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Low-energy quasiparticle scattering, recombination, and branch-mixing lifetimes and phonon pair-breaking
and scattering lifetimes are calculated for superconductors. The quasiparticle calculations relate these lifetimes
to the low-frequency behavior of a*(f2) F(2). Results are obtained using the low-frequency approximate form
A(Q)F(Q) = bQ? with b determined from electron tunneling measurements. For the strong-coupling
superconductors Pb and Hg, the full tunneling form for a’(2) F(Q) is used. The phonon lifetimes are shown
to depend on a?(f2). Results are compared with experiment.

I. INTRODUCTION

The lifetimes of low-energy quasiparticles and
phonons enter into a variety of phenomena in
superconductors nearly in thermal equilibrium.
Furthermore, an understanding and an accurate
parametrization of the interactions responsible
for these lifetimes are essential for the develop-
ment of a theory of the nonequilibrium supercon-
ductor, e.g., a superconducting film strongly per-
turbed by photons, phonons, or a large injected
quasiparticle current.! We describe here the re-
sults of a study of the near-equilibrium lifetimes
of elementary excitations in superconductors,
motivated by our interest in the nonequilibrium
problem.

In most superconductors, the dominant quasi-
particle relaxation processes are inelastic scat-
tering with phonons and recombination with phonon
emission to form bound Cooper pairs. Direct
electron-electron scattering processes eventually
dominate at sufficiently low energies and can be
significant for metals with large Debye energies
and low superconducting transition temperatures,
such as Al. In this paper we will focus on the con-
tributions of inelastic phonon processes to quasi-
particle relaxation lifetimes. Various derivations
for these lifetimes as well as certain analytic re-
sults and some numerical calculations exist in the
literature.®® Here we seek to provide a unified
and self-contained discussion which gives accurate
lifetime estimates for comparison with experi-
mental results for real metals.

In most metals, the lifetimes of low-energy
quasiparticles can be related to the low-frequency
part of the phonon density of states F(Q) weighted
by the square of the matrix element of the elec-
tron-phonon interaction o?(2). In Sec. II we re-
view the calculation of the lifetime of a quasi-

particle in terms of a*(Q)F(2) for a superconduc-
tor in thermodynamic equilibrium. We separate
the decay rate into scattering and recombination
rates which define the scattering and recombina-
tion lifetimes, respectively. We conclude this
section by discussing the strength of the electron-
electron scattering. Such processes enter into
determining the low-energy quasiparticle life-
times in materials with large Debye energies.™?

In Sec. III we present results for the lifetimes
based on currently available information on
a?(Q)F(R). For a simple model of a metal,
a®(Q)F(Q) can be approximated at low frequencies
by the quadratic form bQ?% In principle, super-
conducting tunneling measurements® provide direct
information on a?(Q)F(R2). However, the tunneling
data are insensitive to the form of the interaction
at very low frequencies and the a*(Q)F(52) experi-
mentally determined at large  is usually fitted
to bQ? at small Q.° We calculate scattering and
recombination lifetimes using this approximate
form, which should be applicable to many super-
conductors. In addition, we present results for
the strong-coupling superconductors Pb and Hg
obtained by using the full experimentally deter-
mined «*(Q)F (), which shows significant low-
frequency structure. To our knowledge this is
the first published calculation of lifetimes using
the tunneling «%(Q)F(R) data.!

When the #<kj and 2>k (k; is the Fermi wave
vector) branches of the quasiparticle excitation
curve are unequally populated, another character-
istic quasiparticle lifetime enters, the branch-
mixing time.'*"!® The inelastic scattering events
which contribute to this time are those quasiparti-
cle scattering and recombination events which re-
lax a branch imbalance. In Sec. IV we present re-
sults for the branch-mixing time.

For the phonons in a superconductor with ener-
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gies much less than the Debye energy, lifetimes
may be calculated for quasiparticle scattering and
for breaking of Cooper pairs. In Sec. V we show
how these lifetimes are related to a*(R2) and pres-
ent some quantitative results for them. In Sec. VI
we compare our various theoretical results with
experiment.

We emphasize at the outset that our calculations
are for quasiparticles and phonons in a dirty
superconductor in or very near thermal equilib-
rium and yield energy-dependent lifetimes. The
effective lifetimes measured experimentally in a
nonequilibrium superconductor generally repre-
sent some average over quasiparticle and phonon

J
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energy distributions which may deviate strongly
from the corresponding equilibrium distributions.
This should be borne in mind in attempting to apply
our results to experimental situations.

II. FORMULATION

The poles of the single-particle Green’s function
in the superconducting state are determined by

Z¥(w)w? - €2 - ¢p*(w)=0, (1)

where Z(w) is the renormalization parameter, and
¢ (w) is the gap parameter. According to the
Eliashberg formulation!® ¥
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Here p* is the Coulomb pseudopotential, w, is a cutoff frequency of order w,, and A(w)=¢(w)/Z(w). The
spectral weight o?(Q)F(R2) is given by averaging the square of the dressed electron-phonon matrix ele-
ment for a fixed phonon energy Q and all polarizations X over the Fermi surface,

@*(Q)F(@Q) = <}; [ap® ffz_%% |§,_,,,x\26(9-w,_m)< fdp2>'l. 3)

Setting w = E(w) - iT'(w), Z(w)=Z,(w)+iZ,(w), and ¢ (w)=¢,(w)+i¢,(w), and assuming that the imaginary
parts are small compared to the real parts, one finds from Eq. (1) that

T(w)=wZ,(w)/Z,(w) - ¢,(w)¢,(w)/Z3(w)w .

(4)

The real and imaginary parts of Z and ¢ are to be obtained from Egs. (2a) and (2b).® The inverse of the
lifetime, the decay rate 77!(w) of a quasiparticle of energy w, is equal to 2I'(w). For frequencies small
compared with typical phonon frequencies, we neglect the frequency dependence of Z, and ¢,, setting
Z,(w)=Z,(8,)=Z,(0) and ¢,(w)/Z,(w) =¢,(8,)/Z,(A,) =4,. Here 4, is the usual temperature-dependent en-
ergy gap, which we will henceforth simply denote by A. We also neglect the temperature dependence of

Z,(0). With these approximations, Eq. (4) reduces to

Tw)=wZ,(w)/Z, - (&/w)$,(w)/Z,.

(5)

In the same spirit, we replace A(w) by 4 in determining Z,(w) and ¢,(w) from Eqgs. (2a) and (2b). The
inverse lifetime 7(w) of a quasiparticle of energy w can then be written'®
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Using identities of the type
f(Q+w)+n(Q)=[1-f) (@)1 -f(Q+w)],
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Q)

the inverse lifetime 7-!(w), Eq. (6), can be expressed in the more familiar form
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Examination of the Fermi and Bose factors as
well as the energy variables and coherence fac-
tors in Eq. (8) shows that the first and the third
terms correspond to quasiparticle scattering pro-
cesses with the emission and absorption of a pho-
non, respectively. We will denote this part of the
transition rate as 73'(w). The second term cor-
responds to a process in which the quasiparticle
recombines with another quasiparticle to form a
pair with the excess energy emitted as a phonon.
This gives rise to the recombination rate 7;'. The
factor Z7! in Egs. (6) and (8) renormalizes the
electron-phonon interaction and can be interpreted
as follows: The interaction was computed using
Bloch states, but the fraction of the initial quasi-
particle state in this Bloch state is given by the
wave-function renormalization factor Z;/2. The
remaining parts of the state consist of a super-
position of virtually scattered electrons and pho-
nons. Since all parts of the spectrum of the final
state are summed over, only Z;'/? enters in re-
ducing the matrix element, and when this is
squared one gets Z;%. The factor [1 - f(w)]™* rep-
resents an enhancement of the decay rate due to
the Pauli-principle blocking of the backscattering
of other quasiparticles into the occupied quasi-
particle state of energy w. Similar forms for these
lifetimes can be obtained using the golden rule.

