrdth at Tc and
would therefore have produced a systematic change
in the value of the normalization coefficient A in
the vicinity of Tc. Nothing like this was observed.

All of the measux'ements discussed thus far in-

volved spin vraves with &rave vectors less than
0.25 A '. In Ref. 12 there are data for the same
EuO sample for larger values of q. These have
been listed in Table II as a convenience since
they will be needed in Sec. VA 1 for analysis of
spin-wave renox'malization.

RCBOP'NlCIlSCPEON 0f SpSN-NCÃ8 888'AN'S

As was noted in Sec. II A, the large spin of the
europium ion (8 = —,') means that a calculation of
spin-wave x enormalization based solely on the
dynamical spin interaction, i.e., neglecting the
effects of the kinematic interaction, should re-

TABLE II. Spin-wave energies and Iinewidths for EuO at large wave vectors from Ref. 12.

Spin-wave energy (meV)
0.60 0.80 1.00

LinewMth (HWHM) (meV)
0.60 0.80 1.00

20
40
50
60

3.20(2)
2.83(2)
2.56(5)
1.99(7)

4.61(3)
4.08(5)
3.65(6)
3.15(10)

5.51(5)
4.97(7)
4.48(8)

~Q
~0

0.14(5)
0.4(l)

~0
0.14(7)
O.23(8)
1.1(2)

~0
8.24(8)
0.36(9)



represented by the simple expression E„(q)
=D(T)q2 U.sing the values of E,„listed in Table
I 1't 18 easy to del'1ve the stlff11888 co118'tallt D(T).
The result, shown in Fig. 6, can be regarded as
indicating how the exchange part of the magnetic
interaction renormalizes since D(T) =2a'S[J, (T)
+J,(T)]. Fitting the data in the region 0.005
—1 —T/Tc 0.15 to a power law of the form

main valid to reasonably high temperatures. We
find in fact that a self-consistent calculation of
the renormalized exchange constants based on the
procedure outlined in Sec. IIA converges at all
temperatures below 62 K (0.9Tc). Only above this
temperature does the calculation fail.

To make a direct comparison of the predictions
of Dyson-Maleev renormalization theory with ex-
periments on a powder sample it is of course nec-
essary to average the calculated spin-wave ener-
gies over all directions of propagation as ex-
plained in Sec. IV B. This was done by using the
computed renormalized exchange constants plotted
in Fig. 1. In making the computations, we in-
cluded the dipolar contribution to the spin-wave
energies as given by Eq. (19) and used the mea-
sured reduced magnetization as given in paper II
(see in particular Fig. 11). The resulting direc-
tionally averaged energies are plotted as the solid
lines in Fig. 5. Also shown are the experimentally
observed spin-wave energies including measure-
ments from paper I and those listed in Tables I
and II. Agreement is strikingly good, the maxi-
mum difference between computed and observed
values being 15% at q =0.2 A ' and T = 60 K.

All of the measurements made near Tc involved
wave vectors so small that the exchange part of
the spin-wave energies could be satisfactorily

we find a*=1.17+0.03 and p, =0.37+0.01. This
best-fitting power law appears as the dash-dotted
line in the figure. The observed value of the ex-
ponent is slightly larger than the value p, = v' —P
=0.32 +0.02 predicted by dynamical scaling (as-
suming that v' = v and using the values for v and

P listed in Table IV of paper II). For comparison
the dashed line in the figure is plotted with slope
0.32 as predicted by theory. The fact that the
dashed line lies above the measured values should
be disregarded since it was arbitrarily joined to
the calculated exchange renormalization curve at
the point where the calculation ceased to converge.
And, as we have already noted, the self-consistent
calculation overestimates the exchange energies at
small values of q and at temperatures near 60 K
(1 —T/To =0.15) by about 15%.

We do not consider the difference between the
experimental value of p, and that predicted by dy-
namical scaling theory to be significant. The rea-
son for this is that the values of D(T) derived
from the data become sensitive to the assumed
form of F'(q, e) whenever there is appreciable
overlap between the annihilation and creation
peaks in the measured spectrum. This is true
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FIG. 5. Henormalization of spin-wave energies in EuO.
The measurements at 5.5 K are taken from paper I,
those at q = 0.20 A. ' are from the present study, and the
rest are reproduced from Ref. 12. The lines represent
calculations based on Dyson-Maleev theory and include
both the exchange and dipolar contributions to the spin-
wave energies. For the calculations we used the re-
normalized exchange constants shown in Fig. 1 and the
measured temperature variation of the magnetization
shown in Fig. 11 of paper II.

