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The entropy Srl transported by a unit segment of a moving vortex line, in a type-II superconductor in the flux-
flow regime, is calculated microscopically for gapless~ superconductors containing arbitrary amounts of
paramagnetic and nonmagnetic impurities, assuming low average magnetic induction 8 0, and large
Ginzburg-Landau parameter v)) 1. The calculation is based on a new prescription for calculating certain heat-
current-related transport properties in magnetic conductors, recently derived by the author to resolve a
contradiction with either the third law uf thermodynarriics or Onsager's principle. For high concentrations of
magnetic impurities, when the gaplessness condition is satisfied at absolute zero temperature, we successfully
show for the first time in the low-field limit that a requirement from the third law, viz. , SD~O as T~O, is

exactly satisfied, thereby giving strong support to the underlying new method for calculating SD and other
related transport properties. Combining the present results with our earlier results on S~ in the high-field limit
8 H„, we predict Sr) to first rise linearly as 8 is lowered from H„, and then to bend upward to approach a
finite limit as 8 is further lowered to approach zero, for practically all concentrations of magnetic and
nonmagnetic impurities. The exact amount of upward bending depends on the concentrations of the two types
of impurities, but is generally larger for dirtier systems. As a side product of this work, we also give a
plausible identification of the physical meariing of an anomalous quantity u, in the set of dynamic equations
first derived by Eliashberg as being proportional to the local temperature deviation from equilibrium.

I. INTRODUCTION

Recently, the author has revised the existing
procedure for calculating certain heat-current or
temperature-gradient related off-diagonal trans-
port coefficients of a magnetic conductor such as
a type-II superconductor, in order to resolve a
conflict with either the third law of thermodynam-
ics or the Onsager's reciprocity principle. In a
previous paper {henceforth referred to as I),' the
author has presented a general argument in ir-
reversible thermodynamics which justifies this
revision. To further support the new prescription
obtained in I for calculating heat-current responses
in magnetic conductors, the author has applied it
to calculate the transport entropy of vortices in

gapless type-II superconductors containing an ar-
bitrary amount of magnetic and nonmagnetic im-
purities. and for both the high-field (P& =.H, ,) and-
the low-field (8= 0) limits. The high-field calcu-
lation is relatively simple, with results already
presented in I. The low-field calculation, however,
is much more involved and is only very briefly
mentioned in that paper, in order not to obscure
the more fundamental points made there. The pur-
pose of the present paper is then to report the de-
tails of the low-field calculation, and also to pre-
sent some overall analysis of our results on SD
obtained in both field limits.

For a type-II superconductor in the Abrikosov
state' with an external magnetic field in the z di-
rection, the transverse thermal and electric trans-
port properties are strongly coupled, so that in

general one must write

{ I )'. =2'(- VT)., + & ~ (g).„
(j)„,=P (&T)„+o (8).„

where all vectors and tensors have indices running
through x andy only. In Eqs. (1), j" and j are the
local heat- and charge-current densities, T and p,

are the local temperature and chemical potential
(with T, and g, denoting their corresponding equi-
librium values), g =-E —Vg/e is the effective local
electric field (with E being the true local electric
field and e the electronic charge), and we have
used ( ~ ~

)„.„ to denote a space average, reserving
( ~ ~ ~ ) for a statistical ensemble average. The
Onsager theorem requires that o.,&(H„,)
= —T,P, , (- H,„t),' which for lsotropic systems re-
duces to o,&(H,„,) = —T,P,.z(H„,). If one further
ignores small contributions related to the Hall ef-
fect, 4 then one has the following simple structures
for the four tensorial transport coefficients (which
are invariant with respect to rotation about the z
axis):

so that without loss of generality one may rewrite
Eqs. (1) simply as
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(2)

The Onsager relation then reduces simply to n,
= P, T,. The four transport coefficients in Eqs. (2)
will be called, respectively, thermal conductivity
(K,), flux-flow conductivity (o,), Ettingshausen
coefficient (a,), and Nernst coefficient (p, ), al-
though experimentally one often measures certain
combinations of these coefficients. '