Clearly, for w~ kT, and T=T_ only the low-fre-
quency (2~ kT,) part of aF enters in determining
T(w). As is well known, at sufficiently low fre-
quencies the effective electron-phonon coupling
constant a%(Q) approaches a constant, and
a?(RQ)F(Q) is proportional to 92, reflecting the
rise of the phonon density of states.® "2 How-
ever, as Q increases, becoming larger than the
phonon frequencies w x associated with wave vec-
tors g* of order of the separation between pieces
of the Fermi surface at zone boundaries, umklapp
processes become important. For systems with
nearly spherical Fermi surfaces, the umklapp
processes provide the mechanism for coupling to
the transverse phonons, which can have a signifi-
cantly larger density of states than the longitudinal

r

phonons. In addition, the single-orthogonalized-
plane-wave (OPW) approximation for umklapp gives
a?~ Q. Here we will proceed in two ways: (i) as-
sume that o*(2)F(Q) < 92, with the proportionality
constant determined by a fit to the tunneling data,
(ii) take the full experimental numerical form for
a?(Q)F(R). This second procedure is of interest
for systems such as Pb and Hg which have struc-
ture in a%(Q)F(R) at small Q.

Direct electron-electron scattering processes
can also contribute to quasiparticle lifetimes,”®
together with processes in which inelastic energy
transfer is associated with emission or absorption
of real phonons: In addition to the screened Cou-
lomb interaction, the direct electron-electron
interaction can be mediated by virtual phonons.
As Gray’ has emphasized, electron-electron scat-
tering can play a significant role in metals with
large Debye temperatures. In a normal metal,
the final-state phase space for an electron of en-
ergy w scattering to a final state consisting of
two electrons and a hole varies as w/u, where p
is the Fermi energy. Thus, at sufficiently low
energies the total effective a?(Q)F(R) should vary
linearly rather than quadratically with Q. To es-
timate the importance of the electron-electron
scattering we note the well-known results for
normal metals: At zero temperature, quasi-
particle relaxation rates vary as w?/u and w3/w?
for direct electron-electron and phonon-emission
processes, respectively. These became equal for
w=w2/u. In Table I we list values of w%/u for
various metals. Except for Al and Zn, all of the
values are small compared with excitation ener-
gies of order kT..

1II. RESULTS FOR QUASIPARTICLE SCATTERING AND
RECOMBINATION LIFETIMES

Here we present results for the scattering or
thermalization quasiparticle lifetime 7 (w,T) and
the recombination lifetime 7 (w, 7). First we treat
the situation in which a?(Q)F(Q) is approximated
by its low-frequency form
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TABLE I. Characteristic quasiparticle times and associated parameters. All data are taken from Ref. 9 unless

otherwise referenced.

T, wp? p? wh/p 10% 10°7,

Metal (K) (K) (K) K Pwdb/ukT, Z,;0) o¥2A0)F(2A(0) (meV? (sec)
Pb 7.19 105 10.9  o0.101 0.0141 2.55 0.154 5.72 0.196
In 3.40 108 10.0  0.117 0.0344 1.81 0.0110 9.43 0.799
Sn 3.75 200 11.6  0.344 0.0916 1.72 0.003 41 2.32 2.30
Hg 4.19 71.9  8.29  0.0624 0.0149 2.63 0.564 78.4 0.0747
Tl 2.33 78.5  9.46  0.0651 0.028 1.80 0.007 09 13.2 1.76
Ta 4.48 240 18.0  0.321 0.0715 1.69 0.003 60 1.73 1.78
Nb® 9.2 275 6.18  1.22 0.133 2.84 0.037 4.0 0.149
Al° 1.19 428 13.5  1.36 1.14 1.43 0.000039 3 0.317 438,
Znd 0.875 327 10.9  0.981 1.34 0.000 024 2 0.420  780.
PbygTlyp 6.0 2.38 0.132 27.9 0.0647
PbyoTleo 4.7 2.15 0.0744 28.7 0.118
PbgBiyTly, 7.26 2.81 0.661 21.2 0.0567
PbgyBiyg 7.55-8.05 2.66 0.564 21.4 0.043

2Data for wp and p are from Ref. 21.

bEstimates were obtained by normalizing to 3 the neutron data for F(Q) of Ref. 22 and assuming a constant a? and

A=1.84 (Ref. 23).

¢ These data were taken from the four-OPW calculations of a?(R)F(2) of Carbotte and Tomlinson (Ref. 24) which make
use of a many-nearest-neighbor Born—von Kirm4n fit to neutron data in order to extract the Fermi-surface-averaged
phonon density of states. In principle, the multi-OPW nature of the calculation should result in the proper behavior of
the function at low energies. However, the authors referenced were not primarily interested in this range of energies,
and their results show considerable scatter for energies less than approximately 1 meV. We have made a quadratic

fit to their results to find 5.

dThese data are from the four-OPW calculations of Swihart and Tomlinson (Ref. 25). A quadratic fit was once again
needed for the low-energy data. We strongly urge that in future calculations, particular attention be paid to the range
of energies of interest in this paper, since b from our present fit is at best good to 20%.

a2(Q)F(Q)=bQ2. 9)

Here b is a constant characteristic of a given ma-
terial. Results for b obtained from supercon-
ducting tunneling experiments are listed in Table
1, together with several values from theoretical
calculations.

The results for the lifetimes can be plotted in a
universal form with the lifetimes measured in units
of time

To= Z1(0)ﬁ/2“b (ch)S . (10)

Values of this characteristic time 7, for different
metals are listed in Table I. In Figs. 1 and 2 re-
sults for 7 (w,T)/7, and 7 (w,T)/7,, respectively,
are plotted versus T /T, for various values of w.
In obtaining these universal curves we have used
the weak-coupling relation 2A(0)kT,=3.52. For a
quasiparticle at the gap edge [w=A(T)], the inte-
grals in Eq. (8) can be expressed in terms of an
infinite series involving the modified Bessel
functions K, and K;:

T/ Te

FIG. 1. Scattering lifetime 7 in units of 7y vs T/T,
for quasiparticles with different excitation energies w.
Table I lists 7, for various metals. These curves were
obtained using the approximation a?(Q)F (2) =bQ2.
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iA(T))= 151<k;‘c>3 i; [1ys exp(-:k-’;,—A):H 4. 2L, 2(%>2]K1<%> " (4 *fTZ)’%(%)} , 1)
THA(T))= r;l(z?—)a ; [(-1)’”1 + exp(Z—?—)J{ [4 - %g+ 2<§§>2}K1<%%) - < 4- Z—£>K0<%>} . (12)
These series are rapidly convergent at low temperatures. The leading low-temperature behavior is
To/TIHA, T)=T(L)e(2 )(%&)1/2(%;/2 , (13)
To/T7HA, T)= (1r)1/2<2:—1(,(:)>5/2<%>1/ “era© /T (14)

If the bQ? form of a*(R)F(R) is not valid for 2~ 2A(0), one may use the more general low-temperature ap-
proximation for 7:

T3HA, T) = [41A(0)a?(24(0))F(24(0))/%Z,(0)] [7 2T /24(0) ]/ 2e2 ©2/*T (15)

Values for @?(2A(0))F(24(0)) are listed in Table I. A corresponding expression for T, is unnecessary be-
cause for quasiparticle scattering processes the important phonon energies are near zero, not 2A(0), so
that the bQ? approximation result [Eq. (13)] remains valid even if bQ? is not a good approximation to
a?(Q)F(Q) for Q~ 2A(0).