FIG. 6. Renormalization of the spin-wave stiffness
constant D(T) = E,„q~. In the temperature region below
62 K, i.e. , for 0.10& (Tz —T)/Tc& 1, the renormaliza-
tion was calculated self-consistently including the dy-
namical spin-wave interaction. This is shown as the
solid line. Near T&, dynamical scaling predicts a power-
law behavior D(T) cc [(Tc—T)jTc]" ~. The dashed line
with slope v' —P =0.32 is drawn as an extension of the
calculated exchange renormalization curve. The dashed-
dotted line is the best power-law fit to the measurements.
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irrespective of whether the overlap is due to
finite experimental resolution, to spin-wave
damping or to a combination of both effects. If
for example we had used the Halperin-Hohenberg
form of F'(q, ~) instead of the double Lorentzian
of Eq. (24), we would have found p=0.33 as was
noted in Ref. 11. Discrepancies of the order of
15% in p, have therefore to be regarded as within
the systematic error limits of the data analysis.

2. Damping of spin waves

Let us now turn to consideration of the temperature
and q dependence of AI', the spin-wave linewidth. The
data in Table I cover the temperature range 0.15 ~1
—T//Tc ~ 0.005 and wave vectors between 0.09 and 0.25
A '. Alsolistedinthetablearevaluesof v, /qcai-
culated from the static measurements described
in paper II. This ratio is included because it in-
dicates whether the excitation is in the hydro-
dynamic regime where K,/q»1, the critical
regime where v, /q«1, or somewhere between
the two extremes. Earlier we noted that the
existing theories of spin wave damping are only
expected to apply in the hydrodynamic regime.
Inspection of Table I makes it evident that few
if any of our measurements fully satisfy this re-
quirement —an unfortunate consequence of the
finite limits of our experimental resolution.
Nevertheless, it is of interest to compare our
observations with the predictions of hydrodynamic
damping theory if for no other reason that to es-
tablish a lower limit on the values of z, /q defining
hydrodynamic exc itations.

In Sec. IIA we noted that within the q range of
our measurements spin-wave scattering by lon-
gitudinal fluctuations is presumed to be unim-
portant and spin-wave damping is expected to
arise primarily from spin-wave-spin-wave scat-
tering. The microscopic theory of Vaks et al. pre-
dicts a damping coefficient of the form of Eq. (4a).
This suggests that the linewidth ought to be repre-
sented as

0
O. l 2—

O. I 0—
x

5.0
I

Eu 0

Tc T
= 0.05

c

l.5
I

KI /q

1.0
I

0.08—
O

u 006—z
~ 00~—

z 002
CL
V)

N

ER

the logarithmic factor has a substantial influence
and in all likelihood, if we are anywhere near the
hydrodynamic regime it would only be within the
range of Eq. (25), not the small-q limit of the
macroscopic theory.

To investigate this possibility let us look at the
sequence of measurements in Table I made at a
temperature of 65.71 K, which are the most com-
plete set available. The observed linewidths at
various values of q are plotted in Fig. 7. Also
plotted is a dashed line indicating the q4 variation
predicted by the macroscopic theory. As expected,
the increase in 8I" is not as rapid as q'. But the
solid line representing Eq. (25) with $r = 0.28 +0.01
is an excellent fit to the data. It is therefore
tempting to conclude that spin-wave-spin-wave
scattering is indeed the dominant decay mech-
anism and is satisfactorily described by the Vaks
et al. theory. The dash-dotted curve in the figure
is the result of a recent calculation by Raghavan
and Huber" using a mode-mode coupling theory
and including both exchange and dipolar interac-
tions. Considering that there are no adjustable
parameters in their theory, agreement with the

O. I 0.2
(25)

where for EuO the dimensionless quantity q'
=4.8q' as noted earlier. In the limit of very
small values of q, the q4 factor in Eq. (25) will
dominate the logarithmic factor and the linewidth
will become proportional to q4; in other words,
the damping coefficient will then go over to the
form of Eq. (4b) which is based on macroscopic
spin-wave theory. At the other extreme when q
is so large that q approaches unity, Eq. (4a)
ceases to apply and Eq. (25) becomes meaning-
less. In the q range of interest here (0.1-0.4 A ')

