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Effects of surface roughness on the surface-polariton dispersion relation
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The effects of surface roughness on the dispersion relation for surface polaritons at the rough interface

between vacuum and a semi-infinite dielectric medium, characterized by an isotropic dielectric constant «(co),

have been determined. An integral equation is established for the Green's function for the matrix differential
operator in Maxwell's equation for the macroscopic electric field in the presence of a rough interface, in terms
of the corresponding Green's function in the presence of a plane interface. On the assumption that the Fourier
coefficients of the surface roughness profile function are Gaussianly distributed random variables the integral

equation can be solved. The position of the pole in the resulting solution corresponding to the frequency of
the surface polariton has been determined through terms of O(8'), where 8' is the mean-square deviation of
the surface from flatness. The resulting expressions for the real and imaginary parts of the surface-polariton

dispersion relation are evaluated for two different choices of «(m), the first corresponding to a diatomic polar
crystal of cubic symmetry, the second corresponding to intraband transitions in a metal or semiconductor with

free carriers. The effects of surface roughness are found to be significant only for wavelengths of the surface

polariton comparable with or longer than the transverse correlation length characterizing the horizontal

distribution of surface roughness.

I. INTRODUCTION

It is now well known that any electric dipole
active excitation in a solid, which contributes a
pole to its dielectric tensor, can couple linearly
to the electromagnetic field in the solid to produce
as the normal modes of the system excitations
called polaritons. '~ If the solid is semi-infinite,
and is terminated by a planar boundary separating
it from the vacuum outside, which will be the case
of interest in the present work, these polaritons
can be bound to the solid-vacuum interface, 2nd
are then called suxface polaritons. 2 4 The electro-
magnetic field associated with a surface polariton
is wavelike in directions parallel to the interface,
but its amplitude decays exponentially with in-
creasing distance into the solid and into the vac-
uum away from the interface. Various properties
of surface polaritons have now been studied both
theoretically and experimentally.

As a surface polariton propagates along a solid-
vacuum interface it is attenuated. The mecha-
nisms responsible for this attenuation can be de-
scribed as intrinsic and extrinsic. By intrinsic
we mean the dissipative processes present in the
bulk of the solid, i.e. , the processes which give
rise to the imaginary part of the dielectric tensor.
In insulators and semiconductors, for frequen-
cies in the infrared. , these can be the anharmonic
interactions of the normal modes of vibration;
in semiconductors and metals these can be inter-
band electronic transitions. By extrinsic mecha-
nisms for the attenuation of surface polaritons we
mean such things as the presence of point defects
in the vicinity of the surface of the solid, or sur-
face roughness, which can scatter the surface

polariton as it progresses along the interface and
thereby remove energy from the incident beam.

The attenuation of surface polaritons by intrin-
sic processes is readily determined by substitut-
ing the complex dielectric constant of the solid
into the dispersion relation for these modes, and
solving it for the imaginary part of the wave vec-
tor of the surface polariton, which is half the in-
verse attenuation length of the surface polariton. '
The result so obtained is in good agreement with
existing experimental data. '

The attenuation mechanisms we have labeled
extrinsic are specific to the surface region of the
solid, and are little studied, either theoretically
or experimentally. Notwithstanding the fact that
the surfaces of solids used in the infrared and op-
tical frequency ranges are carefully prepared,
many surface preparation techniques leave a
residual surface roughness whose horizontal and
vertical scale can be of the order of a few hun-
dred angstroms. It is therefore of some interest
to determine the effect of this surface roughness
on the frequency and damping of surface polaritons.

In a recent paper Mills' has studied the con-
tribution to the linewidth and attenuation length
of surface polaritons arising from surface rough-
ness. By treating the surface roughness as a
perturbation which scatters an incident surface
polariton Mills calculated the scattered electro-
magnetic fields in both the solid and the vacuum
outside it in first Born approximation, using a
Green's-function approach which had been used
earlier in studies of the scattering and absorption
of electromagnetic radiation by the rough surface
of a semi-infinite dielectric medium. ' The con-
tribution to the attenuation length and linewidth
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of the surface polariton from each of these scat-
tered fields was obtained, and their relative im-
portance examined, for surface polaritons in the
infrared on semieonduetor surfaces and on the
surface of a nearly-free-electron metal. It was
found that for physically reasonable values of the
two parametex's that characterize the surface
roughness, viz, the root-mean-square deviation
of the surface from flatness and the transverse
correlation length, which is a measure of the
average distance between successive "peaks" or
"valleys" on the surface, the calculated attenua-
tion lengths can be comparable with those ob-
served experimentally. '6

In this papex' we present an alternative approach
to that of Mills for the determination of the atten-
uation of surface polaritons by surface roughness.
It is based on an operational definition of the at-
tenuation in the following way.

The calculation of the cross section for the
inelastic scattering of light from dipole-active
excitations in a semi-infinite solid ean be reduced
to the evaluation of the Fourier transform with
respect to time of the correlation function of the
electric field in the system of solid plus the vac-
uum above it, (E,(x, t)E~(x', t')). ' The angular
brackets here denote an average with respect to
an ensemble defined by the Hamiltonian of the
solid and the electromagnetic field with which it
interacts. It has been shown by Dzyaloshinski
and Pitaevskii" (see also Ref. 8) that the required
Fourier transform is very simply related to the
Qreen's-function tensor for the partial differen-
tial operator, which appears in Maxwell's wave
equation for the macroscopic electric field in the
solid and the vacuum outside it. The elements
of this tensor have been calculated for an iso-
tropie dielectric medium bounded by a plane sur-
face with vacuum outside. e As functions of fre-
quency they possess a simple pole at the frequen-
cy v = &oo(k„) of the surface polariton, which con-
tributes a peak to the cross section for light scat-
tering from this system at the frequency of the
surface polariton. If the dielectric constant of
the medium is taken to be real, the surface polar-
iton peak in the scattering cross section is infi-
nitely sharp (a 6 function).