The scattering lifetime 7 (w,T) increases as the temperature is lowered owing to a decrease in the ther-
mal phonon population. A quasiparticle at the gap edge, w=A(T), cannot emit a phonon and scatter be-
cause it is in the lowest-energy quasiparticle state. For this reason 7 S(A(T), T) increases when T de-
creases as shown in Fig. 1 and Eq. (13). However, for quasiparticles with energies w> A(T), spontaneous
phonon emission sets a limit to the scattering lifetime 7.. This effect is clearly seen in Fig. 1 for the
cases w=1.5A(0) and 24(0). This limiting value for the scattering lifetime is

9 T I
20 T T T T T T T
8+
7k
1.5 —
6
B w=A(T) _
A(0) % s
w= - -
< 3
J st
— 1OF -
= w=2A(0) K
3 ~ 4r
= ':,
I w=3A(0) .
3 —
051 -
2L
| =
0] ] ] 1 1 1 ] I
0.2 0.4 06 0.8 1.0 0 % 115 2lo 5
T/T, : : . .
¢ w/A(0)
FIG. 2. Recombination lifetime 7, in units of 7, (see FIG. 3. Inverse scattering lifetime 7;!(w, 0) at zero
Table I) vs T/T, for quasiparticles with various excita- temperature vs the quasiparticle excitation energy. This
tionenergies w. These curves were obtained using the ap- curve is based upon the approximation a?(Q)F () =bQ?.

proximation o?(Q)F (2) =bQ2. 7, values for various metals are listed in Table I.
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27 w=
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where in this instance A =A(0) everywhere. For a?(Q)F(22) =58 this integral can be done? and one obtains

/e, 0=(gr) (LT -1 o5 L&) -]

For w larger than several times A, the scattering
rate varies as (w/A)%. The curve in Fig. 3 shows
a plot of 7,/7 (w,0) vs w/A.

The recombination process is a binary reaction
in which one quasiparticle combines with another
to form a pair. Therefore, the recombination
lifetime 7, increases exponentially as e* (™ /*T at
low temperatures [Eq. (14)], reflecting the expo-
nential decrease in the population of quasiparticles.
The excess energy of the quasiparticles is emitted
as a phonon. [We note that the recombination rate
due to electron-electron interactions must go as
e~ (/T at Jow temperatures because here three
quasiparticles are involved. This contribution is
therefore negligible at sufficiently low tempera-
tures.] As shown in Fig. 2, the recombination
lifetime for a quasiparticle at the gap edge
[w=A(T)] goes through a minimum value at a
temperature slightly below T.. In order to under-
stand this, consider the recombination lifetime
of a quasiparticle of energy w. Because of the
singularity in the quasiparticle density of states
at the gap edge, it will tend to find a partner with
energy A(T). Thus the resultant phonon emitted
will have energy w +A(T). For w=A(T) (the top
curve of Fig. 2) the emitted phonon energy is of
order 2A(T). As T increases from low tempera-
tures, the quasiparticle population increases, and
T, decreases as previously noted. However, for
T/T, greater than 0.9, 7.(A(T)) goes through a
minimum and then increases to its value at T.
This is due to the fact that the phase space for low-
energy phonons varies as 7 so that as 2A(T) goes
to zero the rate for such a recombination goes to
zero. The recombination of a quasiparticle with
w=A(T) for T - T, must then occur with a partner
with an energy larger than the energy gap and
hence a smaller quasiparticle density of states.
This leads to the upturn of the w=A(T) curve as
T -T,. For larger fixed values of w, the curves
do not have this feature.

As T approaches T, the limiting values of the
lifetimes 7 and 7, for w=A(T,)=0 are equal as a
consequence of particle-hole symmetry:

To/Ts(0,T)=T,/T,(0,T,)=1T(3)¢(3)=4.20. (18)

Physically this is simply a statement that, if there
is particle-hole symmetry, a normal-state quasi-
particle at the Fermi energy will have a rate of

S O T

-

excitation by phonon absorption equal to its rate
of excitation by phonon emission. The latter pro-
cess, in which a phonon is emitted and the quasi-
particle drops into an empty hole state below the
Fermi surface, corresponds to vecombination in
the limit T - T,. It should be noted that our calcu-
lations are mean-field calculations and do not in-
clude fluctuations of the pair field which can be-
come important for temperatures within the
Ginsburg-Landau critical region near T.

It has been assumed by several authors®+2? in
developing simple models of the nonequilibrium
state in superconductors that scattering is the
dominant quasiparticle relaxation mechanism and
that recombination processes form a bottleneck.
From Fig. 4, one sees that, in thermal equilib-

w/hBy0)

0o 1 1 1 1

(o] 0.2 04 06 08 1.0
T/Te

FIG. 4. Locus of points on the w — T plane where
Ts=%7,, T74=T,, T,=27,, and 7,=47,. The dashed line
represents A(T)/ A(0), so that all quasiparticle states
must lie above it. In the shaded region below the 7,=7,
curve, the recombination lifetime 7, is shorter than the
scattering lifetime, while above this curve 7, is short-
er than 7,. These curves were constructed using the
universal [a2(Q)F (Q) =b$?] results for Ts and 7, shown
in Figs. 1 and 2.
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rium, the scattering rate exceeds the recombina-
tion rate for quasiparticle states above the shaded
region. However, for low-energy quasiparticles
and temperatures above about 0.3T, there is a
substantial region where scattering is slower than
recombination?”?® and the simple nonequilibrium
state theories are not adequate. In addition, for
a nonequilibrium distribution with excess quasi-
particles present the recombination rate will be
increased further. For the strongly nonequilibrium
state it would appear that a kinetic equation must
be solved with the resulting distributions self-con-
sistently used to determine the scattering rates.
For strong-coupling superconductors such as
Pb and Hg with low-energy structure in o*(Q)F ()
it is necessary to use the complete tunneling
data.? To illustrate this, a?(Q)F() and the low-
frequency form bQ? for Pb are plotted in Fig. 5.
The enlargement of the energy region 0—-3 meV
clearly shows the effect of the onset of umklapp
processes above w~ 0.6 meV. Figure 6 shows the
integrand which enters in calculating 7' for
T/T.=0.44. The dashed curve corresponds to the
approximation a?(Q)F(2)=bQ% The results for
the scattering and recombination lifetimes for Pb
and Hg using the complete tunneling data are
shown in Figs. 7-9. The effect of using the exact
a?(RQ)F(Q) spectrum is to shorten the lifetimes for
Pb by about a factor of 2. In the case of Hg, a
peculiar inversion of the 7,(w,T) curves occurs
at low temperatures; the higher-energy quasipar-
ticles have longer recombination lifetimes than
quasiparticles with lower energies. This arises
from the fact that @%(Q)F(R2) for Hg contains a large

0.2
Pb

Ol —

2¥(Q)F(Q)

i
——
—_—

FIG. 5. Plot of ¢®(Q)F (2) (solid) and bQ (dashed) vs 2
for Pb. The lower part shows an enlargement of the low-
frequency region.

0] | 2 3
0 (meV)

FIG. 6. Integrand I(Q)~n (Q)2/2a?(QF () vs 2 for Pb
at T/T,=0.44. This is the integrand which enters in
calculating 7;'. The solid curve is for the full a?(Q)F ()
while the dashed curve corresponds to approximating
a?(Q)F (2) by bQ2.

w=1.55A(0)

10" 7 (w,T) (sec)
=

Pb
sk
w=2A(0)
0 1 1 1 I 1 1 1 1
15 T T T
| Pb
8o
ol
é -
—F'L
o 5F w=1.55A(0)

L w=2A(0)

L
o 0.5 10
T/T¢

0 1 1 1 1

FIG. 7. Scattering 7, and recombination 7, lifetimes
for Pb vs T/T, for quasiparticles with excitation energy
w. The full o?(Q)F (Q) tunneling data were used in the
numerical integrations.
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FIG. 8. Scattering 7, and recombination 7, lifetimes
for Hg vs T/T, for quasiparticles with excitation energy
w. The full ?(Q)F (2) tunneling data were used in the
numerical integrations.

