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We apply a variational method to calculate ground-state properties of a 'He monolayer on a neutral substrate.

A stable solid phase occurs at densities above 0.091 A . The melting density is about 0.095 A ' and the

freezing density is about 0.085 A, which is about 5% higher than the observed freezing density. We also

describe an improved method for solving the Percus-Yevick equation.

I. INTRODUCTION

For some time now one of the exciting areas of
research in low-temperature physics has been
helium monolayers physically adsorbed on crys-
talline substrates. There are good reasons for
it. First, these monolayers make good models
for two-dimensional systems. Next, one of the
thermodynamic variables: the areal density,
n N/A=-, can be varied at will from zero to values
equivalent to those of bulk solid helium. Further-
more, the system undergoes a large variety of
phase transitions, some characteristic of two-
dimensional systems, and others under the in-
fluence of the substrate field. One of the earlier
experimental difficulties, that of preparing clean,
homogeneous, inert substrate surfaces, was
overcome with the advent of "Grafoil. " A lucid
account of thermodynamic measurements con-
ducted on helium adsorbed on grafoil can be found
in a long article by the University of Washington
group. '

To a theoretician, adsorption begins with an
ideal substrate and a single atom (molecule). The
substrate provides a potential well in the direc-
tion normal to its surface. Adsorption takes place
if the atom has at least one bound state in the well.
This appears to be a deceptively simple problem.
Actually even a perfect crystal with a sharply
cleaved surface presents to the adatom a com-
plicated potential. In principle, one wishes to
solve for bound states in the normal direction and
band structure in the lateral directions. However,
since the adsorption potential is far from separable
into normal and lateral parts, the motions in and
out of the plane of the adsorption surface are
strongly coupled. Furthermore, the substrate is
not static. It has excitations. The atom scatters
virtually against the substrate surface and finds
itself dressed by these excitations. Thus it ac-
quires an effective mass. When one progresses
to two or more atoms, further complications a-
rise. In particular, the interaction between the
atoms becomes renormalized by the substrate

excitations, and one obtains effective interactions
which are more often than not nonlocal.

Fortunately in the case of helium adsorbed on
grafoil most of these complications are harmless.
The periodic lateral variations of the adsorbing
potential are weak, in the sense that single-parti-
cle band structures exhibit wide bands and narrow
gaps' so that the helium atoms possess almost
total surface mobility even at low temperatures.
The adsorbed layer is practically two dimensional
in that the range of motion in the normal direc-
tion is small compared to all relevant character-
istic lengths. Experimentally measured heat cap-
acities for low-density 4He and 'He layers thus
adsorbed display well-known ideal Bose and Fermi
gas characteristics. ' The situation becomes even
more encouraging when one discovers that the
grafoil substrate turns out to be very inert. The
single-particle effective mass is not far from the
bare mass. Taking the interaction to be bare
Lennard- Jones, Siddon and Schick' were able to
fit low-density experimental data remarkably well
to results deduced from a low-order virial expan-
sion.

Also, an attempt was made by Novaco and Camp-
bell4 to include the effects of the periodic vari-
ation and normal extent of the substrate potential
for helium on graphite. The authors concluded that
the effective two-dimensional potential "differs
slightly" from the bare potential and the calculated
equilibrium energy and density are within a few
percent of those calculated with two-dimensional
models. Furthermore, "the effect of the periodic
potential is very small, " being of the order of 3%
at equilibrium.

These observations lead to the conclusion that
helium monolayers physisorbed on grafoil can be
represented faithfully by a simple model of bare
helium atoms confined to two dimensions. At
intermediate densities, the system must be treated
as a (two-dimensional) quantum liquid which at a
still higher density undergoes a liquid-solid tran-
sition.

Several calculations, all variational in nature,
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have appeared in the literature' ' concerning the
binding energy of He monolayers at densities
below 0.060 A '. The results obtained using vastly
different techniques including integral equations,
molecular dynamics, and Monte Carlo all fell
within a few percent. The equilibrium density
at 0.035-0.040 A ' is very low when scaled and
compared against the bulk density of 0.022 A '.
The binding energy at the equilibrium density is

only about 0.6 K per particle. At densities be-
tween 0.036 and 0.056 A ', the excitation spectra
have been calculated, ' leading to heat capacities
at finite temperatures which are in good agree-
ment with experiment. ' Our understanding is
therefore quite good in this range of densities.