WAVE VECTOR q (A j

FIG. 7. q dependence of the spin-wave linewidths in
EuO at T = 65.71 K. Macroscopic spin-wave theory pre-
dicts a linewidth proportional to q4 in the small-q limit
(dashed line). The logarithmic correction factor is in-
troduced by microscopic theory. The solid line was nor-
malized to give the best fit of the microscopic theory to
the measurements; the dash-dotted line represents the
prediction of Raghavan and Huber's mode-mode theory
which includes dipolar as well as exchange interactions.
From the Ky/q scale at the top of the figure it is evident
that the data are not entirely within the hydrodynamic
regime.
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FIG. 8. Temperature dependence of the spin-wave
damping coefficient (z defined by Eq. (25) in the text.
In the hydrodynamic regime ~&/q»1 dynamic scaling
predicts the power-law behavior indicated by the solid
line. The dash-dotted line represents the prediction of
Raghavan and Huber's mode-mode theory which includes
dipolar as well as exchange interactions. It is evident
from the scale at the top that deviations from the hydro-
dynamic prediction develop at fj: &/q = 1.

experimental data is better than might reasonably
be expected.

It is also of interest to investigate the tempera-
ture dependence of the spin-wave linewidths which
we can do by using the measurements in Table I at
values of q near 0.2 A'. In the hydrodynamic
regime, dynamical scaling predicts that the
damping should be given by Eq. (4b), which means
that the quantity $r in Eq. (25) should be of the
form

(r = $,(l —T/Tc)3"'", (26)

where —,'v'=1.03 for the Heisenberg ferromagnet
(see Table IV of paper II). Alternatively, the
theory of Vaks et al. predicts an exponent of 2

rather than 1.03.
Figure 8 shows the temperature dependence of

the observed linew&ths. Also included at the top
of the figure, as a matter of interest, is an ap-
proximate x, /q scale. Equation (26) with 2v'
=1.03 and $, =0.017 meV is plotted as the solid
line; the dash-Sotted curve is the mode-mode
calculatien of Haghavan and Huber. Clearly, a
temperature variation as rapid as that predicted
by Vaks et al. is not acceptable. Dynamical

scaling, as embodied by Eq. (26), does, how-
ever, provide a reasonable description of the
data below 65 K, although at higher temperatures
the linewidths break away from the power law and

approach a limiting value of about 0.35 meV. This
behavior could very well be indicative of the cross-
over from the hydrodynamic to the critical re-
gime. According to the upper scale it takes place
at x, /q =1, consistent with the expectations of
theory.

B. Spin diffusion above T&

Having discussed collective spin motions below
T~ let us now direct our attention to spin behavior
above T~, considering first spin fluctuations with
wavelengths large compared to the size of the
ordered magnetic clusters, i.e., fluctuations
within the hydrodynamic regime for which x, /
q» 1. For a number of reasons hydrodynamic
theory above T~ is much simpler than its equiv-
alent below Tc. First of all, the absence of long-
range magnetic order means that the distinction
between longitudinal and transverse fluctuations
loses its meaning and we therefore need think only
in terms of one type of fluctuation. Second, with
no long-range order present hydrodynamic fluctua-
tions diffuse but cannot propagate. As a conse-
quence the spectral weight function becomes a
single-peaked function centered at zero energy
transfer and Eq. (21) describing the neutron scat-
tering cross section reduces to the simpler form

dI dE' k, 1 — exp(-K&u/k T)
—, =A~ ~F (q, u)) . (27)

The reduced wave-vector-dependent susceptibility

lt, /y, is expected to have the same form as Eq.
(22) but a„x, will be smaller by a factor of 2.4
above T~ as we noted in Sec. VI of paper II. For
F(q, v) we assume the Lorentzian form of Eq. (6),
namely,

(28)

where the linewidth h I'= A ~q' as discussed in
Sec. IIB above.

When the data were analyzed with Eqs. (27) and

(28), we found that the same normalization con-
stant A applied equally well at all temperatures
both above and below T~. This not only indicates
that Eq. (27) properly describes the temperature
dependence of the scattered intensity but it also
leaves only one parameter, the linewidth, to be
determined by fitting the cross section to the in-
dividual scans.

Results of the analysis of measurements ex-
tending over the temperature range from Tc to
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TABLE III„Linewidth A I and spin-diffusion coefficient &~ of EuO above Tc.