10" 7, (w,T) (sec)

[0} 1 1 1 1 1 1 1 1 1
0.80 084 0.88 092 0.96 1.0
T/T¢

FIG. 9. Enlarged graph of 7, for Hg vs T/T, for T/T,
near 1.

low-frequency peak at 2=1.8 meV. The gap for
Hg is 4(0)=0.83 meV, so that at low temperature
the recombination of a quasiparticle with energy
w =A(0) can occur with phonon emission which ex-
tends from 24(0)=1.66 meV on upwards including
the peak, while a quasiparticle with energy 1.54(0)
starts from 2.54(0)=2.07 meV and misses the
peak. As T approaches T, the 7, curve for w

= A(T) eventually turns up because of the decrease
in phonon phase space as previously discussed.
Competing effects of the quasiparticle density of
states and the low-lying peak in a?(Q)F(Q) lead

to the complicated crossings shown in detail in
Fig. 9.

In Fig. 10, results for the zero-temperature
scattering rate 7;!(w,0) are plotted for Pb and Hg.
These were obtained by substituting the values of
Z (w) and A(w) computed directly from the tunnel-
ing I-V data® into Eq. (4) to obtain I'(w). At zero
temperature, 7;'(w,0)=2I(w). Over the energy
region A<w =34, the values of T;}(w, 0) computed
in this manner differ by as much as 30% at the
higher-frequency end from the zero-temperature
limiting values given in Figs. 7 and 8. This differ-
ence arises from two sources: (i) the values of
A(w) given in Ref. 9 were computed using the

T T T
8_
- 6 -
IU
3]
w
3 .
:3'4 Hg
lh‘n - -
o)
er Pb/
0 1 1
[ 2 3

w/A(0)

FIG. 10. Zero-temperature scattering rates ‘rs'l(w, 0)
for Pb and Hg using the full o?(Q2)F (Q) data, vs w.
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Eliashberg equations with the frequency dependence
of A(w, T) kept in the integrand rather than approxi-
mated by A(T) as we have done; (ii) the full fre-
quency dependences of Z,(w) and ¢,(w) which ap-
pear in Eq. (4) rather than the approximate form
of Eq. (5) were kept in the results shown in Fig.
10. This error is largest for the strong-coupling
superconductors such as Pb and Hg where Z,(w)
and ¢1(w) can have significant w variation even
over the region A=w=3A, There are two addi-
tional possible sources for error: (i) the uncer-
tainty in the low-frequency form of a?(Q)F(R);

(ii) The quasiparticle approximation, which is es-
sential in defining a lifetime, is only an approxi-
mation. We have discussed in Sec. II the rationale
for using the Q? fit to a*(Q)F(R) for small Q. The
quasiparticle approximation is known to fail as the
quasiparticle energies approach the energies of
the phonon peaks in a*(Q)F(2). However, at low
energies, the quality factor @ of the quasiparticle
resonance can be estimated in terms of the
ratio of the quasiparticle energy to the energy
width 7/7, where T is the quasiparticle lifetime.

A large @ value implies a narrow resonance.
From Fig. 10 we note that for Pb, Q(w=24) is of
order 10%, while it drops to about 10 for w = 3A.
For comparison at finite temperatures, consider
w=4(0) and T/T,=0.9. Then, using Z(T'+7;!) as
the width, one finds for Pb from Fig. 7 that @ is
of order 10. A @ of 10 could lead to uncertainties
of order 10%. For the more weakly coupled super-
conductors the @ is very large in this low-fre-
quency region, and the quasiparticle approxima-
tion is excellent.

J

w=A

X@)=- [

0

+T j” dQ a?(Q)F Q)| flw+Q)+n(Q)] -

IV. BRANCH-MIXING TIME

In thermal equilibrium, the branches of the
quasiparticle excitation curve corresponding to
quasiparticle wave vectors less than and greater
than the Fermi wave vector are equally occupied.
There are situations, however, in which the branch
populations are not necessarily equal, e.g., cur-
rent flow across a supernormal interface,®3! or
injection of quasiparticles into a superconductor
through a tunnel barrier.!*!® In such situations,
we may distinguish among the inelastic processes
we have been considering those which contribute
to relaxation of the branch population imbalance.
The associated lifetime is called the branch-mix-
ing time 7,.'*"'* In this section we calculate the
branch-mixing rate due to inelastic processes.
Tinkham and Clarke'® ! have pointed out that elas-
tic processes can also contribute to branch mixing
when there is a gap anisotropy or a spatially vary-
ing order parameter. We do not consider such
processes here.

The X7, part of the Nambu self-energy" contri-
butes to the scattering of a quasiparticle from one
branch to another. Proceeding in a manner simi-
lar to that discussed in Sec. II, but keeping the
XT5 term, the quasiparticle branch-mixing life-
time 74 is

Zz(w) A¢2+ (wz_Az)xlzé (19)

-1 —
Tolw)=w Z, " wZz, w L

with

dQ a?(Q)FQ) f(Q - w) +n(Q)] -7 r dQ a?(Q)F(Q)[ f(Q - w) +n(Q)]

(20)

Here we have kept those processes which scatter a quasiparticle from one branch to the other as well as
those recombination or pair-breaking processes which involve two quasiparticles on the same branch.
Combining the terms in Eq. (19) and changing variables, one can write 7g(w) in the more transparent form

1 € 2 ’
T = Ty | . %€ @ - 00w - wlntw - o)+ 1L - f)) (1 - 25
+ f de’ @*(w’ - w)F (W’ - w)n(w’ - w)[1 —f(w')]<1 '%Ei>
+ fﬂo de’ a?(w +w')F(w +w’)[n(w +w’) + 1]f(w’)<1 +£:——Zu—€,f—'>] . (21)

Here w’=(e’?+42)/2 and € = (w2 - A2)!/2, The first
term in Eq. (21) corresponds to the scattering of

a quasiparticle of energy w on one branch to a state
of lower energy w’ on the other branch with the
emission of a phonon of energy w - w’. The sec-

r

ond term represents a scattering with the absorp-
tion of a phonon. The last term is the contribution
from the recombination of a quasiparticle of en-
ergy w with another quasiparticle from the same
branch. Equation (21) differs from Eq. (8) in the
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appearance of the term €€’/ww’ in each coherence
factor. This term vanishes by symmetry when
inelastic processes involving scattering to both
branches are allowed. This branch restriction also
accounts for the factor of 2 difference between Eq.
(21) and Eq. (8).

Figure 11 presents results calculated from Eq.
(21) using the quadratic approximation a%(Q)F(R2)
=bQ? and the BCS relation 24 =3.52kT,. T, is the
characteristic unit time defined in Eq. (10).

For energies w > A(T), a useful approximate
form for 7, is

=3 S0ar,) G estngir) - e

J

ToTo(w, T) =

T, 0) = s [0 - %O (- 2%0)]+ 30%0) -

If the identification a™*=7,(kT,)® is made, where
a is the constant used in Refs. 13 and 14, we see
that Eq. (22) is just the result obtained by Tink-
ham and Clarke except that it is half as large.*?
This results simply from a difference in definition
of To: Tinkham and Clarke’s 7g' is the rate at
which the branch imbalance @ = n, - n¢ changes
(n, and n, are the numbers of quasiparticles on the
k> ky and k<kj branches). Our 7Y is the rate at
which f, changes. In a single branch-mixing event,
@ changes by two while f, changes by one. Our
T is thus just half Tinkham and Clarke’s. The
experimentally observed'®!® divergence of 7, as
A™NT) for T - T, is apparent in Eq. (22).

For T=0, we find

[w- A(O)P)

3w

. A"(O)\ [wz_ AZ(o)]l/Z +
—<2wA (0)+ 7 )1n< A(0)

If w>4(0), Eq. (23) reduces essentially to the
low-temperature limit obtained by Tinkham and
Clarke.'®»!* However, their result differs from
Eq. (23) for energies just above the gap and, in
particular, does not predict the low-temperature
increase in 7, shown in Fig. 11 and evident in ex-
perimental datal® (see Sec. VI).