As is now well known, for a type-II superconduc-
tor in the presence of an electric field (g).,„per-
pendicular to the average magnetic induction
B=—(b).„, the vortex lines must move (in the ab-
sence of pinning forces) with a uniform velocity
v& (g),. „and B, such that (g)„=—vx B.' (Through-
out this paper we shall putii=c=k~=1 where k~
is Boltzmann's constant. ) Since vortex cores are
expected to carry more entropy than their super-
conducting surroundings, such a flux flow is ex-
pected to always result in a entropy transport
which explains why z, c 0. The "transport entropy"
SD is defined as the amount of deliverable entropy
carried by a unit segment of every moving vortex
line. This definition is equivalent to the mathe-
matical statement that ( j")„=(B/P, ) T,SDv, where
the B/ P, factor gives the number of vortex lines
per unit area and ft)o is the flux quantum. It then
follows from v= (h),„/8 that

SD = e,p,/T, .
The third law of thermodynamics implies that SD- 0 as T,-0, which is true whether one would

question the physical interpretation of S~, since
the third law may be directly applied to the en-
tropy current j"/To, with Eq. (3) merely treated
as a mathematical definition for SD.

To calculate n, and therefore S~ microscopically,
one needs a microscopic prescription for evalua-
ting a heat-current Linear response. The original
prescription existing in the literature is to evalu-
ate the statistical average (over a linearly per-
turbed ensemble) of a "heat-current-density" oper-
ator j,"=js —(y —/e)j, where js and j are the energy-
and charge-current-density (vector) operators,
respectively. "As was reviewed in I, this old
prescription violates the third law of thermody-
namics, since it gives a transport entropy SD which
diverges like T, ' at Low temperatures. The new

prescription deduced in I reads

j"= j"„+~xm, (4)

where j",=-(j,"};m (r) is the local magnetization den-
sity at equilibrium, and is given by V xm =(j)~,
plus the boundary condition that m=—0 outside the
sample. ' The second term in Eq. (4) is new. It
implies also a new magnetic contribution to the

Ettingshausen coefficient

a, = o.,'+ ((g xm), , (/((h)„. „~,

where n', denotes the value calculated with the
operator j",. As we shall further demonstrate in
this paper, the transport entropy S~ calculated
with this new prescription does satisfy the third
law of thermodynamics under a variety of condi-
tions. If the effective electric field g is uniform in
space, as is the case when z, is evaluated only to
lowest order in (H„—8)/H„near the second-or-
der phase-transition line, then Eq. (5) reduces
simply to

(6)

where M =- (m),„. Equation (6) has already beenpro-
posed by Maki, ' although he did not realize that the
validity of this equation is onLy restricted to the
case H„—B«H... and that the argument he used
to justify Eq. (6) is actually logically inconsistent
(see I). We mention here in passing that the ar-
gument presented in I also implies a correction
term for the Nernst coefficient P, :

p, = p'+
I ( m x V T/ T.),, I

/ I (V T).. I

which reduces to P, = P,'+M/7, only near B„. Thus
near H„one has n, = P, T, if only a,"= P,'T„aswe have
pointed out in I. But below H„, one most likely
has n,'o p, T, in order to uphold the Onsager re-
lation n, = p, T, . We have not yet tested Eq. (7) to
explicitly verify this last statement.

Returning to Eq. (4), we note a s&6&tie point con-
cerning the definition ofj ~ which appears in the
definition of j,. Equation (4) is derived in I from
the local thermodynamic relation T6s = 5e —p,5n
+m 5b, where for an equilibrium system, e is
simply the ensemble average of the Hamiltonian
density: e =—(1c}. The relation between j and h is
then the equation of continuity Bh/Bt+ V j~=O. We
have already pointed out in I that in a transport
situation when an electric field is applied to the
sample, the Hamiltonian density changes to hi~,
which includes a. scalar potential term pfI(5 in a
general gauge. The definition of c must then be
generalized to e —= (e) with e —= Per -pP, in order to
maintain the gauge invariance of e and j~. Note
that e =h only if one works in a pure scalar gauge,
otherwise & contains correction terms due to a
time-dependent vector potential 6A(r, f) which must
be added to the original static vector potential
A, (r), in order to account for the local electric
field E = —Vft) —B5A/Bt. The equation of continuity
defining j~ then changes to Be/Bt+ V j~ =j ~ E, which
contains a gauge-invariant source term. For a
weak-coupling superconductor, the Iiamiltonian
density may be taken as (after introducing second
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quantization)

/sr=(2m, ) '(Kf~ )t.TIgt+g V' '
+ gg &8$8$ +g egg, (8)

where If=—p —eA with p —= iV and A —= A, + 5A. ~Jsing
Heisenberg's equation of motion to evaluate Be 'Bt,
one may verify the above continuity equation for e,
and identify