In this paper we calculate the elements of the
Maxwell Green's-funetion tensor for an isotropic
dielectric medium bounded by a rough surface
with vacuum outside. An integral equation for the
elements of this Qreen's-function tensor is ob-
tained by treating the surface x'oughness as a per-
turbation on a perfectly flat surface, for which
the corresponding Qreen's function is known.
This integral equation is solved by iteration. With
a certain assumption about the probability distri-
bution function for the function describing the de-

parture of the surface of the medium from flat-
ness the resulting Neumann-I. iouville series can
be resummed (with the aid of a diagrammatic
analysis) in terms of a proper self-energy, which
is determined to lowest nonzero order in the sur-
face px ofile function.

Examination of the elements of the Green's-
function tensor obtained in this way reveals that
as functions of frequency they possess a simple
pole which is shifted from the frequency of the
surface polariton associated with a planar solid-
vacuum interface by a quantity which is propor-
tional to 53 (the mean-square deviation of the sur-
face from flatness), and is complex as well. The
real part of this shift gives the surface-roughness-
indueed displacement of the position of the sur-
face-polariton peak in the cross section for light
scattering from the rough surface, or the change
in the surface-polariton dispersion relation. The
imaginary part of this shift gives the surface-
roughness-induced linewidth of this peak, and is
also related to the attenuation length of the sur-
face polariton as it propagates along a rough surf ace.

Thus, the theory presented here yields the Max-
well Qx een's-function tensor which can be used
to calculate the spectral distribution of light scat-
tered inelastically from an isotropie, dielectric
medium bounded by a rough surface. It yields
the change in the dispersion relation of the sur-
face polariton owing to surface roughness and it
enables the attenuation length of the surface polar-
iton owing to surface roughness to be calculated.
It is found, just as in the work of Mills, ' that two
mechanisms give rise to the attenuation of sur-
face polaritons by surface roughness: the polar-
iton may radiate energy into the vacuum, or it
may be scattered by the surface roughness into
other surface-polariton states. The relative im-
portance of both mechanisms is studied in the
present work, and numerical results are presented
for the attenuation length and frequency shift owing
to surface roughness for surface polaritons in the
infrared on semiconductor surfaces and on the
suxface of a nearly-free-electron metal.

II. GREEN'S FUNCTION FOR THE SCATTERING OF
ELECTROMAGNETIC RAMATION BY A ROUGH SURFACE

In this section we obtain a formal result for the
Qreen's function which describes the scattering
of electromagnetic radiation from the rough sur-
face of a dielectric medium. In Sec. III this re-
sult will be used to obtain the dispersion relation
for surface polaritons in the presence of sux face
roughness.

%e assume that the height of the surface of the
dielectric medium above the xy plane is given by
the equation

~=&(x, y) .
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Above this surface is vacuum, while the medium
occupies the space below it, and is characterized
by the (complex) frequency-dependent dielectric
constant «((o), which we assume to be isotropic.
The dielectric constant of the system of medium
plus the adjacent vacuum can be vrritten

«(z;(o) =+(z i—(g, y))+ «((o)8(C{x,y) —g), (2 2)

1, z&0,
«,{z;(o)=

«((o), z & 0 .
If in MaxweB's equation

where 8(z) is Heaviside's unit step function. We
now expand «(z;(o) to first order in &(x, y):

«(z;(o) =«0(zi(o)+ [«((o) —1]K(x y) 5(z)+O(f ) (2 3)

where

scattering occurs, among them the surface po-
laritons. Our program in this paper, therefore,
will be to find the spatial Fourier transform of
X)~(x, x'; (o) and study that one of its poles whose
frequency goe's into that of a surface polariton
when the surface profile function f(x„) vanishes
identically.

Equations (2.9) and (2. 10) are to be solved sub-
ject to the boundary conditions that the solutions
are either outgoing waves ol damped as 8 + 0,
in addition to the usual electromagnetic boundary
conditions of continuity of tangential E and H and
normal D and 8 across the medium-vacuum inter-
face. The Green's function D„„(x,x'; (o) satisfies
the latter conditions at the plane z =0; the Qreen's
function Q „x,x'; m must satisfy them at the sur-
face z = t xI) These two Green's functions are
related by

VxV'E=- ——Dc sP (2. 5) (d
X)),„(x, x'; (o) =D„„(x,x'; (o) —

z [«((o) —1]
4K+

E{x;f) =E(x; )(oe
'"'

D(x f) =D{x'(o)z '"'

and use the relation

D(x; (o) = «{z;(o}E(x;(o},

(2.6a)

(2.6b)

(2. 7)

the equation for the Fourier coefficient of the
electric field E(x; (o} ean be written in the form

&g ~dzx»D (x x"'(o) i{x»)5(z")n (x" x'(o)
(2. 11)

The Green's function D„„(x,x&(o) is known. 8 Gur
problem now ls to solve Eq. (2, 11) to obtain the
unknown Green's function ~„„(x&x'; (o} in terms of
D~(x, x', (o).

We begin by simplifying Eq. (2. 11). We Fou-
rler analyze Bg„(x&x; (o} according to

co 8F (»,(»; ») —,5,„— + 5,„»'
C @X}t~X@

~ (»(») —()((», &) o(») &((,„)»„(»;») =o . (&.»)

We now define two Green's functions S,„(x, x'; (o)

and D„„(x,x';(o) as the solutions of the equations

QP 8
zy& ~5g~ — +5~7 + g 43 —1

C ~Kg ~X@,

» ((», ) »( )» ((,„)»(„„(», »'; ») = » 5,„5(»- »')

r f. a & &n
Q)((&(x& x & (o) =

(2 }z ( )z

~s'~"""'"(' ((d~„(k„k,', (o~zz'), (2. 12)

where g(=(k„, k„0). The functions D„„(x,x'; (o)
and g(x„) can be Fourier analyzed according to'

(2. 14)

0 y 3 Ap 8& 8 xv yu

= 4v5„„f)(x; x'),

(2. 9)

(2. 10)

When we substitute Eqs. (2. 12)-(2.14) into Eq.
(2. 11), we obtain the equation relating the Fourier
coefficients d)(„(k((k((o~ gg ) and d~„(k(((o[gg ):
d„.(k„k,', ~

~

zz') = (2v)'a(k„+ k,', )d„„(k„~~zz )

where x„=(x, y, 0). The motivation for introducing
these Green's functions is that it can be shown
that the Fourier transforms with respect to time
of electric field correlation functions such as ap-
pear in the cross section for light scattering can
be expressed simply in terms of these func-
tions. s' ' ' Thus, the poles of the spatial Fouri-
er transform of D„„(x,x'; (o) as a function of (o

give the frequencies of the excit3tions in the me-
dium bounded by a rough surface from which the

(
')z dg" d„„(k((o~zz")

xi(k„- k„")0(z")d„„(k,", k,', ~
~
z "g'),
(2. 15)

%'here %'e have set

X = ((oz/4ve') [«((o) —1] .
It might appear that the integration on z" in Eq.