Very little has been done at higher densities
leading to the two-dimensional solid phase. It
is known from experiment' that the He mono-
layer completes at about 0.115 A ', and that the
liquid-solid transition takes place at about 0.080
A '. A recent paper by Liu, Kalos, and Chester"
reports that variational calculations using Monte
Carlo integration techniques result in a melting
density of 0.077 A ' and a solidification density
of 0.061 A . We wish to present in this paper
results of variational calculations obtained with a
totally different technique. The procedure used
here for the two-dimensional solid is adapted from
a new and rather novel method developed by us"
for bulk quantum crystals. Our long-term plan is
to follow with calculations of excitation spectra in
the solid phase, and then combining these results
with earlier work"' come up with a detailed the-
oretical account of the monolayer phase diagram.

A comment on the distinction between two kinds
of "solid" phases is in order before we proceed.
Let us for the moment assume that the substrate
displays a noticeable surface lattice structure.
A completely filled lattice will then look like a
solid layer in registry with the substrate peri-
odicity. ' It is not a &equi solid, although there is
no qualitative way to differentiate an Einstein solid
from such a filled lattice gas: Each adatom moves
independently in a harmonic well, even though
the harmonic well arises from different sources
in the two cases. The solid phase with which we
are concerned is the one whose existence relies
on correlation effects between the adatoms. The
substrate periodicity modifies, but does not con-
trol, the crystallization process. The method
proposed here will require only minor adaptations
to account for such modifications.

where V(r) is the Lennard-Jones potential

V(r) =4& [(o/r)" (~-/r)'],

e =10.22 K, o =2.556 A,

a useful form for the variational wave function is
the Hartree- Jastrow product:

N Np(r„r„,r„)=II'(r;) II f(&, )

(3)

In an earlier work" the single-particle factor
y(r,.) is taken to be constant for the liquid phase,
and a Gaussian centered about lattice site 0,. in
the solid phase. This is also what is done in Ref.
II for 4He monolayers. The solid wave function
is not properly symmetrized, but this is not cru-
cial for systems in which the binding energy does
not depend sensitively on quantum statistics.
Nevertheless, in our new method we find it un-
necessary to leave g unsymmetrized. By writing
y(r) in the form:

(p(r) =exp —Qt G
e'o" (4)

where {P)represents a set of reciprocal vectors
of the specified lattice, we have properly account-
ed for the Bose statistics. The coefficients {to't
will serve as variational parameters. (t o) =0
corresponds to a liquid phase, while for a solid
phase at least the leading t g must be nonzero.
This leading t G maximized p(r) at e&ery lattice
site, while the higher-order t G's affect the shape
of y(r) about each lattice site. Such a single-par-
ticle factor is completely general.

In terms of the trial wave function given in Eq.
(3), the expectation value of H can be expressed
in the exact form

dr

+ — p'" r„r,

here a brief summary for completeness.
For a system of N 4He atoms confined to an area

A and described by the Hamiltonian

N @2 N

7'i + V ri.

II. THEORY

Even though the formulation of our theoretical
method has been published elsewhere, we present

x V(r») —~ V,'u(r») dr, dF, ,

where P n(r, ) and P~'~(r„r, ) are the one- and
two-particle distribution functions defined by
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~'"(,) = —$&F,d, sF„IF(I',

Z = (I) cf&g' ' 'dry.

(6)

(7)

covergent form:

P&')(r} =nba-e"'
G

During the first iteration, Eq. (8) reduces to

by= t o+ aoF(G),

where

(14)

Instead of using a cluster expansion to evaluate
Eqs. (6) and (7) in terms of integrals involving

y(r) and f(r), as has been customary, we employ
integral equations of the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY)'~ and Percus-Yevick
(PY)" type.