It follows from Egs. (21) and (8) that 7¢
=3(13'+7;%), the average of the quasiparticle scat-
tering and recombination rates. The equality holds
at the gap edge, w=A(T) (where, however, quasi-
particle scattering events cannot strictly be called
branch-mixing events). This leads to a nonzero
limiting value for Tg(A(T)) at T =T, given by
T A(T), T,) = lI‘(3)§(3), whereas for quasi-
particles with energies greater than A,7g goes
to zero as A(T') when T - T, and T, therefore di-
verges. Figure 12 provides a means of visualiz-
ing the way in which these different limits are
approached as well as a generally useful way to
visualize the energy and temperature dependence
of the characteristic quasiparticle times. It shows
three- dimensiona.l sketches of the rates 73}, 771,
and Ty as a function of w and T. The rather pecu-
liar ordermg of the 7, curves near T, which is
apparent in Fig. 11 is associated with the “saddle”
in this region in Fig. 12(c). It is caused by min-
ima in both the scattering and recombination con-
tributions to 7y which arise from the e€’/ww’
terms in the coherence factors in Eq. (21).

In the calculation of 74 for Pb and Hg it is again
necessary to use the full ¢?(Q)F () function rather
than the quadratic approximation. The results for

“’ﬂ . (23)

these superconductors are shown in Figs. 13 and
14. The rather complex structure and crossings
in the Hg curves result from the prominent low-
energy structure in o*(Q)F(Q) for Hg.

r

Tq W,T) 7/ Ty
N

1o A w=A(T)
= B: w:A(O) =
C: w=15A(0)
6r D: w=20A(0) ]
E: w=25A(0)

0 0z 04 06 08 10
T/Te

FIG. 11. Branch-mixing time 7, in units of 7, (see
Table 1) vs T/T, for quasiparticles with various excita-
tion energies E. The inset shows an enlargement of
the vertical scale for temperatures near T,. For these
curves a?(Q)F (Q) =b2.



4864 S. B. KAPLAN er al. 14

V. PHONON LIFETIMES

In this section we calculate the lifetimes of a
phonon against Cooper pair-breaking 7;(22,T) and
against scattering with a quasiparticle 7, (2, T).
These characteristic phonon times are of interest
in connection with nonequilibrium situations in
superconductors in which phonon-trapping effects
are important! and in the application of supercon-
ductors to the generation and detection of ultra-
high-frequency phonons. A number of authors33-3%
have carried out this type of calculation in deter-
mining the ultrasonic attenuation. Here, follow-
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FIG. 12. Perspective views of the energy and tempera-
ture dependence of the quasiparticle scattering rate (a),
recombination rate (b), and branch-mixing rate (c). The
vertically shaded wall at the rear of each figure repre-
sents the trace of the appropriate rate on the surface
A(T).
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FIG. 13. Branch-mixing time 7(':0 for Pb vs T/T, for
quasiparticles with various excitation energies w. The
inset shows an enlargement of the high-temperature
region. The full o?(Q)F (2) tunneling data were used in
the numerical integrations.
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region. The full a?(Q)F (Q) tunneling data were used in
the numerical integrations.
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ing a brief review of the formalism, we give some
results for phonon lifetimes. These can be ob-
tained from various published work and are in-
cluded here for completeness.

We employ the Green’s-function techniques
which lead to the Eliashberg formalism used in
Sec. I. The poles of the phonon Green’s function
are determined by

Q- Q% -20,.7,@,2)]85@|/e@,2)=0, (24)

where wx(c’l, Q) is the irreducible polarization,
gl(ﬁ) is the electron-phonon matrix element, and
€(q, Q) is the Coulomb dielectric constant. Setting
Q= wy, - ¢y and assuming that imaginary parts are
small compared with real parts, Eq. (24) yields

y== (R, /0 |gn (@) |2
X Im[ Ty (a, Wi )/6(5, wax)] . (25)

The inverse phonon lifetime 7, is equal to 2y.
The taking of the imaginary part of the bracketed
expression in Eq. (25) yields the imaginary part of
7, times the factor |e(q, wg, )| 2. We note that ¢,
< €, at these energies, and absorb [ €(q, wg, )] "2
with the factor 3, /wg, into |g,(§)|? to obtain the
effective electron-phonon matrix element'” g, (q)
which enters in the definition of a?(Q)F(R). In the
same spirit as the Eliashberg calculation of the

J

quasiparticle self-energy discussed in Sec. II, 7,
is approximated by the usual bubble graph. Just
as in the discussion of quasiparticles, it is use-
ful to consider the average lifetime of a phonon of
a particular energy Q. We therefore define 7(f)
by

@)= 3 6@ - v @ 0n) /T 6@ 0p)
ax

[
=Y 6@ wp)m (G wy) / NF@),  (@6)

where N is the ion number density and F(2) is the
phonon density of states [ [ F(2)d2=3]. In addi-
tion, we make use of the definition of a*(Q)F(R),
Eq. (3). We can then eliminate |g,(J)|? in favor of
a?(R). This leads to an average of the phonon in-
verse lifetime over the polarization and direction
of q which is proportional to a*(2). We believe
that this average is the one appropriate to the
dirty superconductor we are considering here.

The phonon decay rate is separable into two
parts which can be recognized by their coherence
factors. The pair-breaking rate 73' contains the
same coherence factor as the quasiparticle re-
combination lifetime; the quasiparticle and phonon
scattering rates 7! and ;. contain common fac-
tors as well [ see Eq. (6)]. These times are given
oy

2 Q-A - 2
Tél (Q) = 41TN(;Z)3\;¥ (Q)/; ((4.)2 _dZZ)l 73 [(Qw_(sz,)a (:))gz]Al 73 [1 _f(w) -f(Q - w)] ) (27)
)= O [ e e )~ )] (28)

Here Tzx(Q) is the lifetime of a phonon of energy
due to absorption with pair breaking and 7,,(S)

is the scattering lifetime of a phonon of energy (2.
N(0) is the single-spin band-structure electronic
density of states at the Fermi surface and does
not include electron-phonon renormalization ef-
fects. These expressions for the lifetimes can
also be obtained using the golden rule.

In order to determine 75 and 7, we need
a?(Q). In principle this can be obtained by using
neutron scattering data to find F() and then
dividing this F(Q) out of the a?(Q)F(2) obtained
from tunneling experiments. F(R) at low energies
can also be obtained from a fit to the Debye model
using experimental Debye temperatures. Esti-
mates of a?(Q2) using a Debye model are given in
Table II, along with values of a?(2A(0)) for three
superconductors obtained from neutron scattering
and tunneling data.

For purposes of plotting universal curves for
Ty and T,  we define an average o*(Q) by

r

3(a?),, = fo " a(Q)F (@) da . (29)

The area of the a?(Q)F(2) spectrum is given in
Ref. 7 for all but three of the superconductors
listed in Table I. For Al and Zn we have made
use of theoretical calculations?¥ 2% of a?(Q)F($2)
to find (a?),,. For Nb, neutron data were used.?
We define a characteristic time 73" by

TR =7 N/4n2N(0){ @2) ., A(0) . (30)

Values of 72" for several superconductors are
listed in Table II. Figures 15 and 16 show re-
sults for 73" 73" and 73" 7; calculated from Egs.
(27) and (28). Figure 15 shows the temperature
dependence of these inverse lifetimes at energies
which are multiples of A(T), and Fig. 16 shows
them at constant energies. We have assumed the
BCS relation 2A(0) =3.52%T, in calculating these
curves.

In the limit Q< 2T, A(T), we arrive at the
familiar relation for the acoustic attenuation of
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TABLE II. Characteristic phonon times and associated parameters.