(2. 16) should be straightforward to carry out be-
cause of the presence of the 5 function in the
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integrand. However, the function d~~(k, ~Q)l zz )
can be discontinuous as a function of z", across
the plane z" =0, as can d „(k'~'k,', ulz "z'). The way
in which the integral is to be evaluated, therefore,
is not obvious. In earlier work on the scattering
and adsorption of electromagnetic waves by surface
roughness' integrals such as appear in Eq. (2. 15)
were interpreted according to the rule

f(z) ~(z)g(z)dz =-fzf(0 )+g(0+)+f(0-)g(0-)l,
(2. 17)

in view of the fact that the functions f(z) and g(z)
can be discontinuous at z = 0. However, it was
shown subsequently'3' that the cross section for
the scattering of p-polarized incident radiation
into p-polarized scattered radiation obtained in
this way is not in agreement with that obtained by
the boundary matching method. ' ' The cross
sections for (s- s), (s- p), and (p- s) scattering
obtained by the Green's function and boundary
matching methods, however, are in agreement.

In his work on the attenuation of surface polari-
tons Mills~ pointed out that the results obtained

by these two methods can be made to agree com-
pletely if Eq. (2. 1V) is replaced by

fields as are obtained by the boundary matching
method. He also demonstrated that when used
with the Green's-function method it yields the
same result as the boundary matching method. To
our knowledge no derivation of the rule (2. 18)
exists at the present time. We will use it in the
present work because it does yield results by the
Green's-function method identical with those ob-
tained by the boundary matching method, and be-
cause it will make a comparison of our results
with those of Mills more meaningful.

With the use of Eq. (2. 18) the result of the in-
tegration over z" is given by

d„„$,~k,', (o
l

zz') = (2w)' 5(k„+k,', )d,„(k„~I
zz')

d2k1l
&Q d~~%t(viz 0+)

V
271 2

+f( k kt )d g(kt k Ml0 —z').

(2. iS)
We now set z = 0 —im this equation to obtain

d, „(k„k,', ~lo-z') =(2z)'8(k„+k;,)d,„(k„~lo-z')
lt

—Xgd~o'(k„e), ",zg(k„—k,", ) d~„(k,", k,', &halo
—z'),
(2. 20)

f(z) 5(z)g(z) dz = f(O+) g(O -) . (2. 18) where

Mills did not provide any derivation of this result
beyond reference to earlier work by Juranek"
who showed how effective surface currents might
be arranged so as to generate the same scattered

d„'~+(k„&u) =—d, „(k„&al
0 —0+) . (2.2i)

The solution of this equation substituted into Eq.
(2. 19) yields the desired function d„„(k„ktul zz').

We solve Eq. (2. 20) by iteration:

d..(k„k,', ~lo-") =(»)'8(k +k,', )d..(k ~lo-") —~g dl!'(k„~) l(k„+k,', )d..(-k'~lo-")
2 ll

+ ~ Q I i'z dr~ (ka~) C( ko 4') 4~'(ko+) &(kil'+kil) d~'L(
(2wy

2 ll ~ llf

& t (k" —k,', ")d' .' "(k,',")g (k,', "+ k,', ) d "p(- kt 4p
l
0 —z ') + ~ ~ ~ (2. 22)

In order that we can compare our results with
experimental data for a dielectric surface, it is
reasonable to assume that the surface profile func-
tion g(x„) is a stationary stochastic process, and
that the Fourier coefficient d„„(k„k,', &o I zz') ob-
tained by substituting Eq. (2. 22) into Eq. (2. 19)
should be averaged, term by term over the prob-
ability distribution function for this process. To
carry out this procedure we assume that the
Fourier coefficients (g(k~ )) are Gaussianly dis-
tributed random variables. This assumption has
the consequences that the average of the product
of an odd number of fg(k„)] vanishes, while the

average of the product of an even number of these
functions is obtained by pairing them two-by-two
different in all possible ways and assigning to the
average of each pair the values

&C(k„) i(k,', )) = [(2w) /A]5(k„+ k,', ) (l j(k„) l
')

= 5(k„+k,', )(2z) 5 g(k„) . (2.23)

In this result, A is the area of the dielectric sur-
face, 52 is the mean-square surface height varia-
tion, and the surface scattering factor g(kI) is
assumed to be a function of the magnitude of the
vector k„, but not of its direction. With the pre-
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ceding assumptions we have, for example, that

&i(k„)f(k,', ) f(k,", ) i(k'„")&= &i(k„) i(k'„)&

x &i(k,", ) Bk;,")&+&~(k„)Bk,", )&&~(k,', ) ~(k,', ")&

I

+&K(k ) K(kl")&&K(k', ) i(k")& . (2.24)

It follows, therefore, that the quantity of interest
ln this theory ls given by

a (s) „ 3 (l)
", j k„-k,'," d„„k,', "k'„& O-~' =-

t (i) - 2 &3) ~ 2 (3)
+~' z f (g,'&s,' (2,

''( '

(R„i
(E(k" z"(-4'(8" , ) ((lk"-i(()u.",'„, p„(" )((ic&p

-k,',")d„'"„(kI"~) f(k("+k;,)&+ ~ d „(-k;,~~0-").Ii Il p, P II (2. 25)