A -+ ~ gBj =(2m, )
' (II/H„) ——ep +H.c.]+~j

(9)

where, in anticipation of our later need to employ
the thermal Green's-function techniques, we have
introduced the (modified) Heisenberg-picture oper-
ators P„and P~ using K =-H~ —p, N instead of the
total Hamiltonian operator H~ itself in defining the
evolution operator. ' This accounts for the (p, ,/e) j
term in Eq. (9), allowing the first term of je alone
to be identified as the nonmagnetic part of the heat-
current operator j,". This expression for j, has
already been given by Caroli and Maki' (but mis-
taken as the complete j"), although to our knowl-
edge it has not been used so far for evaluating heat-
current responses in any gauge in which Q c0. The
calculation to be presented in this paper, however,
will be completely gauge invariant. We shall then
see the necessity of having the explicitly f-de-
pendent terms in j", in order to ensure the gauge-
independent nature of a heat current. We stress
that the origin of these P-dependent terms is our
identification that e —=h~ —pQ. "

Equations (4) and (9) are our starting point for
calculating the heat-current response (j,"),„due to
an applied field ($„)„„in a gapless type-II super-
conductor containing an arbitrary amount of mag-
netic and nonmagnetic impurities, in the low-field
limit B=0, where .8 is assumed to be in the z di-
rection. A theory of superconducting alloys con-
taining paramagnetic impurities was first worked
out by Abrikosov and Gor'kov" who showed that if
one denotes the spin-flip lifetime of the electrons
as 7.„and the equilibrium value of the order pa-
rameter as ~,(T), then the energy gap of the ex-
citations in this system diminished and tends to
zero as ~,6,-1 from above, and the system be-
comes "gapless" when ~,~,- 1. Gor'kov and
Fliashberg" "(GE) then showed that in the extreme
gapless limit v;~, «1, the dynamics of the system
may be described by a complete set of "time-de-
pendent Ginzburg-l, mdau (TDGL, ) equations. " This
set of TDGL equations were derived under the con-
dition of very high or very low concentrations of
magnetic impurities together with the "dirty-limit"
assumption 7y «v, where ~, is the total scattering

lifetime of the electrons. " Without altering the
condition &,h, «1, the set of TDGL equations has
been previously extended by Hu and Thompson" to
allow for arbitrary amounts of magnetic and non-
magnetic scatterings, for the purpose of studying
the dependence of flux-flow resistivity p, =(o,) '

on the two parameters r, and r„which are now
limited by the natural restriction ~, ~ 7., only, due
to the way they are defined. The calculation to be
presented in this paper on the transport entropy
SD is for the same type of systems and under the
same general condition on z, and 7y As was al-
ready pointed out in Ref. 15, the condition T 60
« I is roughly equivalent to Tc(Tc —T) «(~.5r, )

'
= ~'(T —T)', when T~ and T, denote the transi-
tion temperatures before and after magnetic im-
purities are introduced into the system, respec-
tively. This requires one to work either in a very
narrow temperature range near T„or with a sys-
tem containing a high concentration of magnetic
impurities, so that its T, is much suppressed from
T,o (by at least a factor of --', ). While this strin-
gent condition may make the direct verification of
our results difficult, the present work does serve
another important purpose, that is the establish-
ment of a correct procedure for calculating z,
and S~, which can then be applied to other sys-
tems, such as to the more complex case of a type-
II superconductor with a finite energy gap. To this
goal we shall show that both terms of Eq. (4) ap-
proach constant limits as Tp 0, thus individually
they give T, '-divergent contributions to the en-
tropy current j"/7; and the transport entropy SD.
Then we shall explicitly demonstrate that these two
divergent contributions exactly cancel each other,
ln the limit To-o, leaving a TO2 dependence for jh

and linear temperature dependences for the en-
tropy current and S~. Owing to the lack of an exact
solution even for an isolated vortex at equilibrium,
our calculation of S~ is actually only performed
numerically under a certain approximation. How-
ever, it cannot be overemphasized that the approxi-
mation is introduced only after we have effected
the exact cancellation of the divergent contribu-
tions, or else the calculated results for SD would
be totally unphysical in the low temperature limit.