N(0)® N2 (0D gy ad®  ¥(2A(0)° »
Metal  (10%! states/eV) (102 ions/cm’  (meV)  (meV) (meV) (10°19 sec)

Pb 8.63 3.30 1.34 0.473 1.3 0.340
In 7.68 3.84 0.913 0.842 1.69
Sn 8.14 3.70 1.14 1.31 1.10
Hg 7.26 4.07 0.833 2.07 1.35
Tl 11.7 3.50 0.666 0.454 2.05
Ta 40.8 3.52 1.38 1.71 2.55 0.227
Nb 31.7 5.57 4.6 5.92 4.0 0.0417
Al 12.2 6.02 1.93 1.77 1.99 2.42
Zn 6.64 6.57 0.596 1.05 23.1

3Data on the normal state properties were taken from Ref. 23.

bThese are estimates of o? using a Debye model for F(2) and the 5Q? form for a?(Q)F (Q).
ab=a’@)F (Q)/F(Q)= 16kOp)°. ©p is found in Ref. 36. One must be careful in applying these
numbers: For instance, at low temperatures a*(Q)F(R) for Pb is no longer quadratic at
Q=2A(0). If one uses the actual tunneling data at this energy and notes that F(Q) is still quad-
ratic there, a%(2A(0))=1.63, in fairly good agreement with the other values for this metal.

¢ The neutron data for F(Q) for Pb (Ref. 37), Ta (Ref. 38), and Al (Ref. 37) were used to
estimate a?(2A(0)) by comparing with a(Q)F () at this energy. By using an average value of
A=1.84 (Ref. 23), a crude estimate of a*(2)F (2) was made for Nb using the neutron data of
Ref. 22. The value of o?(2A(0)) was obtained from this estimate.
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FIG. 15. Phonon pair-breaking rate 73'(2,7) in units
of (‘l’f,"')'1 and the phonon scattering rate T;,l‘s(ﬂ, T) in
units of (7f"!, vs T/T,. The phonon energies 2 in
this plot are multiples of the gap energy A(T). T(‘,’h for
various materials is given in Table II.
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FIG. 16. Phonon pair-breaking rate 73'(2,7) in units
of (7§")7! and the phonon scattering rate Tohs (2, T) in
units of (7f")~!, vs T/T,. The phonon energies & are
constants in this plot. 7" for various materials is
given in Table II.
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a low-frequency phonon
™l (Q, T)=[2Q/7A(0)] F(A(T)) . (31)

In the low-temperature limit and for Q< A(T), the
leading behavior of Eq. (28) is

TR T A(Q, T) =[ 26T /7A(0)]e 2T /*T(1 — ¢~ R/T) |
(32)

The first exponential function in Eq. (32) reflects
the number of quasiparticles available for scat-
tering, which is small at low temperatures.

The pair-breaking rate at the threshold energy
Q=2A(T) is

TN 2A(T)) = [ A(T)/A(0)][1 -2/(A(T))] . (33)

The thermal factors reflect the number of pairs
available for pair breaking, which explains why
in Fig. 15 the scattering rate does not begin to
approach the pair-breaking rate at the gap edge
until T approaches T,. Figure 16 shows that the
scattering rate at constant phonon energy is less
than the corresponding pair-breaking rate for all
temperatures, and at T, is only about half the
pair-breaking rate for a phonon of energy 2A(0).
Since we believe that no other inelastic scattering
processes would yield a rate comparable to that of
pair breaking, the mean free path of a phonon of
energy greater than the energy gap is controlled
by the pair-breaking time for T<0.97,.

At T, the integrals in Egs. (27) and (28) can be
evaluated analytically and yield
2rT ( 2

j 1n 1+ exp(- Q/ch)> ’ (34)

TRT (R, T,) = 7500)

TRTRHQ, T,) = Q/1A(0) - TR T A(Q, T,) . (35)

Unlike the quasiparticle lifetimes, the phonon life-
times are not equal at T, because they represent
different processes in the normal state. The
“pair-breaking” process above T, represents the
excitation of an electron across the Fermi surface,
while the scattering rate is merely electron-phonon
scattering where the electron does not cross the
Fermi surface. The total inverse lifetime at T,

is shown by Eq. (35) to be proportional to the
phonon energy.

VL. COMPARISON OF THEORY WITH EXPERIMENT

A. Nuclear-spin-relaxation rate

It is well known that the original BCS theory
predicted that the nuclear-spin-relaxation rate
in a superconductor diverges as In|T,/(T,- T)|
as T approaches T, from below.?® Fibich*® showed
that when quasiparticle lifetime effects are taken

into account, the divergence is cut off and the
argument of the logarithm becomes |44/4,(4)],
where A,(4) is the imaginary part of A(w) for w
=A(T), and A= A(T). This can be expressed in
terms of the total quasiparticle lifetime 7=(7;*
+7;1)"! for a quasiparticle with energy w= A(T)
(i.e., a quasiparticle at the gap edge):

|a/a,(a)|=2a7(a)/% (36)

is just the @ of the gap-edge quasiparticle reso-
nance. Figure 17 gives a universal plot of
|A,(A)/A| as a function of reduced temperature
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FIG. 17. Ratio of imaginary and real parts of the gap
parameter (inverse @ of the gap-edge quasiparticle
resonance) as a function of temperature. |4,(A)/ Al for
a particular superconductor can be obtained by applying
the indicated parameters from Table I; b is in units of
meV~%. The unlabeled curve is a universal curve for
cases where a2(Q)F () =bS¥ is a good approximation.
The curves for Hg and Pb were derived from our calcu-
lations based on the actual a?(Q)F () functions for these
superconductors. In deriving these curves, we have
assumed that the BCS temperature dependence (Ref. 41)
for A(T)/ A is adequate for all cases, and that 2A(0)
=akT,. For the universal curve we have taken the BCS
value, a=3.52. Here and elsewhere in our calculations
we have taken a =4.3 for Pb (Ref. 42) and a =4.6 for Hg
(Ref. 43).
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together with specific curves for Pb and Hg, all
calculated from our previous results.

Comparison of our results with experimental
measurements of the nuclear-spin-relaxation
rate is complicated by the fact that anisotropy
and spatial inhomogeneity of the gap can also cut
off the logarithmic divergence. For Al, Fibich’s
formula and our results predict that the maximum
in the spin-relaxation rate (which occurs at 7/7,
=~ (.8) should be a factor of 5.5 larger than the
normal-state rate at the same temperature. The
experimental data®®%%%% indicate a maximum re-
lation rate enhancement factor of about 2.2. This
discrepancy can be attributed to gap anisotropy?®®
which, although relatively small in Al, neverthe-
less seems to dominate lifetime broadening ef-
fects in this material.

For In, our results predict a maximum relaxa-
tion rate enhancement factor of 3.2. The factor
experimentally observed®»*® in an In-1.02-at.%-T1
alloy (in which gap anisotropy should be substan-
tially averaged out due to the short impurity-
limited electronic mean free path) is about 2.5.
The agreement between theory and experiment is
thus considerably better for In than for Al. Wil-
liamson*® and MacLaughlin®® compared their ex-
perimental In results with theory using a AZ(A)/A
function calculated from the theory of Scalapino
and Wu'? (see Fig. 9 of Ref. 39). They noted “a
serious discrepancy, especially at low tempera-
tures.”®® Our A,(A)/A function is approximately
a factor 3.3 larger than Williamson and Mac-
Laughlin’s in the region of the relaxation-rate
maximum but falls off more rapidly with de-
creasing temperature. The reason for this dif-
ference is unclear, but it seems likely that the
use of our function in a detailed comparison with
experiment might reduce the discrepancy.

Despite the large amount of experimental work
which has been done on nuclear-spin relaxation in
superconductors, there appear to be no other such
data with which a useful comparison of our theo-
retical results can be made.

B. Riedel singularity in the Josephson supercurrent amplitude

Another characteristic logarithmic singularity
resulting from the singularity in the BCS quasi-
particle density of states occurs in the amplitude
of the Josephson supercurrent*® in supercon-
ducting tunnel junctions and is called the Riedel
singularity.*® Here again the singularity is cut
off by the quasiparticle lifetime broadening ef-
fects,*” leaving a 77! In|4A/A,(4)| enhancement
of the supercurrent amplitude at the gap voltage
V.= 2A/e. Unfortunately, here again anisotropy
and spatial inhomogeneity of the gap can also con-

tribute to truncation of the singularity.

