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Neutron scattering has been used to study the magnetic ordering process in the isotropic exchange coupled
ferromagnets EuO and EuS. Quantities investigated include the critical coefficients B and F * and the critical
exponents B, v, and 7y describing respectively the temperature dependence of the reduced magnetization below
T and the temperature dependence of the inverse spin correlation range and reduced static susceptibility
above T.. All of the above-mentioned parameters are found to be in satisfactory agreement with theoretical
predictions; a predicted scaling relation between B, v, and vy is also confirmed. An approximate procedure for
unfolding from the scattering below T, that part associated with the longitudinal static susceptibility was
developed and applied to EuO to obtain an indication of the distance over which longitudinal spin fluctuations
are correlated in the ordered state. The results are consistent with the view that the range of spin correlations
below T is about half as large as at an equivalent temperature about T.. In all but one case, agreement
between the neutron scattering results and those obtained by other experimental methods is within the limits
of the errors. The exception is the critical exponent y for which the neutron value is significantly larger than

that derived from bulk measurements.

1. INTRODUCTION

In the first paper of this series we reviewed our
low-temperature inelastic-neutron-scattering
measurements of spin-wave dispersion in EuO and
EuS and discussed their interpretation in terms of
magnetic exchange constants. We turn now in this
second paper to consideration of our elastic and
quasielastic scattering experiments near the Curie
temperature 7., and to the question of what can
be learned from these measurements concerning
magnetic ordering in EuO and EuS.

As is well known, the magnetic ordering transi-
tion is one of a limited class of phase transitions
which come under the collective heading of second-~
order processes. In attempting to describe such
processes theoretically, the tendency has been to
focus on certain idealized systems which are sim-
ple enough to be amenable to detailed analysis and
yet at the same time realistic enough to represent
actual systems found in nature. Among such sys-
tems, the best known is probably the isotropic ex-
change-coupled Heisenberg magnet.

Relatively few materials can be described as
good representations of Heisenberg magnets.
Naturally, those which do fit within this select
category are of particular interest from the ex-
perimental point of view. Thus RbMnF,, an excel-
lent example of an isotropic Heisenberg antiferro-
magnet, has been much studied,! as have EuO and
EuS, the only known examples of Heisenberg ferro-
magnets. But, for the reasons outlined in the
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first paper of this series, although the macro-
scopic magnetic properties of both EuO and EuS
are thoroughly documented, nothing comparable is
known about their microscopic behavior.

In this paper we will discuss the application of
neutron scattering methods to EuO and EuS to
probe, on a microscopic scale, the temperature
dependence of long-range magnetic order below
T and short-range order above T.. Some of the
experimental results to be discussed have already
been briefly described in the literature?; here we
would like to explain how these measurements
were made, and in particular how the data were
corrected and analyzed. We will also discuss
some previously unreported measurements made
on EuO below T, which represent a first attempt
to investigate longitudinal spin fluctuations in an
ordered ferromagnetic system.

II. NEUTRON SCATTERING CROSS SECTION

Marshall and Lovesey® have presented a detailed
exposition of the theory of neutron scattering from
a Heisenberg magnet with a Bravais lattice. For
our purposes it will be sufficient to summarize
briefly those aspects of the theory which are rele-
vant to our measurements. The partial differential
cross section is customarily written in the form

d?*c _ 762 2& 1 >\ |2 (1-}:’2)80‘(; w)
M_<mcc?) k; [ng(K)| g / ,

(1)
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where the quantity
(K, »)——— f dt et (3(0)8%(1))

known as the dynamic structure factor, represents
the Fourier transform of the spin palr correlation
function and k —k,= k=q+ -r where T is a recipro-
cal-lattice vector The notatlon follows that of
Ref. 3. Using linear response theory, $*(k,w) can
be described in terms of a normalized spectral
weight function F“‘(a, w) and a wave-vector-depen-
dent susceptibility xg; the relationship takes the
form

8%(K, w) =82 azelg=0,w=0)

NS(S+1) x¥(T) #nwh
. (3{ )x(;((o)1 t—"wﬁ Fog,w) . (2)

The first term in Eq. (2), representing the mag-
netic contribution to the coherent Bragg scattering,
is proportional to the square of the magnetization
M, and is a 6 function in both ¢ and w. The
second term describes the inelastic magnetic scat-
tering associated with fluctuations in the local
magnetization. As the temperature increases,
this term contributes more to the scattering and
ultimately, near T, it evolves into the intense
critical magnetic scattering which is the major
subject of this paper.

Let us consider first the elastic magnetic Bragg
scattering, which we remarked was proportional
to M2, and which can be used to determine the
temperature variation of the magnetization, i.e.,
the temperature variation of the long-range mag-
netic order. Below T, there are both magnetic
and nonmagnetic contributions to the Bragg scat-
tering and both must be taken into account. The
nonmagnetic part is associated with coherent nu-
clear scattering from the rock-salt lattice struc-
ture, and it remains essentially constant in in-
tensity over the temperature range of our mea-
surements. This “nuclear background” can be in-
dependently determined above T, and therefore
presents no real difficulties. There is, however,
also a small contribution to the background from
quasielastic critical scattering [the second term
in Eq. (2)] which must be taken into account. This
will be discussed in detail in Sec. IVE when we
consider analysis of the data.

As far as the second term in Eq. (2)—the non-
Bragg term—is concerned we note, as was earlier
remarked, that this is entirely inelastic magnetic
scattering and, in double axis measurements such
as those to be described here, the observed inten-
sity will be approximately proportional to the in-
tegral of Eq. (1) over all E’, i.e., over the energy

spectrum of the scattered neutrons. The reasons
why this is approximately but not exactly true will
be discussed in detail in Sec. IVB, but for the
moment we will simply assert that the scattered
intensity is essentially determined by the quantity
TZ) (1 -RENE-

Below T., the term E (1-R2)x§, takes the
form 3(xq+ 2x%), the superscrxpts I and ¢ identify-
ing, respectively, the longitudinal and transverse
components of the susceptibility (defined with re-
spect to the direction of the spontaneous magneti-
zation). According to molecular-field theory,?

X§*q™ (3)
in the small-q limit; the same ¢ dependence also
is obtained from more sophisticated theories.*
For xé, molecular-field theory yields for an iso-

tropic Heisenberg ferromagnet near 7. the ex-
pression

X5 [(@gq)? + (k)] (4)

where «, represents the inverse spin correlation
range. This expression is also expected to hold

in the small-g limit. We have formally introduced
the nearest-neighbor (nn) distance a_, into Eq. (4)
to emphasize that the correlation range is expected
to scale with this quantity in otherwise identical
systems.