This paper is organized as follows. In Sec. II,
we briefly review the real-time Feynman-dia-
gram method as was developed by GE, for studying
the dynamics of superconducting systems and its
application to the derivation of a complete set of
TDGL equations for gapless superconductors con-
taining arbitrary amounts of magnetic and non-
magnetic impurities. We also establish in Sec. II
a systematic order analysis for applying the GE
method to calculate any physical quantity such as
j", for such systems. In Sec. III we use the GE
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method and the order analysis of Sec. II to derive
an expression for j, in terms of the dynamic vari-
ables in the complete set of TDGL equations. We
then showinSec. IV that at least for 8=0 there is
an exact cancellation in SD of the T, '-divergences
due to the two terms in Eq. (4), leaving a linear
temperature dependence for SD at low tempera-
tures, in consistency with the third law of thermo-
dynamics. This result near 8 =0 has not been
achieved by anybody previous to us. Section IV,
therefore, establishes on solid ground that Eq. (4)
is the correct heat-current expression for mag-
netic conductors. Section V is devoted to an ex-
plicit evaluation of the transport entropy SD in the
low-B limit for gapless superconductors with ar-
bitrary concentrations of magnetic and nonmagnet-
ic impurities, and then to present an overall anal-
ysis of our results on S~ for both B= 0 and
B= H„(c lac lutaed previously') in order to reveal
the B dependence of SD for various values of z,
and v, . Finally, a short conclusion is given in
Sec. VI, which also contains a discussion of the
physical meaning of an anomalous term u, in the
TDGI, equations first discovered by kliashberg. "
As we shall see, our heat-current study strongly
suggests that apart from a proportionality constant,
u, should be identified as the local temperature
deviation from equilibrium 5T, at least in an ef-
fective sense, and the word "effective" may be
dropped when the magnetic-impurity concentration
is high. If this physical interpretation of u, is fur-
ther confirmed, then the TDGL equations of GE
would have already incorporated the Clem mecha-
nism" (i.e. , local heat-flow) for extra dissipation
in a flux-flow state, and the recent attempt by
Cohen and Rickayzen" to put this effect artificially
into the TDGL equations of GE would become re-
dundant.

Two appendices conclude this paper. In Appendix
A we illustrate the real-time Feynman-diagram
method of GE for studying the dynamic properties
of weak coupling superconduetors, by presenting
the details of our evaluation of two particular dia-
grams that contribute to the calculation of j,". In

Appendix B we discuss a subtle point concerning
the anomalous quantity u„whose gradient appears
as a contribution to j,. It will be shown that the
solution for u, as provided by Gor'kov and Kopnin
for an isolated vortex line" requires a subtle mod-
ification, otherwise it would give a spurious (and
unphysical) contribution to ( j,),„. This modifica-
tion is necessitated by the long-range nature of
u, (i.e. , u, ~ & ' even for r»X},"which implies
that an "isolated-vortex limit" really does not ex-
ist for this quantity. This property of u„when
compared with Clem's solution of 57' near an iso-
lated vortex line, "further supports our identifica-

tion that u, o: 5T. It should be stressed that the
modification of u, (for r»X only) removes the
spurious contribution to ( j,).„without affecting the
earlier results on flux-flow resistivity. '" "

II. GOR'KOV-ELIASHBERG METHOD, ITS APPLKATION
TO SUPERCONDUCTING ALLOYS WITH

PARAMAGNETIC MPURITIES, AND

AN ORDER ANALYSIS

To study dynamic propeltles of a many-body sys-
tem at finite temperatures, the general procedure
is to first calculate certain imaginary-time-or-
dered thermal correlation functions, and then to
perform analytic continuation from the positive
imaginary frequency axis to the real frequency ax-
is, with respect to every external frequency, in
order to obtain the corresponding physical, causal
correlation functions. For weak-coupling super-
conducting alloys containing paramagnetic impuri-
ties, it was shown by Gor'kov and Eliashberg"''
that the analytic continuation step may be per-
formed formally on each Feynman diagram,
thereby establishing a direct real-time Feynman-
diagram method for studying nonstationary prob-
lems at finite temperatures. In establishing such
a method, GE take advantage of the fact that for
the system concerned, every Feynman diagram
involved is composed of only one fermion loop,
which may in general thread through n frequency-
bearing vertices (which include one response ver-
tex usually taking the leftmost position, and n —1
cause vertices). After the formal analytical con-
tinuation, such a. diagram becomes n+ 1 diagrams:
one retarded regular diagram, one advanced regu-
lar diagram, and n —1 anomalous diagrams. To
obtain the retarded regular diagram from the cor-
responding thermal Feynman diagram, one re-
places every normal-electron thermal propagator:
G'(e —P&, u&,.) =—(e —P&u&y () ', where e =i(2n
+ l)wT, &o& =i2n, .vT, by the corresponding retarded
propagator: G'n(e -Q(u,.)=-(e +co,+ (-+i5) ',
where g and all ~& are now real frequencies. The
summation over the fermion frequency, TP, (