V,P ' (r, ) =P ' (r, ) V, t(r, )

+ p r„r, V,ur» dr,

z(G)=
' f (;(r)z, (G )«'( )ar (15)

and J',(Gr) is a Bessel function. Equations (12)-
(15) form a, set of transcendental equations which
can be solved for the expansion coefficients a~ and

5G given any choice of the variational parameters
(t o]t and u(r}

The central point of this procedure is to evaluate
the energy at selected density in such a way as to
minimize it as a function of the variational func-
tions u(r) and t(r) The e.nergy expression

g(r„r, ) =e" "» + e" "») dF, [1 —e " "» ]g(r„r~)

x [g(r„r,) —1]P'"(r, ),

g ~ P(l) r P(l)
r

x V(r») — V'u(r») d r, d r,

P'" r etG. r—
Z ge

n
(12)

and also in the more transparent but less rapidly

where we define

p2( r) et( r )

Using the relation

g(r„r, ) =P ) (r„r,)/[P(') (r, )P(') (r, )], (ll)

Eqs. (8) and (9) become a closed set. P ' and P '
can then be solved for each choice of the trial wave
function. In an actual application one might begin
with Eq. (9) and take P ')(r, ) =n, the mean number
density. The equation then reduces to the familiar
PY equation" for a quantum liquid, andy(r„r, )
reduces tog(r»), a radial distribution function.
Equation (8) may then be solved with Pt2) (r„r,)
=P ' (r, )P' (r, )g(r») and the resulting P" (r, )
entered into Eq. (9) to obtain an improved g(r„r, ).
The process should be continued until convergence.
For practical pruposes one stops at one iteration.
The results will already be better than the usual
truncated cluster-expansion procedures which take
PO) (r) =y'(r) andg(r„r, ) = f2(r»).

Having calculated P "( r) and P" ( r„r, ), we may
immediately obtain the energies for both the liquid
and solid phases using Eq. (5).

To solve the first BBGKY [Eq. (8)], we first ex-
pand P')(r) in the series:

+— "r, V'tr, dr,
can be further reduced by defining another cor-
relation function

(16)

12 3 2+@

P&" (r„+r,), (17)

which is just the average two-particle correlation
function for a crystal of bosons which are cor-
related with a lattice but not with one another. In
terms of the Fourier coefficients ge(r) is written

ge(r) =gaea o J,(Gr) .

+p 8 aotpG (19)

The foremost advantage of this procedure is
the absence of the many approximations common
in other approaches. The wave function to be op-
timized is of course approximate. We include
one- and two-particle correlation factors but
neglect three- and higher-order correlation fac-
tors. Since we are really interested in calculating
the energy difference between the liquid and solid

our final expression for the energy is then

n 6
N 2 (.",(,.)~(~,.) &(~,.)- 4

~ (~))d*,.4m
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phases, the effect of higher-order terms, which
are small to begin with, are expected to cancel to
a large extent.

Secondly, we approximate the two-particle dis-
tribution function P @ ( r„rg by P1n ( r,) Pt O

( r,)g (r»),
where g is the radial distribution function for the
liquid phase. This is the only other approximation
in the theory. It includes the essential short-range
correlations, leaving the long-range correlations
entirely in Pt'~(r). What this approximation neg-
lects is that g should contain correction terms
which possess the symmetry of the crystal. The
fact remains, however, that it is P ', rather than

g, which determines P '~, and it is P '~ that one
uses in calculating the energy. The major differ-
ence between the liquid and solid phase is that
Pto(r) peaks about the lattice sites. On physical
grounds it is entirely reasonable to hope that the
desired correlations are already accounted for in
P(1) ( r)

III. RESULTS AND DISCUSS1ON

Appendix A shows how the PY equation is re-
duced to a practical form, and Appendix B dis-
cusses the existence of and convergence of solu-
tions.

We searched for minima in the energy expres-
sion Eq. (16) by varying our parameters t o and

u(r). If for a given density the absolute minimum
in the energy is obtained only when a?1 the t G's

are identically zero, we may conclude that no
periodic configuration is stable with respect to the
liquid configuration. We denote the minimum li-
quid energy by E~. Conversely if there exist some
nonzero values for the set of t G such that the en-
ergy of this periodic configuration is less than E~,
this particular solid structure will be stable with
respect to the liquid. The minimum solid energy
is denoted by E~.