Kawasaki? has used a diagrammatical technique
in the molecular-field approximation to study the
form of xé more carefully. His conclusion is that
below 7', the longitudinal susceptibility X.‘z consists
of two terms; the first proportional to

1/a%(q%+ (%) ,
and the second to
c »—Ti' 1 7?1 .
T L.alzln(q“-*- Kf)_J qann

At low temperatures the second term is dominant.
However, at higher temperatures Kawasaki finds
that the first term becomes of increasing impor-
tance and ultimately, near T, it determines the
form of Xl& except at extremely small values of g.
Hence, we can conclude that not far below T, in
the ¢ range accessible to experiment, x} should
retain the Ornstein-Zernike form of Eq. (4).
Above T, separation of x4 into longitudinal and
transverse components is meaningless. Ritchie
and Fisher® suggest, on the basis of series-ex-
pansion calculations, that it be expressed as

{000 )7/ (0

where

O(T)=d(Tc/TY
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and

Y(T)= 1+ 5m0%(T) .

The exponent 77 and the shape parameter ¢ are pre-

dicted in Ref, 5 to be numbers on the order of 0.1
or smaller.

Before concluding this brief review, some com-
ment is necessary concerning F(g,w), the spectral
weight function which also appears in Eq. (2).
Clearly in studies of static behavior, x; is the ob-
ject of major interest and F(g,w) is only of im-
pertance insofar as it atfects corrections to the
measurements. It is therefore sufficient for our
purposes at this time simply to note that at low
temperatures F(g,w) is expected to be a two-
peaked function representing processes in which
neutrons gain and lose energy by interactions with
spin-wave modes. As T approaches T, the en-
ergies of the spin waves renormalize and they be-
come increasingly short lived. In addition, longi-
tudinal fluctuations are expected to begin contri-
buting to the scattering. The two spin-wave peaks
in F(q,w) therefore decrease in energy, broaden,
and finally, at T, or slightly above, they are ex-
pected to merge with the central longitudinal peak
into a single peak centered at zero energy trans-
fer. This single peak then continues to broaden
as the temperature further increases.

More guantitative descriptions of F(g,w) will be
found in the third paper of this series, which is
concerned with our investigations of spin dynamics
in EuO. It is suggested that readers interested in
dynamic processes refer to this paper for further
details.

I1L. EXPERIMENTAL METHOD

A. Neutron scattering measurements

Experience shows that to determine static mag-
netic critical properties accurately, good ¢q reso-
lution and good statistics, i.e., high counting rates
ave required. For this reason all of the measure-
ments to be discussed were made with a triple-
axis spectrometer operated in the two-axis mode.
We employed a relatively high incident neutron
energy, 13.5 meV (A=2.46 A), to minimize the
importance of corrections for inelasticity. Py-
rolytic graphite was used for the monochromating
crystal and quartz and pyrolytic graphite filters
were incorporated into the beam to remove con-
tamination from higher orders. Horizontal colli-
mation in front of the monochromator, was 0.6°;
between monochromator and sample, 0.42°; and
between sample and detector, 0.29°. Vertical col-
limations before and after the sample were 0.76°
and 0.66°, respectively.

B. Sample arrangement and thermometry

The samples were in the form of slabs of poly-
crystalline powder. Details of their preparation,
weight, and dimensions are given in paper I, Sec.
IIIC.

Temperatures below 30 K were measured with
calibrated Ge cryoresistors; at higher temperature
calibrated Pt resistance thermometers were em-
ployed. As noted in paper I Sec. IIIC, the order-
ing temperatures of both the EuO and EuS samples
were determined from the scattering at ¢ =0.05
A", The observed values of T. were 69.15+0.05
K for EuO and 16.57 £ 0.02K for EuS.

IV. ANALYSIS OF THE DATA

A. Sources of background and background corrections

As explained in paper I, since the samples were
polycrystalline powders, all measurements of the
inelastic magnetic scattering [the second term in
Eq. (2)] had to be made at small angles around the
origin in reciprocal space. Near the forward di-
rection, a recorded count can originate from any
of the following processes: (a) inelastic magnetic
(critical) scattering from the sample: (b) inelastic
nuclear (phonon) or elastic coherent (multiple
Bragg) scattering from the sample: (c) elastic
nuclear spin incoherent scattering from the sam-
ple: (d) scattering from the sample container,
cryostat radiation shields, etc., room background,
and detector noise.

Process (a) is, of course, the scattering in which
we are interested while processes (b)-(d) repre-
sent sources of background in our measurements.
Of these latter, as will be explained, (c) and (d)
could be determined reasonably well while (b) pre-
sented difficulties and, for lack of a better means,
had to be estimated by inference using a procedure
which we will describe.

We can perhaps best make clear the methods
used to evaluate these background contributions
by discussing our measurements on EuO in detail.
Consider first background source (d). This was
determined by replacing the sample with a 0.05-
mm-thick cadmium sheet selected to give approx-
imately the same neutron transmission. The sam-
ple container, cryostat radiation shields, etc.,
were unchanged. Although Cd is to some extent a
scatterer as well as an absorber, the scattering
is small enough to be neglected and the observed
scattered intensity is therefore almost entirely
that from (d) above.

Source (c), the elastic spin incoherent contribu-
tion, was determined by using triple-axis spectro-
scopy. At low temperatures, the spin-wave an-
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nihilation and creation peaks are well separated
and the incoherent elastic peak is fully resolved
and easily identified. At high temperatures the in-
coherent scattering appears as a well-defined
narrow elastic peak on top of a much wider pa-
ramagnetic peak. By using the ratio of the inco-
herent elastic intensity to the total energy-inte-
grated intensity (observed at both high and low
temperatures and at various values of ¢) we were
able to obtain reliable estimates of the contribu-
tion of incoherent elastic scattering to the inten-
sity observed in our two-axis studies.

The sum of sources (c) and (d) appears in Fig. 1
as the dashed curve labeled “lower limit.” On the
scale of the figure the incoherent elastic back-
ground is 18 counts. The upper dashed curve is
the scattered intensity observed from the EuO
sample at room temperature (47.) which includes
not only (b)—(d), but also (a), the inelastic para-
magnetic scattering as well. Although at room
temperature this scattering is much reduced over
what it is near T and is also essentially inde-
pendent of ¢ in the range of our measurements
(0.15>¢>0.05 }O\"), it is still not completely negli-
gible. Therefore at 47, the measurement defines
in effect an “upper limit” to the background.