(T- T&)/T q(A i) AI (meV) A~ ——gl" jq~ {meV A2)

71.38 '
75.19
76.20
76.20
76.20
83.10
85.36
91.71
98.36
98.36

113.60
113.60
113.60
121.39
130.20
130.20
130~ 20

0.031
0.080
0.093
0.093
0.093
0.168
0.190
0.246
0.297
0.297
0.391
0.391
0.391
0.430
0.469
0.469
0.469

0.18
0.18
0.09
0.12
0.15
0.18
0.18
0.15
0.12
0.18
0.12
0.15
0.18
0.12
0.12
0.15
0.18

0.34
0.67
1.50
1.12
0.90
1.19
1.32
1.98
2.96
1.97
3.94
3.15
2.63
4.40
4.89
3.91
3.26

1.09
0.77
0.56
l.32
1.29
1.38
0.92
0.55
2.15
1.26
0.46
0.76
0.63
0.60
6.67
1.45
1.39

0.055(3)
0.045(3)
0.011(l)
0.025(3)
0.042(3)
0.063(6)
0.067(6)
0.035(6)
0.027(8)
0.073(11)
0.030(2)
0.051(4)
0.091(6)
0.028{5)
o.034(6)
0.060(5)
0.11(1)

1.4(1)
1.7(2)

1.9(2)
2.1(2)
1.6(3)
1.9(6)
2.3(3)
2.1{2)
2.3(2)
2.8(2)
1.9(3)
2.4(4)
2.7(2)
3 4(4)

These measurements were made in sequence with those listed in Tables I and IV. See
Sec. VB.

slightly less than 2T~ and over wave vectors from
0.09 to 0.18 A' are given in Table III. Near T~
the region accessible to investigation was limited
by our ability to resolve experimentally the in-
trinsic widths of the lines at small values of q
while at high temperatures the fundamental limita-
tion was the dwindling scattered intensity. Rough-
ly half of the measurements listed were performed
in sequence with measurements made at and
below T~. These are identif ied in the table.
The corsment made immediately above con-
cerning the fixed value of A refers to these data.
A, ll of the other measurements were made with a
different neutron spectrometer but using the same
incident neutron energy. These were separately
analyzed but also with a fixed value of the nor-
malization constant for all scans.

As before, we tentatively assume that the mea-
surements in Table III with values of v, /q & i fall
within the hydrodynamic regime. Therefore, for
these mea, surements we list in the last column in
the table values of the diffusion constant Ar = RI'/
q'. These are plotted in Fig. 9 on a double log
scale. It should be remarked that the large un-
certainties and the scatter in the data reflect the
fact that linewidths in Euo are almost two orders
of magnitude smaller than those observed in fer-
romagnets such as iron4 and cobalt' and are there-
fore difficult to measure accurately.

Also shown in Fig. 9 are the predictions of
theory; namely, the temperature dependence of

Ar near T~, given by Eq. (12), and its limiting
value at high temperatures as estimated from the
moment calculations of Collins and Marshall. "

Particular attention should be called to the fact
that the comparison between experiment and
theory is on an absolute scale and involves no
adjustable parameters. Although the scatter in
the data, is larger than one might like, it none-
theless seems clear that the theory adequately
describes the temperature variation of the spin
diffusion constant and in addition predicts its
magnitude with quite acceptable accuracy.

I i I i I i i

EuO

& q =0.09A '

v q=O. I2A'

q=0. I5A

q=o. ISA'

~

~

5.5 ( I -TC/T)
0.54

i I i i i i

i I i i i i i

0.05 O.IO
I

0.20
i I I i i I i

0.50 I.OO

REDUCED TEMPERATURE T TC /T

FIG. 9. Temperature variation of the spin-diffusion
coefficient Az of EuO within the hydrodynamic regime
above Tc. The solid line represents the prediction of
Bennett and Martin and of Kawasaki. A was obtained
from Collins and Marshall's moment calculations.

C. Critical region

1. Line shapes at T&

In the immediately preceding sections, we have
shown that the observed line shapes are well ap-
proximated by a pair of Lorentzian functions below

T~ and by a. single Lorentzian above T~. Now let
us focus our attention on the question of what hap-
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pens to the line shape at T~, the borderline be-
tween the two regions. As noted in Sec. IIC, Hub-
bard's calculations suggest that at T~ the spectral
weight function will have a somewhat squarer form
reflecting the persistence of propagative-type spin
motions within what has basically become a dif-
fusive regime.

To look in detail at this problem, we fitted our
data at T~ to two line shapes; the single I.orentz-
ian of spin-diffusion theory and the squarer form
suggested by Hubbard. Figure 10 shows the re-
sults for q =0.12 and 0.42 A ', the smallest and

largest wave vectors investigated. One can see
that the two line shapes are almost indistinguish-
able. Whatever differences there are appear most
evident at q =0.42 A '. In this case the weighted
mean-square deviation slightly favors the Hubbard
form even though it seems to be flatter near the
top of the peak than is indicated by the data.