~ ~ ~ ),
is then replaced by the operation
(4vi) ' f Ck tanh[(e —&u)/2T]( ~ ~ ) where ru is the
real frequency entering the response vertex, and
e is the internal fermion frequency leaving this
vertex. Similarly, to obtain the advanced regular
diagram, one uses the advanced propagators:
G'"(e -+co&) = (e -P~&+ $ —i5} ' for all the fer-
mion lines, and replaces Tg ( ~ ~ ~ ) by
—(4vi) '

J de tanh(e, '2T)( ~ ~ ~ ). As for the n —l
anomalous diagrams, one lets each of the n —1
cause vertices take turn to be the "anomalous ver-
tex." A factor [tanhe, /2T tanh(e, —a&,.)/2T) is-
associated with this vertex, where ee, (=—e -P~ ', &u, )
and e,- —(d, are the electron frequencies entering
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and leaving this (ith) vertex. Retarded (and ad-
vanced) propagators are assigned to the electron
lines before (and after) this anomalous vertex,
and (4vi) ' f A. is finally performed in place of
the frequency sum Tg, of the corresponding ther-
mal Feynmandiagram. All other rules of the GE
method are the same as those of the thermal Feyn-
man-diagram technique.

GE have used this real-time Feynman-diagram
technique to derive a complete set of TDGL equa-
tions for describing the dynamics of gapless super-
conducting alloys with either very high, or very
low concentrations of magnetic impurities. In the
former case they have also assumed the dirty-lim-
it condition 7., «T„where ~, and ~, are total- and
exchange-scattering lifetimes, respectively.
These restrictions have been removed by Hu and
Thompson" to obtain a complete set of TDGL equa-

tions for gapless superconductors with arbitrary
amount of magnetic and nonmagnetic scatterings,
originally for the purpose of studying the depen-
dence of the flux-flow resistivity p, on the two pa-
rameters z, and v, . The resultant set of TDGL
equations has been previously presented" in a
normalized form in order to reveal the relevant
parameters of the system. The details of the deri-
vation have been omitted since it does not require
the inclusion of more Feynman diagrams than
those considered originally by GE for the limiting
cases. However, in order to facilitate the intro-
duction of an order analysis, which is needed for
our present calculation of (jt) on the same type of
systems by the GE method, we shall present below
the unnoxmalized form of the TDGL equations
(hereafter, we shall omit the subscripts in p, and
T,):

Ah —B)n ~'6 —C—+ DIK) '6+ UA = 0, (10a)

4g +7 + js (10b)

——DV (I', —I', )=-——cosh "—
r

8 + E' 6
8t 27' 27 &'+7,-' 8t (10c)

(
8 2 + 1 1 2 & v ' 8 8——DV' (r,'+I';) =-——cosh-'—

BP 7 27 27 6 +7 8t 8t

2i 1, g 8 1
———cosh ' ——(e(f)+eDV A) —,', id''(I', +I', ),

T~ 2T 2T 8t

i= —I'N(0)eII (ND 0 —AD, A ) —kk I' V (Ck(I"; ~ I', ) ~—A),4e (10e)

0 =IV(0)e' I' ck(I';+I', ) —0), (10f )

where 6=—(g) (g & (x)())~(x)) is not yet normalized by
its equilibrium value go = (gjjg)'~'; g), =—gy 2ieh;
N(0) ~m, p~/2v' is the normal electron density of
state at the Fermi surface, c is the normal state
conductivity; D=- m~7. 1 ls the diffusion constant
with v~ denoting the Fermi velocity, and the con-
stants A. , B, g, and D, appearing in these equa-
tions are still functions of T, p, = (2vv, T) ', and p,
=—(4v7, T) '.