Since we could find no direct way of evaluating
(b), the phonon and multiple Bragg components of
the background, we were forced to resort to an
iterative trial-and-error procedure to determine
this quantity. The procedure involved analyzing the
data with various choices of background between
the established upper and lower limits and evalu-
ating the results on the basis of the following cri-
teria:

(1) «, must vanish at T=T,.

(ii) The magnetic contribution to the scattered
intensity at room temperature must be essentially
independent of g for ¢ <0.15 AL,

(i) Xo-o(T)/X, and k, must vary smoothly with
temperature, i.e., the results at high tempera-
tures, where the background is relatively much
more important, must extrapolate in a physically
reasonable way to the results near T, which are
much less dependent on background. Most of the
possible choices failed to satisfy one or more of
the above criteria. However, the background
shown as the solid curve in Fig. 1 met all require-
ments. In fact, as we will show in Sec. IVC, with
this background, xq=o(T)/xL, actually extrapolates
to the expected room-temperature value.

According to our interpretation, the difference
between the curve labeled “final background” in
Fig. 1 and that labeled “lower limit” is the contri-
bution from (b) as defined above. We believe it
comes primarily from multiple Bragg scattering
for the following reason. In a nonabsorbing ma-
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FIG. 1. ¢ dependence of EuO hackground. The upper
dashed curve is the observed scattering from the sample
at room temperature; the lower represents the sum of
incoherent scattering from the sample and scattering
from the sample container, cryostat radiation shields,
etc. Together, they define upper and lower limits to the
background. The solid line in between is the interpo-
lated background used for analysis of the data.

terial, the intensity of multiple Bragg scattering
will vary as (sin26,)™, where 26, is the scattering
angle. Strong absorption tends to attenuate the
large-angle scattering, hence, in EuO the multiple
Bragg confribution can be expected to be more
strongly peaked in the forward direction. Careful
inspection of Fig. 1 will show that this is consis-
tent with what we observed.

Before leaving the subject of background, one
further point ought to be made clear. The pro-
cedures we have used to determine the background
in EuO and EuS are valid only when (i) tempera-
tures both substantially above and below T are
experimentally accessible and (ii) the material
does not undergo a crystallographic phase transi-
tion within this temperature range. This method
could not, for example, be applied to iron which
has a high value of T, and which furthermore
undergoes a crystallographic phase transition not
too far above this temperature.

B. Corrections for inelasticity and experimental resolution

The double-axis mode of operation measures,
at each spectrometer setting, the intensity of neu-
trons scattered through a specific angle, 26,. As
was mentioned earlier, when inelastic processes
produce a spread in the energies of the scattered



4912 J. ALS-NIELSEN, O. W. DIETRICH, AND L. PASSELL 14

neutrons there is a corresponding spread in the

q vectors of the neutrons detected. This is indi-
cated schematically in Fig. 2. The range of en-
ergy transfers which must be considered is de-
termined by the energy width of the spectral
weight function F(g,w); the appropriate g vectors
being those with endpoints along E,, such as for
example 61, R ,53 in the figure. Let us denote by
AE; the characteristic width of the cross section
along }'Ef. The equivalent range of scalar momen-
tum of the scattered neutrons Ak, is

ok 1/m 2
Ak,=a—EffAEf=%<§E;> AE; .

As long as E,=7k}/2m is large enough, Ak, will
be small no matter how large the inelasticity, and
the scattering will be confined to a narrow range
of g values. Thus, in the limit of large neutron

FIG. 2. Scattering diagram for the analysis of double-
axis measurements of small-angle scattering. The
dashed line indicates the spectral distribution of the
scattered.neutrons.

energies, the intensity observed with a double-
axis spectrometer becomes in effect a measure of
the cross section integrated over energy at a fixed
q value, i.e., it is proportional to the static sus-
ceptibility for magnetic scattering at that value of
q, as was noted earlier. Although this limit can-
not be completely achieved in practice, the cor-
rections are not large and two-axis measurements
are therefore commonly employed for studies of
the static susceptibility.

When the form of F(g,w) is known, correcting
for inelasticity is a straightforward procedure.®
The cross section, including the known F(g,w) and
a parameterized form of xa,js integrated numer-
ically along the direction of k;. Since F(g,w) is a
normalized function, it is convenient to calculate
an “inelasticityv corvection factor” defined as

f(ao)z along ky XEF(‘I ’ (.0) dw .
Xq,

Then, after other corrections have been made, the
intensity I(&O) at a spectrometer setting corres-
ponding to elastic momentum transfer ao will be
related to Xd, by the expression

1(d,) =£(d) X0 -

Normally, the parameters in the expression for
Xg, are determined by least-squares fitting. Con-
sequently, the inelasticity correction factor has to
be calculated for each set of trial parameters used
in the fitting process.

In the analysis of our data we assumed F(g,w)
to be of Lorentzian form in w, i.e., either a two-
peaked or single-peaked function, as was discussed
in Sec. II. The width of the Lorentzian I'(gq) was
obtained from inelastic measurements (to be dis-
cussed in paper III). Here we only need mention
that the observed ¢ and temperature dependence of
T'(q) above T followed the predictions of Résibois
and Piette.” Therefore, their curve for I'(g) was
fitted to our inelastic data and was used to calcu-
late the inelastic correction factor.

The finite instrumental resolution of the spectro-
meter means that every measurement represents
an average of the cross section over a certain
“resolution volume” in q space. Thus a measure-
ment made at a nominal elastic momentum trans-
fer ao is in fact a weighted average of x; around
the value ao: the spread in wave vectors around
Elg owing to instrumental resolution being deter-
mined by the horizontal and vertical divergence of
the spectrometer collimation and the crystal mo-
saic distributions. In analyzing our data we com-
bined in one calculation the resolution and inelas-
ticity corrections which together did not exceed
10% for any of our measurements.
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C. Short-range order above T

The results of a preliminary analysis of our
data have already been published.? In making this
analysis, we assumed a simple Ornstein-Zernike
form for x,.o(T)/x,, i-€., the form obtained from
Eq. (5) when 7 is set equal to 0. Here we present
a more-refined analysis based on fitting our data
to Eq. (5), the Ritchie and Fisher expression. For
¢ we used 0.11, the value given in Ref. 5 for an
fcc lattice of spins with S=Z. With this quantity
fixed, Eq. (5) then contains three unknowns,
namely, X,.o(T)/Xo, &, and 7.