Detailed experimental studies of the Riedel
singularity have been made for Sn.*°"** Buckner
and Langenberg®~%¢ compared their experimental
results with an unpublished theoretical calculation
of A,(A)/A for Sn by Scalapino and Taylor'* and
found good agreement for 7/7T,=20.8. At lower
temperatures gap anisotropy appears to become
the dominant factor limiting the Riedel singularity
and the data can be quantitatively accounted for
in terms of the known gap anisotropy of Sn.>* The
A,(A)/A function calculated here is a factor of 1.7
larger at all temperatures than the Scalapino-
Taylor result used by Buckner and Langenberg.
The experimental uncertainties are such that the
data cannot be said to favor definitely either theo-
retical result. Use of our present theoretical re-
sult would not materially change any of the con-
clusions of Buckner and Langenberg.

Vernet and Adde®® have observed the Riedel peak
in Ta-Ta point contacts. The applicability of
theory developed for tunnel junctions to point
contacts may be questioned, but Vernet and Adde
argue that under their experimental conditions tun-
neling currents dominate in their point contacts.
Analyzing their results using the Scalapino-Wu
theory,*”5* they find A,(A)/A~10"* at T/T,=0.9.
This is about a factor 40 smaller than our present
theoretical value for Ta.

The Riedel peak has also been observed in point
contacts (here Ta-Sn contacts) by Thomé and
Couder.’® They estimate A,(A)/A<4x10°2 at an
unspecified temperature. This upper limit is con-
siderably larger than our theoretical estimates
would suggest.

Kofoed and Saermark®” have observed the Riedel
peak in Sn and In weak links. Again using the
Scalapino-Wu theory, they report a value of
A,(0)/A~1073 for In, over the temperature range
T/T,=0.6-0.9. This is several times smaller
than our theoretical estimate in this temperature
range.

The logarithmic dependence of the Riedel peak
amplitude on A,(A)/A makes measurements of
this amplitude a rather poor source of experi-
mental information on AZ(A)/A and probably ac-
counts at least in part for the crudeness of the
correspondence between our theoretical estimates
and existing experimental results. About all that
can confidently be said on this score is that theory
and experiment are not in clear disagreement.

C. Quasiparticle current jump

A third singularity of interest is the jump in the
quasiparticle current I, in a superconducting
tunnel junction which occurs at the voltage V,
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=2A/e. The simplest theory of the tunnel cur-
rent predicts that this jump should be a step dis-
continuity. As with the nuclear-spin-relaxation
rate and Riedel singularities, quasiparticle life-
time effects and gap anisotropy or spatial in-
homogeneity are expected to broaden the quasi-
particle current jump singularity, leading to a
finite slope (dI, /dv),. v, The contribution to
this slope of a nonzero | A,(A)/A] is™

dl 1 A
——a» = — ——
(%), ., R, tanh( )60

where R, is the normal-state tunnel junction
resistance. Buckner and Langenberg®®** studied
this “discontinuity” in the same tunnel junctions
in which they studied the Riedel singularity, but
were unable to account for the observed slope in
terms of lifetime broadening and gap anisotropy
effects, even though they were able to do so suc-
cessfully for the Riedel singularity.

A
4,(8)

D. Quasiparticle recombination lifetime

The relative insensitivity of a logarithm to the
value of its argument, together with the obscuring
effects of gap anisotropy and spatial inhomogene-
ity, cause the above types of experiments to yield
only rather crude tests of our calculations. Ex-
perimental data on quasiparticle recombination
lifetimes should provide a much better test. Such
data exist for three materials, Al, Sn, and Pb.
Unfortunately, almost all quasiparticle-recombi-
nation-lifetime experiments to date appear to be
complicated by a phonon-trapping effect®® which
makes difficult the extraction of an intrinsic quasi-
particle recombination lifetime for comparison
with our theoretical results.

The simplest way to compare experimental and
theoretical recombination times is to compare the
theoretical 7, with an experimental 7, derived
from low-temperature recombination time data
via Eq. (14). In doing so, it is necessary to take
into account the fact that, with the exception of
the Cambridge group, ”® experimentalists usually
quote the decay time of an excess quasiparticle
distribution while the results of theoretical calcu-
lations (the present one included) are quoted as
the time associated with recombination of a given
quasiparticle. Since fwo quasiparticles vanish in
a single recombination event, most quoted experi-
mental times must be multiplied by two before
comparing them with theory.

We consider first the results of Gray et al.”">®
for Al. For a three-film structure of total thick-
ness ~900 A on glass, in vacuum (denoted as vac-
uum-900- A- Al-glass), they find 7,(expt)=4 X 10~

sec in a steady-state experiment and 7,(expt)
=1.4x10° sec in a transient experiment. For
vacuum—2420-A- Al— sapphire they find 7,(expt)

=8 X 107% sec in a steady-state experiment and
T,(expt) =2.8 X 10"° sec in a transient experiment.®
Now the phonon-trapping effect, which makes the
measured apparent recombination time longer
than the intrinsic recombination time, increases
with increasing acoustic mismatch between the
film and the media on each side and increases
roughly linearly with film thickness.! This is
apparent in the difference between the experimen-
tal results for different substrates and film thick-
nesses. While it is impossible to determine with
precision what intrinsic 7, these experimental data
imply, an extrapolation to zero film thickness us-
ing estimates of the relative phonon transmissiv-
ities of Al-glass and Al-sapphire interfaces yields
a 7, of about 1 usec for the transient measure-
ments and about 3 usec for the steady-state mea-
surements. The phonon trapping factors appear
to be near one for vacuum-900-A- Al-glass and
near two for vacuum-2420- R-Al—sapphire. These
experimental 7,’s are, respectively, about 2 and
6 times our theoretical value of 438 nsec.

Smith and Mochel®® have recently reported mea-
surements of quasiparticle recombination times
in Al using a tunnel-junction structure with and
without a helium film covering one side of the
structure. The phonon transmissivity of a super-
conductor /helium interface is known to be quite
large® (0.25-0.5). Comparison of the two cases
therefore permits in principle the independent de-
termination of the phonon-trapping enhancement
factor and the intrinsic recombination time. Smith
and Mochel found an enhancement factor of 8.6+1.1
for vacuum—900- A- Al-glass and an intrinsic re-
combination time essentially identical to our theo-
retical value.®

The earlier results of Levine and Hsieh® appear
to yield a value of 7, a factor of 2—-6 smaller than
our theoretical value, depending on what is as-
sumed about the phonon-trapping factor in their
experiments.

Chi and Langenberg® have recently measured
the quasiparticle recombination time in Al using
the microwave reflectivity technique of Sai-Halasz
et al.®® These experiments were done with very
thin (300-400 A) films on BaF, substrates. Under
these conditions the phonon-trapping factor is ex-
pected to be very near one,” so that the observed
recombination time should be close to the intrin-
sic recombination time. Measurements were
made over the rather restricted temperature
range T/T,=0.80-0.98. Over this range the ob-
served times scatter around our present theoreti-
cal estimate within about a factor 2, and are thus
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in agreement with theory to within that accuracy.

We conclude then that our theoretical estimate
of the quasiparticle recombination time in Al is
in agreement with existing experimental values
to within about a factor 2, except perhaps for the
results of Gray et al.”* and Levine and Hsieh.®®

Schuller and Gray®® have studied quasiparticle
recombination in Al at temperatures within sev-
eral tens of millikelvins of T,. In this tempera-
ture region fluctuations of the pair field appear to
dominate the dynamics.® These pair field fluctua-
tions are not taken into account in the calculations
we have carried out. The nature of the apparently
divergent lifetime observed by Schuller and Gray
and its possible connection with the results of other
experiments, including that of Peters and Meiss-
ner™ on Sn, would appear to require further eluci-
dation.