7L = ln( T,/ T) + ())(—,
' +p, T/T, ) —(((—,

'
+ p, ), (1 la)

&=- (4») '4"(2+P.)+ bA'"(2+P.)l,

C = (4vT) '(()"(-'. + p.), {11cj

p, g (u+ 2 + p, )
' (22+ 2 + p I)4mT

(11d)

If we then introduce

c((=n,fexp(i2e)(), u, = —C U„

u, = —(2eC) 'U„@=X—Vy,

(),-=(ir, /4e)(r,'+ r;), y = D-', C, = CDID„

g = (D,/a)'~'/~, = (D,/2)'~', c,= ~/TIC„
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where

1F=—,cosh —
2 2 2 dE

8T ~ „2T (e' iw, ')'

= (4 T) 'P. '[(j"(l+P.}+P.4 "(l+P.}] (11e)

C, -=('/K', =p,((' '(-,'+ p, )C„

C,[-(j"(l +P,) —-'P.(}'"'(-'+P.}l"
(16v(rD)'~'(I(''( —,'+ p, )

(13d)

(13e)

r, = [D(e + 7, ')/-2r, ']'-'/A„

)( = (D/167roD, )' '/n„

f, = (4'.'e/C, y)'i' = (D/4C)'i'/6„
= [8vN(0)e'] 'i',

then Eqs. (10) may be converted to the normalized
equations already presented once before"

a
C y —+u, f V'f+ 4e'Q-'f+( '(f ' f) =0, -

(12a)

Some of Eqs. (12a)-(12g) are needed for our later
evaluation of j"„but first let us look at Eqs. (10)
in order to establish an order analysis which shall
be needed for our derivation of an expression for
j,"in terms of the variables in Eqs. (12) using the
GE method.

For generality we assume" &, —
7, -(2 vT) ',

Ao and introduc e the di mens ionl ess s mal l
parameter p=-~, &o. If we then equate the mag-
nitudes of various terms in Eq. (10a), we find

A -B4'0 C(v -D, (k —-2eA)'- U-q'. (14a)

Using the explicit forms in Eqs. (lib)-(lid), we
conclude

c,xf'( x' 'xx (f Q)=xx, *

u, = f,' Jl de/, '$, ,

y——V +g f (} =—cosh(
1

Bf 4T 2T

x —g; 2
x

(12b}

(12c)

(12d)

(v -D(k —2eA)'-qn„k -2eA vPb,—

Also from Eq. (10b), we obtain the order of the
"anomalous vertices" as introduced by GE"'"

(14c)

Substituting Eqs. (14b) and (14c) into Eq. (10c)
we find both sides to be -q &o. Similarly, every
term in Eq. (10d) is -q'&'„ if we put

e &j&
—'(}r',(- (v), (14d)

showing the self-consistency of the order analysis.
Then from eveyy term in Eqs. (10e) and (10f), we
conclude

8 8
+P (A} + V'A )e~ as

(12 e)

(12f }

P 4''„' (»g}

[0"(l +P—.) +PA" (l +P.)]
P,C 4"('+P.}+b,(}'-"(-'+P.}] ' (13b)

C, =- $'[1+ (7,e)']/l. ,'

=4C,P"(2+P.) [(("'(2+P.)+P.P"( +2.P}]',

(13c)

which involve the following dimensionless functions
of p, andp, :

oo -1
(13a)

n=0

j —N(0)e vzq'A„p - N(0)

eon�„

(14e)

which implies p-V j [-N(0)eq'6', ], as is also
required by the charge continuity equation p
+V ] =O.

The above order analysis does not merely estab-
l. ish the self-consistency in the derivation of the
TDGL equations by GE, it also provides us a
systematic approach for deciding to what order
one must calculate any physical quantity such as
j o", and how one can exhaust all. Feynman diagrams
which contribute to a physical quantity within
a given order. The order of an individual Feyn-
man diagram is easily analyzed as follows: Every
electron propagator is regarded to contribute a
factor of r, [ ,7-(2 Tv) ']-; each impurity (dotted)
line a factor [N(0)7, ] '; each energy (i.e. , fre-
quency) integral a factor 7, ', and each electron-
momentum integral f d'p-N(0)r, ' (assuming
that the contribution comes from a spherical shell
around the Fermi surface of a thickness -T, ,
otherwise the contribution may be larger, as
when evaluating certain ~-independent diagrams



4840 CH IA- REN HU 14

+Q ~
y ) aE

Bt 0

where Z=e —(g/e)p. We remind the reader that
here p, means the equilibrium p., of Sec. I and is
therefore independent of space and time. Now

using Eos. (14) we find the right-hand side of Eq.
(15) to be of order N(0)q'630, which implies that
we must evaluate & and j o, respectively, to the
orders

e -N(0) L'6r20j o
-N(0) v~q'60. (16)