We consider first the determination of n. Be-
cause of the angular dependence of the background
and the difficulties involved in approaching the
limit ¢ =0 in forward-scattering measurements,
our results are in general not very sensitive to
the value of n. The most favorable situation occurs
when T-T,. In this case «, — 0 and it is easy to
see from Eq. (5) that x;(7;)/x,*¢*™. Figure 3
shows the product of g™ and the intensity at T,
i.e., ¢*"I(T.,q), plotted against q for two repre-
sentative values of . As is evident, the product
is not constant when the analysis is made with
n=0, in other words, when the Ornstein-Zernike
form is used. It does, however, remain effec-
tively constant with n=0.068. Ritchie and Fisher®
predicted for n the value 0.043+0.014. Considering
the possibilities for systematic error in both the
measurements and data analysis, the agreement is
satisfactory.

The remaining quantities to be determined are
)(M,(T)/xn and k,. Figure 4 shows least-squares
fits to the data at AT/T,=0.020 and 0.102 with 7
held fixed at the Ritchie and Fisher value of 0.043,
i.e., with only x,.,(T)/X, and k, considered to be
parameters of the fit. In the figure, the open
circles represent the observed intensities with
background subtracted. Also included for pur-
poses of comparison are the background (the dash-
dotted curve) and x4(T)/x, at AT/T,=0.020 (the
dashed curve). The solid lines represent )(a/x0
folded with the inelasticity and instrumental reso-
lution. It is clear from Fig. 4 that background
corrections are far more important than correc-
tions for inelasticity and instrumental effects.

Tables I and II give the results for x,.,(T)/x, and
k, for EuO and EuS, respectively. We have listed
not only the best-fitting values obtained with 7
=0.043 but also those obtained with =0 to show
how little the results are influenced by variations
in this parameter. The second column in Table I
shows the extent to which x‘FO(T)/)(o is shifted by
decreasing the background by eight counts, the
estimated systematic uncertainty in this quantity.

xq=0(T)/xO, as given in Tables I and I, was

T T T T T T T T T T
22+ ~
2l -1
T T T I % i T —_
T
o T AT T T T
S 7=0068 X
No 19 -
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I8} % { { -
O
= 17 { % i I =
$ § I X2= 17
16 =0 .
15 ‘j
1 I 1 L 1 I 1 I 1 1 I
0.05 007 009 Qll 0.3 015
q

FIG. 3. Intensity of the scattering from EuO at T,
multiplied by g%* " and plotted againstq for two values of .
The plots are intended to show the sensitivity of the fit
to changes in the value of 7.

also least-squares fitted to a power law of the
form

Xeol T)/Xo= C*UT = T0)/T]™. (6)

From this we obtained for the critical exponents
the values

v=1.387+0.036 for EuO
and
v=1.399+0.040 for EuS.

Error limits were assigned on the basis of three
assumed major sources of uncertainty: (i) statis-
tical uncertainty from the fitting (+ 0.023), (ii) un-
certainty in the value of T,(x0.025), and (iii) un-
certainty in the background (+0.013). It should be

60001 T T T T T T T T T T B
EuO
5000}~ .
2 4000 ~
P
3 3000} e .
o T-T
2000+ 0102 -
000l BACKGROUND
Q T a e ST R

1 .
004 006 008 OI0 Ol2 o0l4 o0k
WAVE NUMBER (A™)

FIG. 4. Best fits of Eq. (5) to the EuO data at AT/T
=0.020 and 0.102. The open circles represent the in-
tensities with background subtracted. The dashed curve
is X /Xo at AT/T¢=0.02; the solid lines are best fits
to the data after folding x ,/X, with the instrumental
resolution and inelasticity. The dash-dotted curve is
the interpolated background (the solid line in Fig. 1)
used in the analysis.
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TABLE L. X,=(T)/Xy and «, for EuO.
Xq=o(T)/Xo
Temperature n=.043 Ki(ﬁ'l)
(K) Final background Background -8 n=0 n=0.43 n=0
69.82 22140+1330 21700 21860 0.0280+0.0010 0.0283
70.10 16470+1310 16190 16 350 0.0322+0.0015 0.0324
70.55 8995 +489 8905 8969 0.0442 +£0.0016 0.0443
71.25 5620+ 360 5582 5613 0.0550+0.0025 0.0551
71.76 3820159 3806 3818 0.0676+0.0023 0.0887
72.63 2372+64 2372 2372 0.0887 +0.0023 0.0677
74.01 1662 +62 1664 1662 0.104+0.004 0.104
76.20 1057 +30 1062 1057 0.131+0.005 0.131
78.81 695+18 702 695 0.165+0.007 0.165
83.00 458 £23 465 458 0.211+0.021 0.211
103.80 153+14 160 153 0.46+0.17 0.46

noted that the above error estimates are for EuO.
They are, however, expected to apply approxi-
mately to EuS as well.

A log-log plot of x,.,(T)/X, vs AT/T appears in
Fig. 5. Note that for EuO, where the measure-
ments extend over the largest temperature range,
the straight-line fit is extremely good even at the
highest temperature, i.e., 1.57,. It should be
remarked that since the upper limit of the abscis-
sa, (T -T.)/T=1, corresponds to an infinite tem-
perature, only 0.5 of a decade in (T - T.)/7 has
been left unexplored. This was the region, how-
ever, in which the background measurements of
Fig. 1 were made. It is interesting that the point
plotted as the cross in Fig. 5 representing the
room-temperature paramagnetic scattering, i.e.,
the difference between the curves labeled “upper
limit” and “final background” in Fig. 1, lies on
the extrapolated power law. At first sight it might
seem surprising that a single power law applies
over so wide a temperature range. In fact, how-
ever, the value of the critical coefficient C* in
Eq. (6) is predicted by theory to be close to unity.
Since the left-hand side of this expression must,
by definition, approach unity in the limit T—« it
is evident that even at high temperatures the ex-
trapolation of Eq. (6) cannot be expected to deviate

TABLE II. x,-o(T)/X, and k; for EuS.

Temperature (K) Xe=0(T)/Xo k(A
16.92 183602000 0.0364+0.0026
17.07 11190+534 0.0466 +0.0015
17.30 6201 +£205 0.0631 +£0.0018
17.74 3508 +149 0.0844 +0.0032
18.23 2195+57 0.1128 £0.0032
19.06 1333+51 0.138+0.007

from the correct value of x,,(T)/x, by more than
the difference between C* and unity. According to
Ritchie and Fisher® this difference should be on
the order of £ C* or less. Thus we find that by
using the background of Fig. 1 we have obtained an
internally consistent result over the entire tem-
perature range under investigation.