%hen the indicated averages of the products of
the {g(k„)Jare evaluated according to the pre-
scription given above, the terms in large paren-
theses in Eq. (2. 25) can be represented dia. gram-
matically. In Fig. 1 is given the diagram corre-
sponding to the term of O(Xz) in Eq. (2.25). In
Fig. 2 are presented the three diagrams asso-
ciated with the three ways of pairing the four

g(k„)f in the term of O(X4) in Eq. (2.25). These
three pairing schemes correspond to the three
terms on the right-hand side of Eq. (2. 24). The
heavy horizontal lines labeled by the wave vectors
k,',", k,', ', . . ., correspond to the (matrix) propa-

coming horizontal lines labeled by the wave vec-
tors k„and —k,', correspond to the propagators
d&„(k„((ii z 0+) and d, „(-k,', &@i 0 —z'), respectively.
However, they do not enter the evaluation of the
expansion contained in the large parentheses in
Eq. (2.25). The dashed lines represent the fac-
tors of Q(k„)}. The fact that in each diagram the
dashed lines are always joined in pairs is a. re-
flection of the fact that owing to our assumption
that the P(k„))are Gaussianly distributed random

bl , th g f p d t f
number of these variables is the sum of products
of the averages of these variables paired two-by-
two different ln all possible ways Fl om the
structure of the expansion in the large parentheses
in Eq. (2. 25), and the result given by Eq. (2. 23),
we see that the wave vectors {k"')are conserved
at each vertex: the sum of the wave vectors
entering each vertex is equal to the sum of the
wave vectors leaving it. An immediate conse-
quence of this fact is that the wave vector -k,', is
forced to equal the wave vector%.„, through the
presence of a factor (2v)z 5(k„+k,', ) in ea.ch term.
Thus the averaging of the Green's function
d„„(k„k,'(uri zz') over the probability distribution
function for the surface profile function restores
infinitesimal translational invariance to our sys-
tem in the directions parallel to the surface of the

dielectrj. c medium.
In addition, we see that this averaging process

forces some of the integration variables {kI("}ap-
pearing in the expansion in large parentheses in

Eq. (2. 25) to equal the wave vector k„.
A typical diagram contributing to the expansion

in large parentheses in Eq. (2. 25) thus has the fol-
lowing structure. A line (k„) enters the diagram
at the left, interactions of aQ degrees of complexity
occur, and a line (k(() leaves the diagram at the right.
From Figs. 1 and 2 we see that these diagrams
fall into two types: those that can be separated
into two unconnected parts by cutting a single heavy
line; and those that cannot. The former type of
a diagram is called "improper"; the latter type
is called "proper. " Examples of proper diagxams
are Figs. I, 2(b), and 2(c), whereas Fig. 2(a) de-
picts an improper diagram. It should be noted
that because of the conservation of wave vectors
at each vertex, any heavy line in an improper dia-
gram which can be cut to separate it into two un-
connected parts must be labeled by the wave vec-
tor ki.

The expansion in large parentheses in Eq. (2.25)
can be expressed in terms of contributions from
proper diagrams only. Vfe introduce a matrix
(Pg(( (k(( Q7) that is defined as the sum of the contri-
butions in the expansion in large parentheses in
Eq. (2.25) associated with the proper diagrams
only, excluding the factor (27i)25(k„+k,', ), which is
common to each term. In terms of this matrix
we obtain

FIG. l. Diagram corresyonding to the term of 0(A2)

in Eq. (2.25j.
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2 (1)

2 P k{( l d)tP kll kli (k(k 0 Z

= —(2 )'5(k k') I tP„(k„) Q o„„(k„tz)d,",'„(k tz)o„,„tk„zt)~. . .)z,„(k„(o—*')
V f Sf 2

= —(2)i)'5(k„+k,', )g [4 (k„~)+(P(k,;u&) d(0)(k„(d)(P(k„(d)+ ~ ~ ]„d „(k„(d~0-z')

= —(2 v)' 5(k„+k,', )Q [(P '{k„(o)—d(0) {k„(d)]„„'d,„(k„(d
~
0 —z') . (2. 28)

When we substitute this result into Eq. (2. 19), we
obtain finally for the averaged Fourier coefficient
of the desired Green's function

(d „(ik'
l

z'))=(2 ) 5(k„~k', )(z,(k l**')

+ Q d„„,(k„(o ~z 0+)[(P(k„(o) '- d' '(k„(d)]„',„,

(2.27)

In the lowest order of approximation O(52), which
is all that is justified because we have kept only
terms of first order in g(x)) in Eq. (2. 9), the
elements of the matrix (P „(kore) are given by

2

(P, „(k„u))=A. 5 ",g(ik —k,', ~)d(„„)(k,', (o) . (2. 28)

I

because the matrix elements d„„(k))(dlzz ) have a
pole at the frequency ruo(k„) of a surface polariton
associated with a plane surface separating the di-
electric medium from the vacuum. Thus the
poles of the function (d„„(k„k,', (d lzz')) corresponding
to the frequencies of surface polaritons shifted by
the presence of surface roughness can only come
from the poles of the matrix [(P(k((&o)

' —d '(k„&o)] '.
It has been shown' that the functions d„„{k„u&lzz')

are expressible in terms of simpler functions

g, „(k„ur l zz') according to

d, „(k„~~zz') = P S ., (I„)g„. (u„~~zz')S, „(f„),
~Cpt

(3 1)
where the matrix S(k„) is given by

k„ k~ 0
Equations {2.27) and (2.28) are the central re-

sults of this section. They provide the basis for
a calculation of the cross section for the Raman
scattering of light from a semi-infinite dielectric
medium bounded by a rough surface. %e wiB not
pursue this application here. Instead, we will
determine the poles (d(k„) of (d,„(k„k,', urlzz')) cor-
responding to surface polaritons, and in this way
determine the attenuation of surface polaritons
owing to surface roughness.

s(j, ) = k„O

-ky 0

k„O
o

s(i„)-'= i,

(3.2)

In this section we obtain the inverse matrix
I(P{k„(d) ' —d"'{k„&u)] ' and study its poles. This is

F((,

F F
/

F
(i ) (2) (a)

kll II kll kII

(a)

(I) (&) (5)
kII klI kii

/
/

/ Fr rr
(I) ~Q) ~(a)

k„ k„ kI,k„

(c)

FIG. 2. Three diagrams corresponding to the terms
of O(A~) in Eq. (2.25).