In Sec. III we shall apply the QE method to derive
an expression for j," in terms of f, Q, X, u„
and Q of Eqs. (12) to the order of Eq. (16). We
shall not in this paper attempt to derive a cor-
responding expression for & tothe order of Eq.
(16}, in order to explicitly verify Eq. (15), be-
cause in Looking into this, we find that this task
is actually more tedious than it might appear to
be. This is because the lowest-order nonvanishing
contribution to e is actually of order N(0)6'„so
that to verify Eq. (15) one must actually extend
the TDGI equations to next order in g'. Thus,
Eq. (15) is not reaLLy a royal road for obtaining

j „even in the linear-response limit.

which contribute even to the normal state). The
order of any bare vertex function follows from
our analysis which leads to Eqs. (14), and the
factor [tanh&;/2T —tanh(&, —&u, )/2T] associated
with any anomalous vertex is of order (&u, /
2T}cosh '(e, /2T) q'-, when only linear response
is of interest. The Lowest order contribution of
a Feynman diagram is when all external fre-
quencies and momenta are set equal to zero. When
it is necessary to include higher-order contribu-
tions (such as when the leading order vanishes),
then one must expand the electron propagators
with respect to all external momenta k,. and fre-
quencies &u, . Then the appearance of %, to the
nth power increases the nominal order of the dia-
gram by a factor q", while the appearance of ~,.
to nth power increases the nominal orderby q'".
In order to help the readers appreciate the use-
fulness of this systematic order analysis, we note
that this order analysis actually impbes (as we
shall see below) that to eva. luate j o, it will not
be sufficient to evaluate every contributing Feyn-
man diagram to its lowest order, even when the
leading-order contribution is nonvanishing.

To see up to what oxder we must evaluate j„
we first use the definition j,—= j —(p/e) j, and
the equations of continuity: Be/Bf + v j = j ~ E
and Bp/Bt+V j =0, to obtain

(2m) '[(p-k-eA)(e-eP)+(p-eA)(e —~-ep)],

where (p, e) denotes the momentum and frequency
of the electron line leaving this vertex, and (p —k,
e —&u) denotes those of the electron line entering
this vertex. However, in as much as we ignore
any Hall-effect related contributions, Eq. (17)
may be approximated by

(18)v&(e —240 —8 Q)&

where v~ is a vector parallel to p but has a mag-
nitude equal to the Fermi velocity. We shall see
that the —v~eP term in Eq. (18) is the only con-
tribution to j, that is explicitly Q dependent, and

that this term is important for maintaining the
gauge invariance of j, . It is clear that this term
simply gives an additive contribution to j 0 which
is just —P times the current density given by
Eq. (10e). Since we shall limit ourselves in this
paper to ~&ne«heat-current responses, we use
only the first term in Eq. (10e). Then using the
identity c = 2eN(0)D, we may write this contribu-
tion as

(19)

where for later convenience we have introduced
the systematic notation

N„,. p," P=(&+ 2+p. ) "(s+ '+p, )
'-(20)

Next we evaluate the contribution to j 0 from the
first two terms in Eq. (18). According to the GE
method, this contribution may be further split
into the regular part and the anomalous part. Just
as in GE's derivation of the current expression,
we expect on physical ground that there is no
regular contribution to j 0 that is not explicitly
dependent on & and &*.' This is because in the
normal state a heat flow only results from a de-
viation of the distribution function from equilib-
rium. Diagrammatically this is represented by
the anomalous diagrams. Thus the lowest non-
vanishing contribution to the regular part is the
diagram depicted in Fig. 1(a}. This diagram must
stiLL be intrepreted as two identical diagrams:
once as the retarded regular diagram, and once
as the advanced regular diagram. The inclusion
of impurity averaging is standard, ' and amounts
to renormalizing the 4 and &* vertices for the

111. DERIVATION OF AN EXPRESSION FOR I)

In this section we apply the GE method to derive
an expression for j, in terms of the variables
in the complete set of TDGL equations (12). The
j 0 vertex, according to Eq. (9), is
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(a)

(c)

{e)
b,

FIG. 1. Diagrams which can possibly contribute to the
calculation of ] 0+ Qj up to the desired order [Eq. (16)],
before impurity averaging. The left-most vertex stands
for the factor (2E —cu)v, which includes a factor of 2 for
spin sum. The first two diagrams are "regular" dia-
grams as defined by Gor'kov and Eliashberg, and should
be used once as retarded diagrams, and once as ad-
vanced diagrams. The rest of the diagrams are "anom-
alous" diagrams, each having the right-most pointed
vertex being the anomalous vertex. A wavy line stands
for the factor —ev A. The I' factors (each defined with
an extra minus sign) are the anomalous vertex parts
introduced by Gor'kov and Eliashberg (see Fig. 2).
Omitted in this collection of likely contributing diagrams
are some 4-independent regular diagrams which clearly
must vanish on physical grounds (see Sec. Ill, and those
diagrams which may be obtained from any of the depicted
diagrams by inserting regular —ev A vertices for as
many times as are permitted by the order analysis.