Finally, before leaving this subject, we should
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FIG. 5. Reduced temperature dependence of the sus-
ceptibility and inverse spin correlation range of EuO
and EuS above T.. Note that the spin correlation ranges
of EuO and EuS scale with a,,, the nn distance. The
single point plotted as a cross represents the paramag-
netic scattering observed at room temperature. The
reduced temperature scales for ag,« and x,.,(T)/x, are
T—Tc/Tc and T— T/ T, respectively.



14 NEUTRON SCATTERING FROM THE HEISENBERG... II... 4915

mention that we were not able to obtain a reliable
value for C* experimentally. Its measurement
requires an absolute determination of the mag-
netic cross section; a difficult problem in the
presence of absorption as large as that in EuO.

Turning now to the inverse spin correlation
range k,, the temperature dependence of this
quantity is also expressed in terms of a power
law which customarily takes the form

ayk, = F{(T - T)/T.), M

where a,, is defined to be the nearest-neighbor
distance (3.64 A for EuO and 4.22 A for EuS).
Note, however, that in this case T, rather than
T appears in the denominator so that a «, will
extrapolate to the correct limit (infinity) as
T -,

Least-square fits of the measured values of «,
to Eq. (7) gave us the following for v and F*:

for EuO,

v=0.681+0.017,
F*=2.3210.13;
and for EuS,
v=0.702+0.022,
F*=2.33+£0.13.

The sources of error are the same as those dis-
cussed earlier in conjunction with the determina-
tion of y.

The data are plotted in Fig. 5. Note that the in-
verse spin correlation range scales with the
nearest-neighbor distance a,; as expected.

D. Short-range order below T~

Figure 6 shows the temperature dependence of
the two-axis intensity observed below T, at small
values of g. We call attention to the fact that what
is plotted in the figure is I(T)/T, where I(T) rep-
resents the intensity corrected for background,
instrumental resolution, and inelasticity. Thus
normalized, I(T) is directly proportional to xz(T)
since the temperature dependence of y, is expli-
citly taken into account.

We remarked earlier that below T it is neces-
sary to consider the scattering as coming partly
from the transverse and partly from the longitudi-
nal components of the susceptibility. What is of
interest below 7 is the correlation range associa-
ted with x}, i.e., with the longitudinal part of xg,
since this is the term which exhibits divergent be-
havior as T'— T,. Unfortunately, unless a polari-
zation analysis can be made it is impossible to
separate the scattering below T, into its trans-
verse and longitudinal components experimentally.
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FIG. 6. Intensity of scattering from EuO divided by T
and plotted against T for various values of ¢ to show the
temperature range over which the scattering is propor-
tional to 7. The dotted lines indicate Z of the intensity
at T¢; the solid lines serve only as a guide to the eye.

Therefore, about the best that can be done is to
make use of the fact that since x} and x§ become
indistinguishable above T, the transverse scat-
tering must, at 7., be two-thirds of the total ob-
served. Furthermore, as was remarked in Sec.
II, there are theoretical reasons for believing that
Xé is not, in the first approximation, a tempera-
ture-dependent quantity. Assuming this to be so,
it then follows that the scattering below 7, coming
from the longitudinal susceptibility can be identi-
fied (at least approximately) by subtracting from
the quantity I(T)/T plotted in Fig. 6 an amount
equal to two-thirds of its value at T,. According
to Eq. (2), this quantity, i.e., I(T)/T - 2I(T.)/3T,,
will then be proportional to x.. In Fig. 7 we have
plotted 1/x!, as so determined, versus ¢°. 1t is
evident that the data fit the linear relationship
expected from Eq. (4) reasonably well. If we use
the data at 7, to define the slope, then the data at
lower temperatures yield for «, the values appear-
ing in the inset to the figure. Note that for a given
AT/TC, the inverse correlation range appears to
be about 2.4 times larger below T, than above.
The uncertainty in this number is difficult to es-
timate since it arises at least as much from the
approximations introduced in the analysis as from
actual statistical scatter in the data.

If our analysis is consistent, it should follow
that the scattering observed at temperatures be-
low about 0.937 comes from x! alone and, there-
fore, according to Egs. (2) and (3) should be pro-
portional to T/gq%. The low-temperature measure-
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FIG. 7. Plot of T/I, vs ¢* for EuO in the temperature
range To>T=>67.8 K. I represents the scattered in-
tensity associated with the longitudinal component of
the susceptibility obtained by subtracting from the ob-
served I/T an amount equal to § of its value at 7. The
solid lines are best fits of Eq. (4) to the data.

ments, plotted in Fig. 8, indicate that the expec-
ted ¢* dependence is observed but it is evident
from both Figs. 6 and 8 that the intensity of the
scattering is not proportional to T as expected.
There is clearly extra scattering at low tempera-
tures and small values of q.

We have been unable to identify fully the source
of this additional scattering. Triple-axis scans
indicate that it is elastic or quasielastic in charac-
ter. Quite probably it arises from multiple-re-
fraction effects associated with the formation of
magnetic domains although this cannot be estab-
lished with certainty from the available data.

E. Temperature dependence of the magnetization

In Sec. II we noted that the magnetic elastic
Bragg scattering occuring below 7, is proportion-
al to the square of the spontaneous magnetization
M. It was also remarked that only part of the
elastic Bragg scattering is magnetic in origin and
that there are other processes contributing to the
intensity observed in a two-axis measurement.
These must be identified and subtracted as back-
ground before the observed intensity can be direct-
ly correlated with V2. The most important sources
of background are (a) nonmagnetic Bragg scatter-
ing associated with coherent nuclear reflections
from the rock-salt lattice and (b) inelastic mag-
netic scattering. Let us consider how these back-
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FIG. 8. Plot of the reciprocal of the intensity of scat-
tering from EuO vs ¢* for temperatures =50 K. The
quantity plotted is the observed intensity with background
subtracted. The solid lines are straight lines drawn
through the points as a guide to the eye.

ground contributions can be isolated and how ap-
propriate corrections can be made to the data.