We gave u(r) the functional form -(der/r)' where
d is a variational parameter. The lattice struc-
ture we used was close packed. From our experi-
ence with bulk He, we retained only the first non-
trivial to (corresponding to

~ G~ equal to the near-
est-neighbor distance in reciprocal space), which
we relabel 7. We retained values of the coeffici-
ents ap, bo, and E(G) for

~
6

~
out to the tenth-

nearest-neighbor distance. This retained 50 terms
in the Fourier expansion for the close-packed lat-
tice structure.

Denote the value of the energy in the two-dimen-
sional parameter space [d, r] by E(7, d). For den-
sities below 0.091 A ' we found that the absolute
minimum of E(r, d) occurred at z =0, correspond-
ing to a stable liquid phase. However at a=0.091
A we found that

r

10 ~

EL

(K)

0 025 0.050

n (A')
0 075 0 100

FIG. 1. Liquid energy &~ as a function of density n.
Solid curve shows our values; points show the values
obtained by Miller et al. (Ref. 5}.

E(r =0.18, d =1.15494) =E(y = 0, d =1.19012)

that is E~ =E~, and for g greater than 0.091 sW
'

we actually found that F~ was a few tenths of a
degree less than Ez (out of a total energy of 3 K
or more). The width of the two-phase coexistence
region is uncertain, but estimated to be about
An=0. 005 A . Thus the melting density is about
0.095 A ' and the freezing density is about 0.085
A . The energy of the solid is estimated to be
about +3.25 K.

The results of our calculation are best shown
graphically. Figure 1 shows the liquid energy E~
plotted against the density n in comparison to the
results obtained by Miller, Woo, and CampbelI. "

Note that while at low density the agreement is
quite good, there is a discrepancy of as much as
0.2 K at g =0.056 A ': the highest density reached
in Ref. 6. The source of the discrepancy lies in the
use of a HBGKY equation in Ref. 6. and the use of
the PY equation in this work. Note that in de-
termining the solidification density we need denly

the energy difference between E~ and E~ and for
this quantity such errors should largely cancel.

Figure 2 shows that the two-particle distribution
function obtained by the two different methods is in
excellent agreement at the equilibrium density.
This is encouraging since g(r) plays a major role
in the determination of Ptu(r).

Figures 3-5 exhibit energies as functions of z
for families of the Jastrow function. Figure 3, at
density pg =0.073 A ' (deep in the liquid-phase
region), shows no energy minimum except at i =0.
There is no tendency of solidification. Figure 4,
at density n =0.091 A ' (just about the transition
point), shows a clear minimum at finite r which is
approxima. tely equal to Ez (or minimum E at r =0).
Figure 5, at density n =0.10 A ' (above the solidi-
fication density), shows exaggerated behavior at
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p 0

FIG. 2. Pair distribution function g{r) at the densities
0.037 and 0.09 A, 2 plotted against radial distance v.
Solid 1 ine shoves our values; the points the values obtained
by Miller et ef. P,ef. 5).

finite 7. The fact that F.~ actually drops below E~
is a result of the sobd wave function (T finite)
partially including three- and moxe particle cor-
relation effects, while the liquid wave function
(7 = 0) contains only Jastrow or two-particle cor-
relation effects.

l. l90 I

3.0 '

Q. I

l

0.2

FIG. 4. Energy at the density 0.09 A as a function
of 7 for four values of d. Note minima at &=0 and T

= 0.18, so that the solid and liquid energies are equal.
This shows the emergence of the solid phase.

20

E (T,d)

(K)

l

Q. I

l

0.2 0.3

FIG. 3. Energy at the density 0.073 A 2 as a function
of the single-particle parameter T, for values of the
Jastrow parameter d as labeled. Note absolute minimum
at 7 =0. This implies a stable liquid phase.

Our calculated value for the freezing density is
about 5% higher than that observed experimen-
tally, which i.s in turn about 5' higher than the
density predicted by Liu et al. ' using Monte Carlo
methods to compute the variational energies. Our
agreement with experiment is better than for our
bulk 4He calculation which predicted densities
about 10% too high. Our model contains no sub-
strate and this may be a source of some of the
discrepancy. Any remaining discrepancy would
have to arise from the approximations used in
obtaining the two-particle correlation function, g.