Since we are unable to choose between the two
line shapes experimentally and since we are also
not sure that the Hubbard form is applicable to
EuO (for the reasons outlined in Sec. II C), we
decided to continue to use a I orentzian spectral
weight function to analyze the data at T~. Not only

is it more convenient to handle analytically, but
there is the additional benefit that all of our line-
width analysis, from the lowest to the highest
temperatures, is then based on spectral weight
functions of a single form. This has the advantage
of eliminating the possibility of systematic dif-
ferences associated with changing from one func-
tional form to another during t;he analysis.

2. Line~idths at T&

Two separate series of measurements were made
at T~. For wave vectors less than 0.2 A ', we
used an incident neutron energy of 4.8 meV to
optimize the experimental resolution. At larger
values of q, however, we had to compromise on
resolution by going to 13.5 meV to obtain satis-
factory intensities. One can get an indication of
the resolution change associated with the change in
incident energy by referring to Fig. 2, which
shows the observed energy widths of the incoherent
elastic scattering.

As noted in Sec. VB, we used Eq. (27) to analyze
the data at T~ with

(29)

200
E Euo

I 50—

600—

w 200—

q =0.42 A

I

2

as given by Eq. (22) and E(q, u) of the I orentzian
form of Eq. (28). The normalization constant for
the 4.8-me& scans was kept fixed at the same
value used to analyze the scans above and below
Tc. For the 13.5-meV scans the best over-all
value of the normalization constant was first de-
termined and it was then held fixed at that value
for the final analysis. Thus only the linewidth
h I'(q, Tc) was determined by the final least-
squares fitting. The results are listed in Table
IV. Note that the values of 6' are somewhat larger
than those in Tables I and III indicating that the fits
are not as good as those obtained above and below
Tc. This may be evidence for the squarer spectral
weight function suggested by Hubbard but, as we
have said, the differences are not really signifi-
cant at the level of precision of our measure-
ments.

It is generally assumed that as a consequence of

-0.2 -O. I 0 O. I

ENERGY {meV }

0.2
TABLE IV. Linewidth of EuO at Tc.

kF& {meV)

FIG. 10. Line shapes at Tc for the s)tallest and
largest wave vectors investigated. The solid line is
the best fit obtained by convoluting a Lorentzian spec-
tral weight function with the instrumental resolution;
the dashed line shows the effect of replacing the Iu-
rentzian with Hubbard's spectral weight f'unction cal-
culated for a simple cubic ferromagnet with only nearest-
neighbor interactions. Note the difference in the upper
and lower energy scales.

0.12
0.15
0.18
0.20
0.24
0.30
0.36
0 42

0.026{1)
0.047{3)
0.072{6)
0.095{10)
0.133{7)
0.22{1)
0.33{2)
0.48{3)

1.1
2.0
2.7
2.3
4 6
2.2
2

1.9
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dynamical scaling the linewidth of an isotropic
ferromagnetic will vary as q" at T~, a relation-
ship thai has been observed to hold in both iron'
and cobalt. ' But when our measured values of
ff I'(q, Tc) are plotted against q'~', as is done in

the lower part of Fig. 11, it appears that the ex-
pected relationship is not actually observed over
the whole q range investigated. Significant devia-
tions occur at the smaller values of q. This is
particularly evident when ff I'(q, Tc)/q'1' is plotted
aga, inst q' ', as is done in the upper part of the
figure. The deviations call to mind the way the
spin-wave energies depart from q' owing to
dipolar influences and, as we will soon show, they
are in fact related effects.

If we simply fit a power law to the linewidths ob-
served at T~ we find that the expression

ffI'(q, Tc)= (3.5 +0.2}q' "''"meV (30)

is a good empirical representation of the data (q
is here expressed in A '). In fact, Eq. (30) fits the

data so well that it is tempting to infer that dy-
namical scaling is not exactly obeyed in EuO. But
we suggest that a more likely explanation is that
dipolar interactions are responsible for the devia-
tion. Our reasoning is as follows: The basis of
the dynamical scaling hypothesis is the assump-
tion that the characteristic frequency e,(x,) is a
homogeneous function of q and K, anci, as we
earlier remarked, can be represented as

5(d (Ki) = q II (Kr/q )' (31)

where Q(lr, /q) is the so-called scaling function and
u is an exponent characteristic of the particular
magnetic system. Equation (31) is expected to
hold within the hydrodynamic regime at all tem-
peratures. Below Tc, f1~,(x, ) becomes identical
to the spin-wave energy Dq'. Thus within the
temperature range in which D is proportional to
e,'' we can write