As far as the first of these background compo-
nents, i.e., (a), is concerned, we chose the (111)
reflection for study because the nonmagnetic nu-
clear Bragg scattering is relatively smallest for
this reflection. Often (and this is the case with
both EuO and EuS) the nuclear contribution to the
Bragg scattering can be identified simply by rais-
ing the sample temperature above T, so that all of
the magnetic elastic scattering disappears. What
then remains is simply the scattered intensity
associated with (a) plus a small contribution from
(b). Assuming that above T, we can identify and
remove the contribution from (b) to obtain (a)
alone; then, as we will show, we have effectively
determined the nuclear Bragg intensity (a) not
only above T, but also at any temperature below
Tc as well. It is easy to understand why this is so.

The intensity of the nuclear Bragg scattering is
proportional to the square of the nuclear structure
factor, F, which, for the (111) reflection in EuO,
is of the form

F=4(bge™Eu—-be™o).

In this expression b; represents the nuclear scat-
tering amplitude and e™"i the Debye-Waller factor
for each atomic species. All of the temperature
dependence of F is contained in W, a quantity
which can be calculated if the Debye temperature
67 is known for each component. From specific-
heat measurements in EuO, Teaney® has estimated
that ©2,=175 K and 62=560 K. Using these values
we find that neither ¢ ™"Eu nor ¢™c departs from
unity by more than 1% in the temperature range
under study. Therefore we can safely assert that
the nuclear Bragg scattering from EuO is effec-
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tively constant over the temperature range of
interest here. There is no reason to expect that
this will not also be the case for EuS as well.

To explain how (a) and (b) were separated above
Tc, let us once again concentrate on EuO. Our
first step was to measure as accurately as pos-
sible the (111) intensity at several temperatures
above T,. To be specific, at (T - T,)/T,=0.05 we
obtained 268 + 0.5 counts per unit monitor count
and at (T - T,)/T,=0.10,263 + 0.5 counts per unit
monitor count. Since we knew from the argument
outlined above that the nuclear Bragg intensity did
not vary significantly over this temperature range,
we could safely assume that the difference between
the two measurements, i.e., 5+ 0.7 counts per
unit monitor count, was due entirely to the tem-
perature dependence of (b), the inelastic mag-
netic scattering, or in other words, it represen-
ted I, - I . As we will explain, our triple-axis
studies (described in paper III) allowed us to
characterize the inelastic scattering from EuO
both above and below T, well enough so that we
could compute the ratio '™ /'™, .. From this com-
puted ratio and the observed difference, I:™_
-I'",, we obtained the values of I, and I'™
individually. Once I'™, the inelastic magnetic
contribution, was determined and subtracted from
the observed intensity, what remained was as-
sumed to be the nuclear Bragg scattering plus
background from air scattering, detector noise,
and the like.

Without going into detail, it may be helpful to
describe briefly what was involved in computing
the ratio I‘of“os/l,").mw. In two-axis measurements
such as the ones we made, the arrangement is as
shown schematically in Fig. 9. The spectrometer
scattering angle 20, is set so that elastic scatter-
ing occurs when E=1§i —-E,= 7. But since all neu-
trons scattered in the direction of Ef are detected,
there is, in addition to the elastic scattering, an
unwanted contribution from inelastic processes.
The situation is somewhat similar to that discus-
sed in Sec. IV B, except that in this instance the
spectrometer is set, not near the forward direc-
tion, but rather at a powder Bragg reflection
where the reciprocal-lattice points are distributed
over the surface of a sphere of radius 7. In Sec.
IV B we were concerned with small-angle scatter-
ing about the 000 Bragg point. Here we are dealing
with a spherical distribution of reciprocal-lattice
points and there are many more possibilities for
inelastic processes. As is evident in Fig. 9, for
a specific energy transfer, (%2/2m)(k? - k%), mo-
mentum can be conserved, i.e., k; — Ef=?+ q, for
a continuous distribution of wave vectors such as
for example ¢, and q,. The contribution to the in-
tensity from each ¢ is proportional to the inter-

000 T A

FIG. 9. Scattering diagram showing how inelastic scat-
tering processes in a powder sample contribute to the
intensity observed in the double-axis configuration when
the spectrometer is set for an elastic reflection at 7.

section of a sphere of radius ¢, centered at the
endpoint of %, with a sphere of radius 7 centered
at 000. (In principle, other nearby 7 spheres
could also contribute to the inelastic scattering,
however, in practice these contributions can be
neglected because the cross section discriminates
strongly against processes involving large momen-
tum or energy transfers.) Thus to evaluate the
inelastic contribution to the scattering, a triple
integration of the cross section [Eq. (2)] must be
made over energy transfers along Ef, over wave
vectors @, and over the circle of intersection
mentioned above. The ratio of two such integra-
tions [using in Eq. (2) values of the cross-section
parameters appropriate to (T — T.)/T.=0.05 and
0.10, respectively], gave us 1.20 as the value of
Iim /1™ . Combining this with the measured dif-
ference I'™, —Ii" =5, we then obtained for I'™_
the value 29+ 5 counts per unit monitor count and
for I, c1.preq the value 239+ 5 counts per unit moni-
tor count. Since we also studied the inelastic
scattering below T, and knew (at least approxi-
mately) the form of the cross section, the same
numerical approach was used to extrapolate the
inelastic contribution to the scattering below 7.
The results are shown in Fig. 10. Note that the
total inelastic magnetic intensity varies smoothly
through 7T, and is not strongly influenced by the
divergence associated with longitudinal spin fluc-
tuations.

Although the above analysis was only carried
through in detail for EuO it was assumed to apply
equally well to EuS. Therefore in analyzing the
data for EuS we used the relative variation of I'™
shown in Fig. 10, but scaled according to mea-
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FIG. 10. Calculated inelastic magnetic contribution to
the intensity observed with a double-axis spectrometer
set for the (111) powder reflection in EuO.

surements made above T in EuS.

There are several more points concerning cor-
rections to the data about which some comment
should be made. First, there is the question of
extinction. Normally, extinction effects are a
source of serious difficulty when Bragg scattering
is studied in single crystal samples. In our case,
however, thin powder samples were employed and
therefore extinction could be ignored. Second, it
should be noted that our measurements of the (111)
Bragg intensity were not extended to temperatures
below 4.5 K. We, therefore, used the results of
our studies of spin-wave renormalization (des-
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cribed in paper III) to extrapolate the measure-
ments to 0 K to determine the saturation magneti-
zation M.