%e are encouraged by the results reported in
this paper, and are moving in several new direc-
tions. First, we intend to calculate the excitation
spectrum in the monolayer solid phase. This is
particularly useful for Namaizawa's" model cal-
culation of the Kapitza resistence. Next, we wish
to include an external one-pax ticle potential which
contains lateral periodic variations, so as to study
the transitions between lattice-gas solids, liquid,
and l3ebye solid phases. Finally, we shall apply
the method to studying the phase transitions in
physisorbed H. monolayers, which are interesting
as precursor states to atomic and molecular hy-
drogenation of metallic surfaces.
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G(r) = (+n J di( ""—()O(N)

0.2

HG. 5. Energy at the density 0.010 A 2 as a function
of 7 for four values of d. Note the absolute minimum
at & =0.2. This lies below' the minimum liquid energy
and implies a stable solid phase.

We wish to acknowledge many illuminating dis-
cussions with Y. R. Lin-Liu.
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APPENDIX A: PERCUS-YEVICK EQUATION IN TWO

DIMENSIONS

The PY equation for an inhomogeneous system

(((r„r,) =e"' '+8"' *'
J d .P(r. )((-e """')

(Al)

This equation is nearly tractable on modern com-
puting machines if one expands g(r) and P"(r) in
Fourier series. We only solve it for the case
P n(r) =s. In this case g(r) is translationally in-
variant and the numerical problem is quite man-
ageable.

Defining G(r») g(r») e "», the PY equation
reduces to the form (after a change of variables)

In solving equations such as Eq. (A1) it is quite
common to take g(r) to be identically zero for r
less than some hard-core radius r, . In this ease
g(r) e "~'~ is of course also identically zero even
if e "~" diverges in the limit r goes to zero. We
have found that in solving the PY equation in the
form (A2), the value of G(r &r,) is greater than

one, and affects G globally. We accordingly con-
clude that the short-range behavior of g(r) is im-
portant and cannot be neglected. By working with
G(r) rather thang(r) one obtains the added advan-
tage of working with a relatively smooth function
which lends itself to more accurate numerical
integration.

In the three-dimensional PY equation the s in-
tegration can be reduced to a single radial integra-
tion. In two dimensions, however, these equations
cannot be simplified in this way. To know g(r) at
M points one must do a calculation whose length
is proportional to M in three dimensions (3-D)
but to M' in two dimensions (2-D). We have de-
veloped a method to decrease this by a factor of
2 to 5 depending on the aceuraey required.

The angular integration in the 2-D PY equation
can be written ln the form

r d8 G ((r'+s' —2rs cos8)'(')
0

x exp [u((r'+s' —2rs cos8)'~')] .
This is the time-consuming integral which oeeurs
in 2-D but not 3-D. A change of variables to t '
=r'+s'- S s cose clearly shows that for uniform
accuracy the number of points in the integration
should depend on r and s. The integral in the t
variable is informative although useless. Most of
the numerical error associated with taking too
few points is attributable to the rapidly varying
nature of e" rather than G, the latter being quite
smooth. Therefore, it would probably be sufficient
to sample G at only five or ten points in the angular
integration but e" must be sampled much more of-
ten.

We expand

2m

d8 G ((r'+ s' —2rs cos8)'~')

x exp[u((r +sa —2rs cos8)' ')]

=g G((r'+s'-2rscos8, )'~') W, (r, s),

where
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m'i jg
g/, (r, s) = d8exp[u{{r2+ s'-2rs cos8)'~')]

& -z)2ff jI,

and 8, denotes the Chebyehev integx'ation points.
The sum ls ovex' equally spRced points Kith the
vreights 5', . Voile in principle ere could improve
the aceux'acy for. a given number of points by using
a Gaussian integration, in practice this is not
feasible since the zeros Rnd weights fox the poly-
nomials mould have to be determined numerically.
%hen used in conjunction vrith the technique of

sealing the S', become independent of density.
Another time-saving technlqUe employed %'as that

of "sealing. '" It is vrell known that the PY equa-
tion scales. If the Jastrow factor u(r) is param-
etrized with M parameters, say, {d,J, f =1,M,
theng(r) depends on M+1 parameters, n and{d,.I.
The dependence on one of these parameters may
be eliminated if ere choose the parametrization
such that u(r) is only a function of the ratios d;/r,
i = 1,M, that is u(d, /r, d~/r, . . . , d„/r). By chang-
ing variables in the PY equation (21) to R =r/d„
S =s/d, one obtains