5&v, (x, ) =Dq' =- Wx', ~ q-'= IVq'"(x /q)' '=q'~Q(x /q),
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where the constant N'=D*D(T= 0)(a„„/E-)' ', I"
being the critical coefficient defined in Sec. VI of
paper II and D(T=O) and D~ the spin-wave stiff-
ness constants defined in Sec. VA1. At T~,
q= 0 irrespective of the value of q and, conse-
quently, the q dependence of If', (x, )—or, eciuiv-
alently, the q dependence of. the Iinewidth —comes
from the q' ' factor alone. As it stands, however,
this argument cannot be directly applied to EuQ
because even though D is proportional to ~', /-', the
spin-wave energy at small values of q is not pro-
portional to Dq' because of dipolar interactions.
To correctly describe the spin-wave energies we
must use Eq. (6) of paper I, which tells us that the
angularly averaged energies are given by the ex-
pression

1+ ft)
(h(u(q)) =Dq' —+ „., arctany''2,

0.1

0.02 0.04 0.06 0.08 0.10 0.12

5/ o 5/

FIG. 11. Linewidth at Tc plotted vs q5 . Our results
deviate from the q law predicted by dynamical scaling
(dashed line); the deviations at smaller values of q are
paj&icularly evident in the upper part of the figure which
shows the linewidth divided by q . The solid lines rep-
resent the dynamic scaling behavior expected for an iso-
tropic ferromagnet such as EuO when both dipolar and
exchange interactions are taken into consideration. A
discussion of how dynamical scaling predictions a,re
modified by dipolar effects is given in Sec. VC 2.

where the quantity p =4m o 1raM/Dq' is independent
of temperature because the magnetization 3I and
the stiffness constant D have essentially the same
temperature dependence. From the values of J,
and 8, given in paper I we fine D(T = 0) = 11.6
meV A'. Using for the magnetization the value
4vtl1 = 24 KOe (from Ref. 8 of paper I) we find P
=0.024q ' when q is expressed in A '. It is easy
to see from a double log plot that over the wave-
vector range of interest Eq. (33) is well fitted by
a power law of the form (ff&u(q)) ~q'~. When this
expression is used in place of Dq' in Eq. (32) the
scaling exponent u has the value 2.30 observed
experimentally.

In our view this argues strongly that dipolar in-
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teractions have an important influence on spin dy-
namics in EuO near T~ and must be taken into con-
sideration whenever comparisons are made with
theory. For the linewidths we can invoke the same
scaling arguments used above to show that

h I'(q, Tc) = oB(0)q' '(ffID(q))/Dq', (34)

where the quantity (h&d(q))/Dq' represents the
dipolar correction to the spin-wave energy, i.e.,
the coefficient of Dq' in Eq. (33), IT is the constant
defined by EII. (14), and H(0) is Hubbard's scaling
function evaluated at I', /@=0. The solid line in

Fig. 11 is the best fit of Eq. (34) to the measured
values of KI'(q, To) obtained with aq(0) treated as
a, parameter of the fit. Using this procedure, we
found for og(0) a. value of 4.0*0.1 meV A'', which
is almost 50 j~ smaller than the value 6.4 —7 meV A'
predicted by the theories outlined in Sec. DC.

We also measured ff I'(q, To) in EuS for 0.2
& q & 0.6 A ' and found it to be three times small-
er than in EuO. Both Riedel~' and IIubbard" pre-
dict that

8I'(q, To)z„o a„(EuO) 'i'-Tc(EuO)
AT. I'(q, To)B„B a„(EuS) To(EuS)

given by the theory even though the predicted mag-
nitudes are significantly larger than those ob-
served experimentally.

Q(E,/q) @~,(E,)
Q(0) AId, (0)

(35)

For the double Lorentzian spectral weight function
of EII. (24) it is easy to show that

D. Scaling function

Thus far we have used the dynamical sealing
concept primarily to justify categorizing dynamic
response according to whether q is larger or
smaller than I(., and T is larger than, equal to or
smaller than T~. But, equally important, dy-
namical scaling also tells us that we can expect to
obtain from the experimental data a scaling func-
tion which should serve as a means of consolidating
observations extending over a wide range of wave
vectors and temperatures into a single unified de-
scription of spin behavior.