III, DISPERSION RELATION FOR SURFACE POLARITONS

M{k„(o)= (P(k„(o) ' —d(0) (k„(o),

and use Eq. (3.1), we can write

(3.3)

M(k„ ~) ' =s($„) ' f[s(i„)(P(k„~)s($„)-']'

—g'0)(k„(d)} ' S(k„), (3.4)

(3.8)g,.(@ (d) =g„).(k„(d
~

-0 —0+) .
The functions (g„„(p„(dlzzz)] are tabulated;n

Ref. 8. From the results of Ref. 8 we find that
the matrix g' )(k„&o) has the simple form

with 0, =k /k„(n =x, y). Note that g„„(ko(dl zz')
depends on k, only through its magnitude. Thus,
if we define a matrix
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(()&(k )
4wzc

(d

—kkg
—E((d)k

k„k
k, —t((0)k

(o 1
c ki —k2

—k„k~
k( —e((d)

k, —a( )) )

41(1c ~0)(k )
(d

(s. 6)

where

(&v'/c' k')"' k «ro/c
k=

i(k4 —+2/c')'/' k„& &u/c,
(3 7)

k(= —[4((L))((d /c ) —k„] /, Imk, «0 . (3.6)

In writing Eq. (3.6) we have used the fact that
Imc((d}& 0.

For the surface scattering factor we assume the
Gaussian form

g(k„) = ((a' e ' ')')/', (s.9)

where the constant a is called the transverse cor-
relation length. When we substitute this expres-
sion into Eq. (2. 26), and make use of Eqs. (3.1),
(3.5}, and (3.6), we find that the matrix (Pa„(k„()))
takes the form

%2j2 2 2 2$'

(Pyk„P =i 2 e II
II „e5 a c ~202/4

l dk kr -a P' /4 8r e yllg coe(8%')/2
II II

(0 &0 0

y~ cos28'+ y' sin28'

l
(y„', —y,',) cos8' sin8'

y' cos8'

(y„'„—y,',) cos 8' sin8'

y„'„sin 8'+y' cos28'

y' sin8'

y„cosO

y„', sin8' (3.10)

where, to simplify the notation, we have written y„'„=-y'„0)(k,', ~). In addition, we have set

ka(cos8, sin8), k,', =k,', (cos8', sin8') ~

The integrals over 8' are carried out directly, with the result that

(s. 11)

——.'[a+5(k„'- k',)]
$2/2 2 2

a')k,„l0) =2 ', ' —)l,(,
ck~

—bk„k~

——.'[a —5(k', —k',)]

ck,

—dk„

(3.12)

2
a(k))(d) = e )) dk„k, ) e

~Q

k'k', co 1
(k' —e ((0)k' cm k' —k'

(S.13a)

22 e 2
k(k (d) e-a ()„/4 „dkr ki e-a IP)) /4

JQ

x k,
", ,k, f, (aa'k„k, ', ), (3.13c)

kz —&&elk'

d(k ~) = e ' 'I " dk'k' e "'I'I'/'
0

(aae
2 t2

e(k ~)=e' ))" ) dk'k'e'')')"

k' —&((0)k' ' k' —k'I ' 'q-E c
i2
", ,„,I,(-.'a'k,

,k, ', ),
kg —& ()k

(3.13e)

c(k„(o)=e ' "'/', dk, ', k,', e
0

(3. 13h) where k'=k(k, ', ) and k,'=k, (k,', ), and f„(x) is the mod-
ified Bessel function of the first kind.

It follows from Eq. (3. 12) that
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z(a+ b)

S(k„)a(k„~)S(k„)-'=2',' '
O

e

- -.'(a - b) O

The inversion of this matrix is straightforward, and yields the result

[S(k„)S(W,~)3(k,) '] '=2„.~zb.,z-,z

2g
(a+ b)e —2dc

a+5
(a+ b)e —2dc

(gp~

z p(k, &(0) ~ (3 15)2'~ 5a c

Consequently, the matrix M(k„&o) ' which we seek
is given by

M&e„& '=- . , s&e„&'(e'"&e„&
4n'it.

1 (d 1

+3 z 2 2 R 4p(k&I
Bm X5a c

Just as the Green's functions (d„„(k&&ui zz')] can
be expressed in terms of the simpler functions
(g„„(k,~lzz')], according to Eq. (3.1), the Green's
functions (d~„(k k &(0[ zz )) can also he expressed in
terms of simpler functions. If we make use of
Eq. (2. 25) and Eqs. (3.1), (3.4), and (3.16), we
find that

. ,S(k„) 'm(k„~) S(k„) .4' e
(3.15)

The elements of the matrix m(k&&(t7) are readily ob-
tained, and the nonzero elements are given by

(0) 1 (o4..(e,„te&=D&e, eZ(a,„re& e, ,e, ,—,I.,(e,„e&],D k()Rg Bm'X5a e
(3.17a)

-"' '=&I(e '' "' '8'I'e'' ~*" ')(d) xg Bm'&5a e
(3.17h)

ee.,(k„re&= &, e., (e„e&~ e,e, e e P..(II, &),D k((+) Bn &5a
(S.17c)

Ja„&= e e..&e»te&+e e e e I'..&e»te&)D k)i Bm'X5a
(3.17d)

1 (d i
,„(e„&=(e„',"(e„&~

e e . e, —,I „„&I„BwX5a c
(S.17e)

(d„„(k,,l '„~~ zz')) =(2z)'5(k„+ I '„)g S-„'., (k„)
JA P

g„.~(k„(o~zz') S~„(k»), (3.19)

where

g„„(k„u&izz') =g„„(k„(sizz')—
4vrgg

c'k,', /(o' = «(&o)/[«(~) + 1] (S.22)

g~gz A')i 8 0+ 'PB~e~ Q((QP g~„gi)QP 0 —g
P

(3.20)
In searching for the pole of the matrix m(k„&o),

which in the absence of surface roughness re-
duces to the dispersion relation for surface po-
laritons associated with a plane dielectric-vacuum
interface, we note the identity