G(d~R) =1+ndg dS exp u ) ), . ~
q

—1d, /d, d„/d,

du/&i "
xG(d, S)~G(d, [ H —Si)exp, @

—,, . . . ,
i ~ -i —1 . (A6)

By defining yg =@/~ and choosing Rs our unknovgn

C(R) =G(d,R) we see that G depends m ))I and d,./d„
i =2,3f, that is on one less parameter. It is not

necessary to unscRle" Q to cRlculRte t116 energy.
The liquid energy may be written

dRg(d R)8
N 2d~ j.

API'ENOIX 8 EXISTENCE AND CONVERGENCE OF
SOLUTIQNS

It is known in the classical case that the PV in-
tegxal equations do not possess a solution for cer-
tain classes of I/'{r}/kT, o—r in our quantum no-
tation, for certain classes of u(r). Watts" has
published a very informative study on the solutions
Gf the PY equRtloQ fox' R clRsslcRl L6DDRrd- Jones
fluid. He offers a ta tallzing interpxetatlon for the
region of (T,p) space where the solution does not
exist„by identifying it with the liquid-gas coexis-
tence reglOn Of the fluid.

ID our vfork, solving fox' the x'Rdlal distribution
function of the quantuIQ liquid edith a Jastrovr fac-
tor like u(r} = —(do/r) is identical to solving the
PY equation for the classical kT(do/r)' repulsive
potential. %'6 could not easily carry out an anal-
ysis analogous to that of %atts since our solution
deP6Qds only OD the GDe Parameter~ Qy Rs GPPosed
to the I ennard- Jones fluid vrhich has the bvo
parameters T and p. %6 did, hovgever, determine

One COUM then repeat the px"ocedure using G,„, as
the Deer C. in the next iteration.

The most common method Used to improve con-
vergence (or often to obtain it at all) is to generate
the next guess for C,„by taking a linear combin-
ation of the previous input-output pair. Thus if Go

is some input guess {usually obtained from a pre-
vious iteration) and G, is its output, then the next
{["„is taken to be

G,„(r) = G,{or)+(1-~} G( )r, (B2)

'Where 0, ls the mix, " Q =0 corresponding to
straight iteration and z =1 corresponding to a
simple regeneration of Qo &

Rs Qj.
One vrould of course like to choose that value of

z, %'hich ensui"es the most rapid convex'geDce.

that R solution ceRses to exist Ilear @=0.11. The

significance of this is in the ease of quantum li-
quids reIQRins to 46 investigated.

Befox'6 discovering thRt there Rre indeed regions
where solutions are nonexistent, @re thought me

%ere hRvlng convergence diff lcultles Rt high deQ-

sitles, R eomIQGD malady. This resulted ln the

development of a method for improving the con-
vex"g6Dce. The method also provides ln R llIDlted

array, a test for the existence of a solution.
In solving the PY equation [Eq. (A2)], one com-

monly begins vrith some guess for G, vrhieh we

might denote by G,.„. One then calculates G,„,vrhieh

ls deflIled by

(".„,(r) =(+n Ids(e"" —))(:;„(s)
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dr G,.„x -G«, r '= G. -GpUt
0

(83)

This optimum value will in general be different
after each iteration. The value of e has generally
been rather arbitrarily restricted to lie between
zero and one. Since the closer n is to unity the
less new G is mixed in for the next iteration, the
common practice has been that the more difficult
the convergence the closer + was chosen to one.

We have developed a procedure for choosing the
best possible n before each iteration. We find
that not only is the best z not necessarily close to
unity, it is often not even within the interval zero
to one. What one does with Eq. (82) is to generate
a line in a "function space, " each G,.„(a}being a
point on the line passing through G, and G,. The
"best" n would be the one which minimized the
"distance" from the true solution to the point on
the line determined by n. Obviously n can take
on any value in the range (-~, +~). The best o
depends on G, and G„ and hence changes after
each iteration. By keeping z close to but less
than one, one is not even assured of iterating
toward a solution, let alone iterating optimally.