According to Eq. (31), the normalized scaling
function fl (IT, /q)/Q(0) is related to the normalized
characteristic frequency Id, (E,)/Id, (0) by the ex-
press loll.

(if we assume in applying Hubbard's theory that
Z, -I- J, is proportional to To). Thus, the ratio of
the linewidths of EuO and EuS at T~ is properly

)IID, (IT,) = [ (h(d, )'+ ()II")-'] ' ~'-,

while for the single Lorentzian of EII. (28)
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FIG. 12. Normalized dynamical scaling function Q(ff:&/q)/Q(0) of EuO plotted against &&/q. All data from Tables I and
II above 30 K are included in the figure. The inset indicates where on the ff:& —q plane the individual measurements were
made. The dashed line represents the asymptotic form of &(w&/q)/Q(0) from Riedel's theory; the dash-dotted line is
Resibois and Piette's scaling function.
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Substituting from Tables I and III in the above
equations and using Eq. (34) to define h~, (0) thus
gives us directly Q(~, /q)/Q(0). Figure 12 is a
plot of the normalized scaling function obtained
from all data above 30 K. As is evident, the con-
cept of a single scaling function describing the dy-
namical response over a wide range of wave vec-
tors and temperatures seems to be borne out re-
markably well in practice.

In the inset to the figure we have shown where
on the q-Ky plane the individual measurements
were made. In addition, there is a dashed line to
identify the traditional boundary between hydro-
dynamic and critical regimes. It also ought to be
noted that dipolar interactions have little influence
on the normalized scaling function (at least below

Tc) because they affect the characteristic fre-
quency below and at T~ in the same way.

From Eqs. (32), (34), and (35) it is easy to show
that below T~ in the hydrodynamic limit K, ,/q» 1

0(,/q) W (,) (,) (37)

W being the constant defined in conjunction with
Eq. (32). Using our experimental value 4.0
meV A'~' for oe(0) yields for W the value 2.7.
Similarly, it follows from Eqs. (11), (35), and
(36b) that in the hydrodynamic limit above Tc

(38)

VI. DISCUSSION

It is obviously of interest to compare the as-
yrnptotic scaling functions of EuQ with the equiv-

where a„ is the nearest-neighbor distance and &

is the critical coefficient defined by the relation
a„y, =E'[(T —Tc)/Tc]". The solid line in Fig. 12
is a plot of Eq. (37) with W =2.7, while the dashed
line represents Eq. (38) with W' =0.62 corre-
sponding to ae(0)=6.4 meV A' ', the value obtained
from Riedel's calculation described in Sec. II C.
Inspection of the figure shows that the hydro-
dynamic forms are satisfactory representations
of the dynamic response over a large part of the

q —Ky plane but fail, as would be expected, in the
critical regime q& K, . Resibois and Piette s cal-
culation of the scaling function above T~"—ap-
pearing as the dash-dotted line in the figure—
does, however, extend from the hydrodynamic in-
to the critical regime and seems to satisfactorily
reproduce the trend of the (limited) data in that
region.

TABLE V. Scaling functions of the isotropic ferromag-
nets in the hydrodynamic limit f(&/p»1, where ~(K&/p)—&'(K)/0)' '

$V (T( T~) W+(T & T,)

EuO (This Expt. )

Fe
Co
Ni

Theory

3.0(2.7)
1 5]b
1.50

0.58(3)
0.43
0.47

-0.77

0.43
0.63'

' The number in parentheses was obtained by using our
experimental value 2.4 for the ratio E /E+. All the other
values of ~ were computed using the theoretical ratio
2.02 discussed in paper II.

Reference 3.' Reference 4.
Reference 6.
Reference 22.
Reference 42.

alent functions for other isotropic ferromagnets.
Accordingly, we have listed in Table V the values
of the coefficients W and W' [defined by Eqs.
(37) and (38)] for EuO together with values for
iron, cobalt, and nickel derived from neutron
data in the published literature. Inspection makes
it immediately evident that W is about half as
large for the metallic ferromagnets as for EuQ
while the values of W' fall reasonably close to-
gether.

We have not been able to derive from the existing
theory any simple prediction as to how W might
be expected to vary from one material to another.
But it is easy to see from Eqs. (10), (14), and (38)
that in the hydrodynamic limit W' should be pro-
portional to z ' ~4(a/a„„)'~', where z is the number
of nearest neighbors. For cubic lattices this quan-
tity is independent of structure. Thus W' is ex-
pected to have about the same value for all iso-
tropic ferromagnets. Keeping in mind that iron,
cobalt, and nickel are not ideal Heisenberg fer-
romagnets and that much of the data used to esti-
mate W' came from observations which were
probably not made entirely within the hydrody-
namic regime, the degree of consistency between

experiments is better than might have been ex-
pected. Agreement with the value predicted by
theory is also acceptable. Taken together, the
measurements appear to support the view that the
asymptotic sealing function above T~ is a universal
quantity for isotropic ferromagnets.