1 c' k, +«(~)k
k, —«(~)k ~' 1 —«'(~) c'k,',/~' «(~)/[«-(~)+11 '

(3.21)
and recall that the solution of the equation

1 1
e 'I 'e' ' e & ~ e&e —eee (e, —e(~ &e

x [- 2k„e —kk, (a+ b) + 2k„kd + 2k„k,c]

(3.13)

is the dispersion relation rd = (oo(k») for surface
polaritons at a plane dielectric-vacuum interface. ~

Thus the function k, —«(&d)k has a simple zero at
(d = &do(k&I) It follows then [from Eqs. (3 ~ 17) and
(3.18)] that the pole of the matrix m(k„&o} corre-
sponding to a rough surface polariton is given by
the zero of the function D(ki(ID) From Eq (S.IS)
we see that the equation D(k„&o}=0 can he written
equivalently as
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k, —c ((o)k = 4v'X252ga(c'/(u') G(k„u)),

G(k„~) = —2k,', e(k„~) —kk, [a(k„&u) + b(k„ur)]

+ 2k„[kd(k„(o) + k,c(k„~)] . (3.24)

If we define

E(k„~)=k, —e(&o)k, (3.25)

and denote by (do(kg ) the solution of E(kg (0) 0 the
solution of Eq. (3.23) correct to O(5~) is given by

In this section we utilize the results of Sec. III
to obtain numerical results for the surface polari-
ton dispersion curve in the presence of surface
roughness through terms of O(5~). In these cal-
culations we will utilize two different forms for
the dielectric constant &(&o). The first of these,

(eo- ~.) ~'r

CO~ —{d —g (dg
(4. 1)

corresponds to the case of a diatomic, cubic polar
crystal with two ions in a primitive unit cell; the
second,

&(&o) = e„[1—uP~/(era+i(uy)], (4. 2)

represents the contribution to the dielectric con-
stant of a nearly-free-electron metal or n-type
semiconductor from intraband transitions. In Eq.
(4. 1) &„ is the optical frequency dielectric con-
stant, go is the static dielectric constant, a.nd ~~
is the frequency of the infinite wavelength trans-
verse optical vibration modes. In Eq. (4. 2) e
is the background dielectric constant of the ma-
terial, and ~~ is the electronic plasma frequency,
given by

(4. 3}

where n is the electron number density, e is the
ma. gnitude of the electronic charge, and yn* is the
effective mass of the charge carriers. In both
Eqs. (4. 1) and (4.2) the damping constant y de-
scribes in a phenomenological way the effects on
the dielectric constant of the dissipative processes
present in the bulk of the material.

(3.ae)
Equation (3.26), together with Eqs. (3.24), (3.25),
(3.7)-(3.16), and (3.13), formally solves the
problem of obtaining the surface roughness induced
shift in the surface polariton dispersion relation.
In Sec. IV we turn to the evaluation of the second
term on the right-hand side of Eq. {3.26) for sev-
eral cases of physical interest.

IV. NUMERICAL RESULTS

e'a'—4 "
(Q)r + e„(dr, ) {4.4)

where uP~ =(eo/e„)&ur for the dielectric constant
given by Eq. (4. 1), a.nd by

c k„', (a„) =
2

"(1+ a ) H)2

I} (] +~ ) ~3 4 ay3~2
2 (4. 5)

for the dielectric constant given by Eq. (4. 2).
Consequently, we can write the dispersion re-

lation (3.26) in the form

~(k„) = ~,(k„)+~(k„)-II"(k„), (4. 6)

where n (k~~} gives the shift in the frequency of the
surface polariton due to surface roughness, while
I (kg) ts related to the inverse lifetime of this
mode owing to surface roughness. These two
quantities are given by

In the case of a polariton propagating along a
perfectly smooth surface, an expression for its
attenuation length can be obtained by inserting the
complex dielectric constant of the ma. terial into
the equation [Eq. (3.22)] relating the frequency of
the surface polariton to the magnitude of its wave
vector, and obtaining from it the imaginary part
of the wave vector of the surface polariton 0',I'.
The attenuation length for energy flow is then
(2k(1)) 1

However, in the presence of surface roughness
a surface polariton can be attenuated even if the
dielectric constant &(&o) is real. It is this effect
on which we have focused attention in this paper.
Therefore to separate the attenuation of surface
polaritons which has its origin in the surface
roughness from that which has its origin in the
dissipative processes present in the bulk of the
material, we will put y = 0 in the expressions for
the dielectric constants given by Eqs. (4. 1}and
(4. 2) everywhere except in the integrands of the
integrals for the functions a(kg(l7) e(kp(d) de-
fined by Eqs. (3.13) in evaluating the expressions
given at the end of Sec. III. The retention of the
(small) imaginary part of the dielectric constant
in these integrands serves only to define the man-
ner in which the pole in the integrand at the wave
vector of the plane interface surface polariton,
i.e. , at the value of k,', for which k', —e(&u)k' van-
ishes, is to be treated in the evaluation of these
lntegl als

When this is done the frequency ~,(k„) of a sur-
face polariton at a plane dielectric-vacuum inter-
face is purely real. It is in fact given by

2 & &&~i 2(mao(k„) = — " (1+e„)+ (o~~ —— " (1+e }+ (u2~
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G(k„~,) = G"'(k„~,) + iG"'(k„~,), (4. 14)

f(k„) = V, (k„) r(k„)= '. [V,(k„-)/r (k„)] . (4. 10)

In the absence of damping the energy transport
velocity is equal to the group velocity of the sur-
face polariton. 3 The latter can be obtained most
directly by diffex'entiation with respect to v of the
dispersion relation [Eq. (3.22)]. The result is

[e ((d,) + 1]'
(4. 11)

e((do)[e((d,)+1]+-,'(d, [da((do)/(f(d, ]
'