The resulting reduced magnetizations M /M0 for
EuO and EuS are given in Table III. Listed in the
columns labeled I,,,,, are the observed (111) inten-
sities together with the appropriate uncertainties
due to counting statistics. In the columns labeled
I 20¢,maen W€ have subtracted from /I,,,, the nu-
clear inelastic magnetic and other sources of back-
ground and adjusted the uncertainties accordingly.
It should be noted that the uncertainties in the
columns labeled M /M, include (for reasons of
convenience in fitting) the uncertainty in the order-
ing temperature T,.

To obtain the critical parameters from the ob-
served values of M /M, the measurements are
fitted to a power law of the form

M _ (T -T\*
MO‘B< T, ) (8)

Using the data for (7, — T)/7T.< 0.11 we found for
EuO

B=1.17+0.02,
$=0.36+0.01,
and for EuS
B=1.18+0.03,
$=0.36+0.01.

Figure 11 shows the result. As would be expected
the power law fits well near T, but fails at lower
temperatures.

The reduced magnetization can also be calculated

TABLE ITI. Reduced magnetization in EuO and EusS.

EuO EuS
Tc-T M Te-T M
T (K) CTC Imml IBmgg,magn m T (K) C%C Ilotal IBragg,magn m
4.63 0.933 2657 +14 2412 +15 0.997 (fix) 4.31 0.740 300628 2366 + 32 0.960 (fix)
35.00 0.494 2106+12 1856+13 0.875+3 6.63 0.600 2765+ 26 2118 £30 0.908 +6
49.11 0.290 1556 £15 1291 +16 0.729+4 8.29 0.500 2541 +25 1886 +29 0.857+7
57.07 0.175 1209+6 9298 0.619+2 9.94 0.400 2344 +24 1679 28 0.809+7
61.70 0.108 939 +10 658 £11 0.521+4 11.60 0.300 2124 +23 1444 +27 0.750+7
63.29 0.0850 824 +9 54410 0.474+4 13.26 0.200 1777 16 1077 £22 0.648+7
64.54 0.0670 745+10 465+11 0.438+6 14.75 0.110 1422 +18 725 +23 0.531+8
65.54 0.0525 6727 393+9 0.402+5 15.15 0.0858 1311+18 616+23 0.490+9
66.33 0.0410 611 +8 3329 0.370+6 15.45 0.0676 1220 +11 526+18 0.453+8
66.86 0.0334 563 7 285+9 0.343+7 15.68 0.0535 1129 +11 437 +18 0.413+8
67.41 0.0255 498 £7 221 +9 0.302+8 15.89 0.0410 1043 +11 352+18 0.370+9
67.79 0.0200 462 +3 185+6 0.276+9 16.04 0.0322 977 +8 288 +17 0.335+10
68.14 0.0147 428 £2 152+6 0.250+13 16.16 0.0247 945+8 257 +17 0.316 +10
68.48 0.0100 385+6 109+8 0.212+22 16.25 0.0193 910+8 223 +17 0.294 +11
16.33 0.0143 849+8 162 +17 0.251+13
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self-consistently from spin-wave theory using a
method employed by Low® which is described in
Sec.II A1of paperIll. For EuO and EuS the self-
consistent theory yields, respectively, the solid
and dash-dotted lines in Fig. 11. Within its range
of convergence (7<0.97) it is evident that this
approach provides a remarkably good description
of the experimental observations. In addition there
is a substantial region of overlap (0.7-0.97,) in
which the power-law and spin-wave calculations
are in good agreement.

V. COMPARISONS WITH OTHER EXPERIMENTS

Considering first EuO, we are aware of four
studies of bulk magnetic properties which give
information on the critical parameters. These
include Hdg and Johansson’s measurements!® made
with a vibrating-sample magnetometer; Menyuk,
Dwight, and Reed’s vibrating-coil-magnetometer
experiments!!; Groll’s studies'? using the Mdss-
bauer effect; and Huang and Ho’s investigations of
Faraday rotation.'’*> The results are summarized
in Table IV.

Aside from the present measurements, the only
investigation of the critical properties of EuS of
which we are aware is Heller and Benedek’s NMR
study of the magnetization below 7,.!* Their re-
sults also appear in Table IV.

In general, the experimental agreement on the
values of 3 and B is within the quoted limits of
error. The only possible exception is Heller and
Benedek’s value of 3 which might be slightly out-
side the range of the statistical uncertainties. As
far as ¥ is concerned, however, the neutron scat-
tering results yield values significantly larger
than those obtained from bulk magnetization mea-
surements.

It is difficult to account for this disagreement.
The fact that the same value of y has been obtained
from three independent studies of bulk magnetic
properties makes it hard to believe that these mea-
surements are significantly in error. On the other
hand, as was explainedinSecs.IV A and IV B, we
have been at great pains to look for possible
sources of systematic error in our experiments
and have found nothing which could explain the
difference. Barring the possibility of some as
yet undetected systematic error in one or the
other type of experiment, we can only suggest
that the difficulty might originate from the fact
that )(FO(T)/)(0 is obtained from the neutron data by
extrapolating to ¢ =0 from finite values of ¢ using
an assumed form for x,(T)/X,, while bulk mag-
netization measurements are made, in effect, at
g =0. Although there is no direct evidence linking
this procedure to the discrepancy, it is at least
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FIG. 11. Temperature dependence of the reduced mag-
netization of EuO and EuS. The solid and dash-dotted
curves were calculated using self-consistent spin-wave
theory.

worthwhile to call attention to the fact that the two
measurements could be reconciled if Eq. (5) is in
some way inappropriate at the smallest values of

q. We will have more to say on this point in Sec.

VI.

VI. COMPARISONS WITH THEORY

It is generally accepted that for magnetic sys-
tems the most accurate results computed from
theory are those involving series expansions as,
for example, the susceptibility series. In such a
series, J/kT is the expansion variable. As is
well known, although the convergence of the sus-
ceptibility series is poor at temperatures near
the ordering temperature, results valid in the
critical region can be obtained either by forming
successive ratios of expansion coefficients!® or
by using Padé approximants.'® Series expansions
of this type are therefore commonly used to cal-
culate such quantities as T,(J) [see, for example,
paper I, Eq. (7)], C* and y [the critical coefficient
and exponent in Eq. (6) of this paper], and x4(T),
the wave-vector-dependent susceptibility. Alter-
natively, by expanding in terms of kT /J, series
expansions can also be developed for the computa-
tion of related quantities below 7T, such as the
magnetization and the wave-vector-dependent sus-
ceptibility.