We have assembled the available experimental
data for Sn in Fig. 18. The phonon-trapping effect
for Sn is more severe than for Al because of its
smaller phonon velocities and shorter recombina-
tion times. Most of the data thus represent effec-
tive or apparent recombination times which are
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FIG. 18. Comparison of experimentally determined
effective quasiparticle recombination lifetimes for Sn
with theory. Experimental conditions, in the notation
defined in the text, are: Eisenmenger (Ref. 71): helium—
4000-A—sapphire; Dayem (Ref. 72): helium—3000-A-
sapphire; Sai-Halasz et al. (Ref. 66): vacuum—indicated-
thickness—quartz; Hu et al. (Ref. 73): helium—3200-A—
glass; Parker (Ref. 74): helium—3500—1°k—sapphire. Yeh
and Langenberg (Ref. 75): He—lGOO—f&—-glass.

substantially larger than the intrinsic recombina-
tion time. Note, however, the curve representing
the upper limit on the intrinsic time obtained by
Sai-Halasz et al’® by extrapolating data for films
of various thickness to zero thickness in an at-
tempt to eliminate the phonon-trapping effect.
This lies quite close to our theoretical curve, in-
dicating a reasonably satisfactory agreement be-
tween our theory and the available experimental
information.

Jaworski et al.”® have measured the effective
(phonon-trapped) quasiparticle recombination time
for Pb using the method of Ref. 74. For He-3500-
A-Pb- glass they report

Togp = 2.06 X 1071071/ 28 0)/RT gec |

which is approximately 100 times larger than our
theoretical value. No attempt was made to deter-
mine the phonon-trapping factor experimentally,
but an estimate of this factor™ yields a value very
near 100, indicating that Jaworski et al.’s experi-
mental recombination time and our theoretical re-
combination time are in quite satisfactory agree-
ment.

E. Branch-mixing time

Clarke and Paterson'®'® have made measure-
ments of the relaxation of quasiparticle branch
imbalance in Sn and Pb, using a technique in
which the difference in the chemical potentials
of pairs and a nonequilibrium tunnel-injected
quasiparticle population is measured. Their ex-
periments were analyzed using the theory of Tink-
ham and Clarke,’ !* which incorporates the as-
sumption 7, << 7,<<7,. The remarks in Sec. IV
about the relationship of 7, 74, and 7, indicate
that this assumption is never strongly satisfied!
This must be borne in mind in considering the ex-
perimental results. We must also remember that
the times reported by Clarke and Paterson must
be multiplied by two (cf. Sec. IV) before comparing
with our theoretical times.

Experiments on the resistance of superconduct-
ing-normal interfaces near T,*3:7"7 and on
phase-slip centers in superconducting micro-
bridges, also near T, yield a characteristic
length which may be interpreted as a quasiparticle
diffusion length (év“l'r)‘/z, where v, is an average
quasiparticle velocity, ! is the quasiparticle elastic
scattering mean free path, and 7 is some charac-
teristic quasiparticle lifetime. While it is not yet
completely clear which of our theoretical times is
to be identified with 7, Yu and Mercereau™ and
Clarke™ have identified 7 with the branch- mixing
time 7, Assuming this is correct, we compare
in Table III theoretical and experimental estimates
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TABLE III. 74(0) (sec). The times in columns one, three, and four are twice those re-
ported in the references for the reason discussed in the text.

Theory Experiment
Superconducting-normal
Tinkham Kaplan et al . © Tunneling resistance
Sn 4x107102 5.8x10"10 2x 10710 ¢ 6x10710 f
Pb gx107122 4.3x1071 6x10712° 4x1071f
Ta 2.8x10710P 4.5%10710 1.3x10710°

2Reference 14.
bReference 78.
¢ Present theory.

of 7,(0), defined by 7,=17,(0)A(0)/A(T) for T near
T.. There is considerable scatter, undoubtedly
due to uncertainties in both experiment and theory,
but the correspondence between our theory and ex-
periment, especially the superconducting-normal
interface resistance experiments, is quite good.

Tinkham’s theoretical estimate of 7 at low
temperatures suggests that 7, decreases monoton-
ically as T decreases, becoming essentially tem-
perature independent for T/T,<0.5. This is in
fact the behavior observed by Clarke and Pater-
son'® for pure Sn. As noted in Sec. IV, however,
Tinkham’s estimate really applies only to fairly
high energy quasiparticles. At energies near the
gap edge, our results indicate that 7, passes
through a minimum and then increases as T de-
creases (Fig. 11). Clarke and Paterson also
studied Sn with 3 wt% In added to reduce gap an-
isotropy and hence the contribution of elastic scat-
tering processes to the branch-mixing rate. This
resulted in a general increase in 7, for 7/7,< 0.9
by about a factor 2. Moreover, inspection of their
results for this “dirty” sample (Fig. 8 of Ref. 15)
reveals a slight upturn in 7, with decreasing tem-
perature. The data resemble the curve for w
=2.54(0) in our Fig. 11. This suggests that quasi-
particles were branch mixing predominantly from
energies around 2—3A(0) rather than nearer the
gap edge. Since in this temperature region 27
= T,<T,, thermalization of the injected quasi-
particles will not occur in times much shorter
than branch mixing. Thermalization will there-
fore be incomplete and the typical energy of the
branch-mixing quasiparticles may well be some-
what above (but not too far above) the gap edge,
as suggested by the data. The strong dependence
of T, on energy at low temperature may provide a
useful experimental test of some details of the dis-
tribution of the injected quasiparticles.

In preliminary experiments on Pb, Clarke and
Paterson’® observed a T, which appeared to in-
crease by nearly a factor 6 as T/T, decreased

dReference 15.
¢ Reference 15.
f Reference 79.

from 0.6 to 0.2. They commented that this in-
crease was “inconsistent with the theoretical pre-
dictions for 7,.” Our results suggest that this is
not necessarily the case; their experimental curve
is a dead ringer for our theoretical curve (Fig. 13)
at an energy slightly above 24(0). At 4.2 K (T/T,
=0.58) their experimental 7, is about 6 X 10~'? sec;
our theoretical value for w=2A(0) is 2% 107! sec.
Considering the uncertainties of both experiment
and theory, the quantitative agreement must be
considered fairly good. Comparison of Figs. 11
and 12 shows that the experimentally observed
large size of the low-temperature upturn in 7,

for Pb as compared with Sn appears also in our
theory; For w=2A4(0), the ratio of 7o(T=0) to 7,
(min) is about five times larger for Pb than for
the universal weak-coupling superconductor, and
similar factors obtain at other energies.

F. Quasiparticle scattering in the normal state

In the rich and complex field of fermiology there
are several types of experiments which can pro-
vide information on inelastic quasiparticle scatter-
ing from phonons.® These include surface Landau-
level resonance (SLLR), radio frequency size ef-
fect (RFSE), and Azbel’-Kaner cyclotron resonance
(AKCR) (but not, it should be noted, the de Haas—
van Alphen effect). For each of these phenomena
there are circumstances in which a single inelastic
scattering event removes a quasiparticle from
participation and thus contributes to the broaden-
ing of a resonance or impedance peak. The scat-
tering rate can be inferred from the linewidth. In
such circumstances, the relaxation rate is ex-
pected and observed to vary with temperature as
A+yT3, where A represents temperature-inde-
pendent scattering due to impurities, etc., and
the T2 term is the phonon scattering contribution.
Hence yT?3 is precisely 7;'(0,T,)=7;}(0,T,), and
comparison with Eq. (18) yields

To=2T(3)¢(3)/¥T3=4.20/yT3. (38)
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This relation may be used to compare our 7,’s with
¥’s deduced from normal-metal experiments, with
the following caution: The experiments named
above measure quasiparticle scattering rates at
specific points on the Fermi surface or averaged
over specific cyclotron orbits on the Fermi sur-
face. Hence, y is in general highly anisotropic.

In using Eq. (38) to generate a 7, for comparison
with our averaged 7, one should restrict one’s
attention to those parts of the Fermi surfaces of
the polyvalent superconductors which are most
free-electron-like. Even then, the result should
be viewed with some caution.

In Table IV, we compare some T,’s derived from
recent normal-metal experiments using Eq. (38)
with our 7,’s from Table I. The agreement for
Al and Zn is good and for In rather poor.
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