%e can further simplify the expx"ession for the
attenuation length by considering more carefully
the derivative with respect to fx'equency of the
function F(k))(d), defined by Eqs. (3.7), (3.8), and
(3.25), which appears in the definitioIIS of n(k)))
and 1'(k„). For the evaluation of this quantity we
note that in the surface polariton regime k„& (d/c,
RIld E(()d& 0. 'Thus) according to Eqs (3.7) RIId

(3.8) in this regime

k =i(k' —(d'/c'. )I" k = —i[k' —e((d)((d'/c') p~'

(4. iR
Th f tf ll th t

dE(k„(d,) i I e((d,) I + 1

(f(do c I B((do) I [!B((do) I
—1]

X & {)t}O & GPO)+ j. +
(fB((d,)

. Ck„[i e((do) I+ 1][I c((do) I
—1]

le( )I V (k)
(4. 13)

CGIIsequently, lf we sepRrate the quantity G(k))(do)
into its real and imaginary parts according to

(f (f(do E k))(do

)'():„)=--.()) ) )~( o) —)) ) (~g~~.)~( )„))
G(k„(d())

(4. 8)
where, to simplify notation, &re have written
(do = (do(k))}~

The quantity 1'(k„) is the inverse of the lifetime
for the amplitude of the electric field of the sur-
face polariton. Since the energy transported by
the surface polax'iton is proportional to the square
of this amplitude, the inverse of the lifetime of
the surface polariton r(k„) is given by RI'(k„),

1/r(k„) =Re(k„) .
The attenuation length of the surface polariton
f(k))) which is the distance over which the energy
111 ihe polarlton decRys to 1/e of 1ts 1nltlal VRlue

is obtained by multiplying its lifetime by the ener-
gy transport velocity of the surface polariton,
V,(k„):

then on combining Eqs. (4.7) and (4. 8) with Eqs.
(4. 13) and (4.14}we obtain

},I & ((d,) I [I e ((d,) I + 1]4ck„[ie ((d,) I
—1]'"

x Vs(k„) G' '(k„(d(&),

(do i I &((do)i [I t((do)i+1]
4ck„" [i.(~,}I

—i]"'
x V,(k„) G")(k„(d,) .

(4. 15)

(4. 16)

Finally, from Eqs. (4. 10) and (4.16) we obtain
for the inverse attenuation length of a sux"face po-
lariton o~ing to surface roughness

1 (d, i I &{(d,}i[i&((d,}i+1]
l(k„) Rck„[le((d,) I —1]'~'

s(k„(d) = a("(k„(d)+ca"'(k„(d),..., e{k„(d)

= e")(k„(d) + ie"'(k„(d) .
%e also recall that in the surface polariton re-

gime k„& (d/c, and e((d) &0, so that in this regime
0 and k~ are pure imaginary and are given by Eqs.
(4.12), which we rewrite as

k=«(k'„—~'/ )c"'=ik,

k, = i[k'„—e((d—)((d'/c')]I" =- -i'd(, (4. 18b)

vrhere k& and k& are real. %e can thus write for
the real and imaginary parts of G(k„(d) in this re-
gime

(4. i8a)

G'"(k (d) = —2k e'"(k„(d)-k,ki[a"'(k„(d)+f)'"(k„(d)]

+ Rk„[-k (f'i'(k„(d)+ k, c' '(k„(d}],
(4. 18R)

G("(k„~)= —Rk'„B(*'(k„~)—k, k([a"){k„~)+5"'(k„~)]

+Rk„[k, "(f( )(k) —dkI c")(k„(d)].
(4. 19b)

We now turn to the determination of a"s)(k„(d),
&1,3)

~ ~ ~ ) B ' (k))(d) ~

x G (k)) (d())

%e have carried out numerical calculations of
A(k„), F(k„), and f '(k„) as functions of k„ for both
forms of the dielectric constant e((d) given by Eqs.
(4. 1) and (4.2). Inasmuch as (do{k„), &((do(k„)),
and Vz(k„) are calculated straightforwardly from
Eqs. (4.4} and (4. 5), (4. 1) and (4.2), and {4.11),
respectively, it is necessax'y to discuss only the
evaluation of the functions G ')(k„(do) and G i)(k„(do)
in any detail.

%e begin by formally separating each of the five
fllllctiolls Q(ki (d) 8 (k)) (d) into their real and
imaginary pax'ts accor(4ng to
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We first divide the integration over kI, in Eqs.
(3.13) into two integrals, the first over the inter-
val (0, &u/c) and the second over the interval
(~/c, ~). We do this because the nature of the
integrand is different in the two intervals. How-

ever, this separation also has a physical signif-
icance. The wave-vector interval 0~k,', & ur/c is
that in which the solutions of Maxwell's equations
are propagating, wavelike modes. The interval
k,', & u/c is that in which surface polaritons can
exist. Thus the contributions to the integrals
a ' '(k„&u), . . . , e" '(k„ur) from these two intervals
yield the contributions to n(k„), I'(k„), and I (k„)
from roughness induced scattering of a surface
polariton into radiating modes in the vacuum and
into other surface polariton modes, respectively.

In obtaining the contribution to each of these
integrals from the intervals 0~k,', & m/c and u/c
& k', it is convenient to define, in analogy with
Eqs. (4. 18),

k( = i[kg-—s((o)(uP/c')]'~' -=—ik(, (4. 20a)

(4.20c)

(~ /c —k")' -=k' 0 —k,', & ~/c, (4. 20b)k'=
i(k —~ /c ) =ik~, u&/c&k~,

where k'„k', and kq are real.
In the interval k,', & &u/c we have to proceed care-

fully because of the pole in the integrand at the

surface polariton dispersion relation. In fact, we
have that

1 1
A rh

k', —&(u&)k' k', + e(&u)k('(

2 ( )
(d C(&d)

c' ~((u)+I ' (4. 22)

we have the result that

I . k[ —e (tu}k~~ 1

k( E'((d)k [1 e (M)] [kii + ks&((d)] kii k&&((0)