Listed in the next to last column in Table IV are
the currently accepted values for the critical pa-
rameters of the isotropic Heisenberg ferromagnet
as computed from series expansions. It should be
noted that all of the quantities in the table repre-
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sent values computed for an isotropic spin-%
Heisenberg system with only nearest-neighbor
interactions.

A different and more general approach to the
analysis of critical phenomena has been introduced
within the last few years by Wilson!” who applied
renormalization-group theory to the Widom-Kada-
noff'®1°® gcaling hypothesis. Although the first
results obtained from Wilson’s theory were not as
accurate as the earlier series-expansion computa-
tions, Wilson and Fisher?® have recently shown
that comparable accuracy can be achieved from
the renormalization-group approach by formally
treating the dimensionality d of the lattice as a
continuous variable and expanding in terms of the
quantity e =4 ~d. The results of such computations
appear in the last column of Table IV. Agreement
between “renormalization-group” and “series-
expansion” calculations is uniformly excellent,
as is evident.

Comparisons between experimental results and
theoretical predictions are also generally satis-
factory both above and below T.. As is apparent
from Table IV, with but one exception the experi-
mentally observed values of the critical param-
eters agree with the predictions of theory to with-
in the limits of the errors. One notes that the
expected scaling relationships betweeng, v, and
v are also confirmed. The only point of difficulty
is the value of y; the neutron scattering results
matching the theory while the bulk measurements
do not.

We remarked in Sec. V that this puzzling dis-
agreement implies either an unknown source of
systematic error in one (or both) experimental
approaches and in the theoretical predictions or,
alternatively, an incorrect interpretation of one
(or both) experiments. It might be argued, as
Arrott, Heinrich, and Noakes® and others have
done, that the problem results from the influence
of dipolar interactions on the long-wavelength
magnetic fluctuations, since such interactions are
not incorporated into the purely Heisenberg, i.e.,
exchange only, theories. Bruce and Aharony??
have attempted to explore this question by applying
Wilson’s renormalization-group theory to a Hei-
senberg ferromagnet in which dipolar interactions
are also included. Close to 7, they find the sys-
tem “crosses over” to dipolar behavior. Accord-
ing to their calculations, this should occur at a
reduced temperature of 0.05 for EuO and 0.10 for
EuS. Surprisingly, their results show no evidence
of a decrease in the value of ¥ from 1.375, the
Heisenberg value, to a value nearer 1.0, the ex-
pected (mean-field) result.

Further calculations by Natterman and Trim-
per?® and by Bruce, Kosterlitz, and Nelson?® re-

veal that the situation isactually very complicated.
What appears to happen is that within a restric-
ted temperature range near 7, dipolar interac-
tions do in fact reduce the effective value of y.
For EuO, the greatest reduction —about 5%—is
estimated to occur at reduced temperatures of
0.001-0.01, not far from the experimentally ac-
cessible limits. At reduced temperatures very
much smaller or larger than 0.001, dipolar in-
fluences are negligible. The low values of y ob-
served in bulk experiments can thus be understood
as resulting from the dipolar crossover. At this
time, however, it is still not clear what effect
the dipolar crossover will have on the neutron
measurements which were made at finite values
of ¢ but within roughly the same reduced temper-
ature range as the bulk experiments.

In their calculations, Bruce and Aharony also
considered what effect dipolar interactions might
have on xz(T) within the experimentally accessible
q range, i.e., 0.2<q/k,<5. Unfortunately, the
authors were not able to make quantitative es-
timates, remarking only that “deviations from
the Ornstein-Zernike form could be quite large.”
Clearly this is a point which should be further
investigated both theoretically and, if possible,
experimentally.

Before leaving the subject of comparisons with
theory, however, let us briefly turn to the ques-
tion of what information is available concerning
the critical parameters below 7,. The only di-
rectly applicable analysis we have been able to
find is that of Stephenson and Wood?® who calcula-
ted the coefficient Band the exponent 8 of Eq. (8)
using a low-temperature series expansion. Their
results are included in Table IV.

Concerning other quantities of interest, scaling
arguments predict that both ¥ and v will have the
same value above and below T..?* Also Schofield,
Litster, and Ho*" have proposed (on the basis of
Schofield’s parametric equation of state) that

== ilseon)

where C* is the critical coefficient above T, de-
fined by Eq. (6), and C~ is its counterpart below
T.. It is easy to show? that C*/C~=(F~/F*)*™,
hence the above expression also relates the criti-
cal coefficients F* and F~ as defined, respectively,
by Eq. (7) and its counterpart below 7.
Substituting the values for g and y listed in the
next to last column of Table IV in the above ex-
pression we obtain 3.95 for the ratio C*/C~ and
2.02 for the ratio F~/F*. The latter is to be com-
pared with the experimental value of 2.4 obtained
from the data of Fig. 7. While the agreement is
not particularly good it is probably not outside the
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systematic uncertainty of the experimental re-
sult, which is large for the reasons discussed in
Sec. IVD.

VII. SUMMARY

In general, our investigations of neutron scat-
tering in EuO and EuS confirm the predictions of
Heisenberg-model calculations both for short-
range order above T, and for long-range order
below T.. In each case we find that the measured
values of the critical coefficients and exponents
agree with the predicted values to within the limits
of error or nearly so. The expected scaling of
the spin correlation range with nearest-neighbor
distance is also observed.

As far as short-range order below 7. is con-
cerned, our studies were less conclusive. Here
we were faced with the problem of identifying and
separating contributions to the scattering from
longitudinal and transverse spin fluctuations as
well as a background of small-angle scattering,
which we believe to be associated with multiple

refraction by magnetic domains. Although our
analysis of the data appears to be reasonable, we
have not been able to establish that it represents
a definitive determination of the parameters in-
volved. Assuming, however, that we have identi-
fied the scattering associated with the longitudinal
susceptibility correctly, we find the inverse spin
correlation range to be about 2.4 times larger
below T, than it is at an equivalent temperature
above T., a value in reasonable accord with theo-
retical expectations.

In general, comparisons of the critical param-
eters derived from our measurements with those
obtained by other methods are satisfactory. The
only exception worthy of comment is the value of
the critical exponent y, for which the bulk mea-
sured value is significantly below our neutron
result. Present indications are that at least part
of the difficulty can be explained in terms of long-
range dipolar interactions, although final judge-
ment on this point should be reserved in view of
the fact that dipolar effects are, as yet, imper-
fectly understood.

*Research sponsored by the U. S. Energy Research and
Development Administration.
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