The obvious difficulty with this line of reasoning
is that one does not know the correct G, and hence
cannot choose the "best" n. One can however
always choose z so that, whether a solution exists
or not, one iterates toward a solution or towards
minimum error. One does this by choosing n to
minimize the deviation of G,„,from G,.„.

We take as our norm,

d8n G, r-s e"&I — I& 1

+(1 —c() [G,(( r -s() e"{~' '~}—1] . (84)

Using the notation:

{G„Ge}= Id s(es'1 —1) G, (s)

x [G&() r - s() e" ~
' '~ —1] . (85)

we may rewrite Eq. (84)

G.„,=1+o'{G„G,}+(1 n)—'{G „G,}
+n(1 —a){GG,G,}+o.(1 —n){G„G,}.

Define

G,(r) = 1 ~ Jd s(e""—1) G,(s)

(86)

then

x [G,() r —sl) e~ I 1 —dl —1], (87)

{G,G }=G,—1,

{G,G,}=G

so that Eq. (86}becomes

(86)

G „,(r) =1+s f sds(e"1'1 —1){GG,(s) ~ (1 —s)G, (s)}

We wish, then, to choose o. so as to minimize the
difference ff G. —G,„,f[ .

Taking G,„=c(G, + (1 —c()G, and using Eq. (Bl),
it follows that

G „,= 1+n2(G~ —1}+(1—n}2 (G2 —1)

+ a(1 —n) {GG,G~}+o. (1 —o){G„GG}.

Now define (89)

n sds G, -G, e"' —1 dp G~ r-s ~ &I - 1 Gi r-s &~&IT-'I& 1

=[G, G ], (810)

={GGsGG}+{G~sG~} -{G~sGG} -{GGs G,}. (Bll)

Using Eqs. (86) and (810), we may reduce Eq. (89)
to

G,„,= 1 + o. '(G, —1) + (1 —o.) (G2 —1)

+o(1-n) (G~ —1) +(G2 —1) —[GG, G~] .

(812)
Thus

satisfies the cubic equation

$3(y +&2(y +&~~ +A,0=0,

where

},=4 d [G„G,]',

(814)

G,„,(r) =(1 —a) G2(r) +aG, (r) —o. (1 —o() [GG, G, ] .

(813)

The norm (83) is therefore minimized when a

(815)A. 2= —4 dV G0, G~

{G,(r) —2G,(r) +G,(r) —[G„G,]},
A. , =2 dr G, r -Q, (r G r —2G r +G x
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equation for z:

Xp 2 dr G, r —2G, r +Gp

Determining the mix by the solution of Eq. (B14),
one is guaranteed for whatever initially guessed
G that the optimized iteration gives successively
monotonically decreasing errors. The error may
not converge to zero, but it does monotonically
decrease. A nonzero result can be taken to in-
dicate the nonexistence of a solution.

The quantity [Go, G, ] is second order in the error
in G. In other words, when we are close to the
correct solution, [G„G,] becomes negligible.
G,„, then is the mixture of G, and G, in the same
proportion as the original mixture of G, and G, in

G,.„. That is to lowest order Eq. (B13) is linear.
Neglecting the second-order sum [Go, G, ], the

optimal requirement [Eq. (39)] reduces to a linear

f dr [G,(r) —G,(r)] [G,(r) —2G, (r) +G,(r)]

f dr [G,(r) —2G, (r) +G,(r)]'
(B16)

Within this approximation calculating G,„, is no
more expensive using the optimized mix than it is
with any mix. This approximation works well in
practice. Calculating with no approximation re-
quires about twice as much computer time as cal-
culating with an arbitrarily chosen mix.

Since we needed a solution up to the highest pos-
sible density, we did not neglect the higher-order
terms. It was by this method that the solution was
obtained up to g =0.11. The minimum was nonzero
in this range, but still small: )( G,.„—G,„, () =10 '.
It soon became unacceptably large when we went
beyond this density.
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