Turning now to microscopic considerations, we
find the neutron scattering cross section (discussed
at length in Sec. V) adequately describes the in-
elastic magnetic scattering from EuQ over a tem-
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perature range extending from 0.14T~ to almost
2Tc and over a range of wave vectors from 0.09
0
A ' to essentially the Brillouin-zone boundary.

Our measurements below T~ indicate that spin-
wave energies in EuO are well described by the
Dyson' -Maleev" renormalization theory with the
dynamical but not the kinematical interaction in-
cluded. As long as the theory leads to self-con-
sistent solutions (which it does at all temperatures
below 0.9Tc), the results are in good agreement
with our observations. At approximately the tem-
perature where the theory ceases to converge,
we begin to see evidence of spin-wave broadening.
To the limited extent that comparisons are pos-
sible, the temperature and wave-vector depen-
dence of the observed linewidths appear to be con-
sistent with the expectations of theory —the tem-
perature dependence varying as [(T —Tc)/TcJ '"'~'

as predicted by Halperin and Hohenberg's dy-
namical scaling arguments" and the q dependence
following the cg'[1 n(2 /q')]' form predicted by Vaks,
Larkin, and Pikin. " Also to be noted is the recent
work of Raghavan and Huber" who not only predict
the temperature and q dependence of the spin-wave
linewidths, but also calculate their magnitudes with
quite reasonable accuracy.

Looking at results below Tc from an over all
point of view, we feel that the only important un-
resolved question is the form of F'(q, u)—the
longitudinal part of the spectral weight function.
Here the theory of Vaks et n/. predicts a three
peaked function —a central diffusive peak and a
pair of side peaks arising from the interaction
of longitudinal spin fluctuations with long-wave-
length propagating modes. Although our two-axis
measurements show evidence of the contribution
of longitudinal fluctuations to the scattering near
T~, we have not been able to find any indication
of the expected central peak in our three-axis data.
All of our results could be adequately represented
by simply assuming F'(q, ur) was identical to
F'(q, &u). Curiously, studies of other isotropic
ferromagnets such as iron, ' cobalt, ' and nickel'
led to the same conclusion which remains as yet
unexplained by the theory.

Our investigations of spin diffusion in the hydro-
dynamic regime above T~ support the dynamical
scaling prediction" that the diffusion coefficient
Ar varies as [lf, ,(T)!lt,] '~4. Furthermore, the
magnitude of A~ as predicted by theory'7'" is in
good agreement with our measurements.

%e find that the q' ' dependence of the linewidths

at T~ predicted by dynamical scaling" and ob-
served in other isotropic ferromagnets'"' is
slightly altered in EuO; the effective scaling ex-
ponent being reduced to 2.3. According to dy-
namical scaling, such a deviation would be ex-
pected if a significant part of the coupling between
magnetic ions comes from dipolar interactions as
is the case in EuO. Indeed, Maleev's recent anal-
ysis4' of the influence of dipolar forces on critical
spin dynamics in ferromagnets shows that the
scaling exponent can be expected to '*cross over'*

from -'; to 1 as q falls below a certain value (esti-
mated for EuO to be about 0.14 A '), which is with-
in the range covered by our measurements.

The magnitudes of the linewidths at Tc are about
50% smaller than the estimates of theory, "4' al-
though the same theories correctly predict the
linewidths of iron and nickel" as well as the width
ratio for EuO and EuS. Oddly enough, the theory
also overestimates the linewidth of the isotropic
Heisenberg antiferromagnet RbMnF, by about the
same amount as for EuO. Whether this discrep-
ancy is simply an indication of the accuracy of
mode-mode calculations or whether it represents
a more fundamental difficulty with the theory re-
mains as yet undetermined.

In summary, we find dynamical response in EuO
in the hydrodynamic regime to be well described
by the theory both above and below T~. The main
outstanding questions concern the magnitude of the
linewidths at T~ and the interpretation of the lon-
gitudinal dynamical response near but below T~.
Finally, our studies show evidence (much of it in-
direct) of the influence of dipolar interactions on
the dynamics of EuO not only at low temperatures
but also in the critical regime both near and at T~.
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