(4. 23}
In order to define the manner in which we go
around the pole in the integrand defined by Eq.
(4. 23) we recall that in fact e(u) is complex [see
Eqs. (4. 1}and (4.2)], e(ur) =e, (v)+i&2(ar), where
e~((0)& 0. Thus, we find that

k„(co) = k(,"'((o) + ik,',"(ur), (4. 24)

where

c [e, ((o) + 1]~+e,'(ur)

i[k', —e(~)k,'] „(o' e((u)
1 —e'((o) " c' s((0) + 1

(4. 21)
If we now define the surface polariton wave vector
k„((o) by

E2(~)
2c ([~,((u)+ I]'+ e,'(~)]'"(e,(~)[e,(~)+ I]+e2(~)]"' (4. 25m)

and we have assumed I &2(&u) I «1. In the frequency
range where surface polaritons can exist, k,",' is
positive and very small in magnitude. Therefore,
we will make the approximation that

I i[k', —c(co)k('(]

k( —e((u)k' I —e'((u)

1 iv5(k, ', —k,'",'(&o))
~

~[k~3 k«&(~)2]
+

2k«~((g) (4. 2'I)

1 1

-=(, („) ))
+Ivy(k, ', —k.",'(~)),1

k,', —ksp

(4.26)

where I/(x)~ denotes the principal part of I/x.
Finally we have that

Having served the purpose of defining the manner
in which the singularity in the integrand at k'
=k„(&u} is to be treated, the recognition that e(e)
is complex can in fact be forgotten in all that fol-
lows. We will treat &(&u} as real, being given by
Eqs. (4. I) and (4. 2) with y = 0, and will take k„(&u)
as given by Eq. (4. 22) with this real e(ur).

With the preceding results in hand we can now
write down the imaginary parts of a(kyoto), . . .,
e(k~~(0) for &u in the polariton regime (&u& ck„):

((&i i -a2p/c g g"g kii [2+&(~)]—2e(~)(~ /c ) 2g'2ys gi g, )

2P Q)/4 ~ 2+ v
c [e (~) —I] [I &(~) I

—I]'qz e Io( ak„k„(~))- (4. 28a)
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FIG. 4. Inverse attenuation length l (k„) for surface polaritons on two different rough NaCl surfaces. Note that the
graphical value of / (k~~) for the case a =500 A, 6=15 A is to be multiplied by 10 6.

out is rough, and is characterized by the values
a = 5 =2500 A. From this figure we find that for a
wavelength of 2. 1 pm (k„=3 &&10 ~ A ') f '(k„)
—= 4&&103 cm ', so that l(k„)—=2. 5&10 ' cm. This
result is in quantitative agreement with the pre-
dictions of the theory due to Mills. v

It is of interest to compare the contributions to
the integrals defining the functions a"~'(k„ur), . . . ,e"2'(k„co) from the ranges 0 ~ k'„—(o/c and ~/c
—k,'„which correspond, for example, to the at-
tenuation of surface polaritons by roughness in-

duced radiation into the vacuum and into other
surface polaritons, respectively. Our numerical
calculations show that the dominant contribution
in each case arises from the range &o/c~k, '„ i.e. ,
the range corresponding to surface roughness in-
duced scattering of a surface polariton into other
surface polaritons. For k„g «1 the contribution
from the range 0~k,', ~ &u/c is several orders of
magnitude smaller than the contribution from the
range v/c —k~1, while for k,', a= 1 the two contribu-
tions are of the same order of magnitude. In the

—"10

f

6
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—-20 4

I xIO ~—

0
I.O l.5 2.0

k)I /(CLED T/C)

FIG. 5. Functions A(k„), I'(0„), l (0„) as functions of k„ for surface polaritons on a rough NaCl surface. Note that
the graphical value of E ~(k~,) is to be multiplied by 200.
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case of Al, the difference between the contribu-
tions from the two ranges 0~k,', —~/ send

&u/ —c k~'~ is much sma. lier than in the case of NaC1.
These results are in qualitative agreement with
those obtained by Mills, who finds that the sur-
face scattering process dominates the radiation
damping process in attenuating surface polari-
tons for values of 0, or of (d, for which

I e(~) I
-' V.

We also point out that the preceding results have
been obtained on the assumption, sometimes ex-
plicit, mostly implicit that the frequency ~ has an
infinitesimal, positive imaginary part, co- cu

+i' (ti& 0). If it is assumed that &u has an infini-
tesimal negative imaginary part, co- v —ig, we
find that

e((u —iq) =@*((a+it)), k(&u —iq) = —k*(a+it)), k, (ur —iq) = —k*, ((u+iq), a(kg~ iq) = —a*(kg47+iq),
(4.30)

b(k„ur —iq) = —b*(k„a+i'), c(k„~ —iq) = c*(k„~+i7)), d(k„&u —it)) =4*(k„tv+it)), e(k„&u —ill) = —e*(k„u+jrt).

Consequently, since

G(k„~+iq) = G"'(k„~)+ iG"'(k„~),
it follows that

G(k„~ —iq) = —G"'(k„~)+ iG"'(k„~)

= —G*(k„(u+irl) .

(4. 3l)

(4. 32)

These results are particularly useful in obtaining
the Fourier transforms with respect to time of
electric field correlation functions according to
the methods of Refs. 8, 10, and 11.

Thus, we have presented a theory of the effects
of surface roughness on the damping and frequency
of a surface polariton, and in the process have
obtained an explicit result for the Green's func-
tion for the Maxwell tensor differential operator
in the presence of a rough surface, in terms of
which electric field correlation functions arising

in the theory of inelastic light scattering from ex-
citations at a rough surface can be evaluated.
From the results of numerical calculations based
on the theory presented here, and the assumption
that the Fourier coefficients of the surface rough-
ness profile function are Gaussianly distributed
random variables, it is possible to infer the de-
gree of surface roughness that can be tolerated if
a particular surface polariton mean free path is
required at a given frequency. In all cases stud-
ied it is also found that surface roughness de-
presses the frequency of a surface polariton be-
low its value in the absence of surface roughness.
Experimental studies ' of the attenuation and fre-
quencies of surface polaritons in the presence of
surface roughness would be valuable in checking
the assumptions underlying the theory presented
here.
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