present diagram. After some straightforward
algebra, it is found that the leading nonvanishing
contribution from this diagram is linear in ek:

(&.., -P.&..,([D (((-&.(2(( g,
—

g, )
—p, '(N, , —p, N, ,)

x 2) (1) +&,(2) b, (I)&*(2)
Bt2 Bt 1 1=2

(21)

where the notation N„„ is that introduced in Eq.
(20), and one should note that all N„, a.re finite
in either the dirty limit (p, » 1 and p, ) or the pure
exchange-scattering limit (7, = r, , p, = —,p, ), but
can become small for vt0 if p, «1. Owing to the
natural restriction p, - & p, , the last case is pos-
sible only in the limit of low magnetic impurity
concentrations (p, «1) in a pure sample. Since
Eq. (21) is already of the order prescribed for
j" in Eq. (16), there is no need to extend this
contribution to higher powers in (d or S',. That
the expression in Eq. (21) depends explicitly on

~, and therefore vanishes for a static &, is ex-
pected from physical viewpoint, which also ex-
plains why one obtains vanishing contributions
from the ring diagrams (11 of them after impurity
averaging) involving two & and two &* vertices
[Fig. 1(b)], since to evaluate these diagrams to
within the order of interest [Eq. (16)], one should
drop all (d dependences in the electron propagators
(and then expand them to first power in v k, , or
insert correspondingly a —v ~ eA vertex).

Next we consider the anomalous part. All anom-
alous diagrams which can possibly contribute
to j, within the desired order [Eq. (16)] are de-
picted in Figs. 1(c)-1(l). Using the order analysis
of Sec. II, we first realize that Figs. 1(c) and

1(d) are already of nominal order N(0)vzq'n2. "
Thus in evaluating these diagrams we may neglect
the external-frequency dependences in the electron
propagators. The result is then

0'

p, (p, g, +N, , —N, ,)

x ~ 1 +$, 2 a 1Z*2
Bt + Bt,

(22)

As an illustration of the real-frequency diagram-
matic method of GE, we have presented more
details of the derivation of Eq. (22) in Appendix
A. Next we consider Fig. 1(e) which has a nominal
order N(0)vrri42. We must therefore evaluate
this diagram to third power in the k dependences
of the electron propagators, but we may still
neglect their ~ dependences due to our limitation
to linear responses. [For the same reason we do
not allow the vertex eQ to appear in Fig. 1(e) or
any other anomalous diagrams for which the anom-
alous vertex factor is already proportional to (d. ]
Without expanding the electron propagators with
respect to v k, it can be shown that Fig. 1(e)
gives a vanishing contribution to all powers in

k, since after performing fd'p =N(0) f dE, one
is left with the integration of an odd function of

Similarly one can show that insertion of one,
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two, or three more —v. eA vertices into Fig.
l(e) does not change it into a nonvanishing con-
tribution. Furthermore, one can show that Fig.
1(f) vanishes identically, and Fig. 1(g} exactly
cancels out Fig. 1(h). [Each of Figs. 1(f)-l(h)
are actually three diagrams after impurity aver-
aging. ] Thus Figs. 1(e)-1(h), though their nom-
inal orders suggest that they should be included
in our consideration, actually do not make any
contribution to j

We are then left with the anomalous Figs. 1(i)-
l(l) involving the anomalous vertex parts I', de-
fined by GE."-"' Figure 1(i) may seem simpler,
but it turns out that Figs. 1(j)-1(l) are more

straightforward to evaluate. %e therefore con-
sider the latter diagrams first. Recalling from
Eq. (14c) that F,'-rLL„ it is seen that these dia-
grams are already of nominal order N(0)vs'620.
%e thus can expand the electron propagators to
first power in v k (or insert correspondingly
a -v eA vertex) and at the same time drop all

dependences in the propagators. Impurity
averaging converts every diagram into three dia-
grams besides renormalizing the & vertices, and
the relation I', (+ e) = I",(- e) [cf. Eqs. (10c) and

(10d)] may be used to combine Fig. 1(j) with 1(k)
and 1(1). The combined result of Figs. 1(j)-1(1)
ls

0'

8ve2T pl

(23)

Finally, let us look at Fig. 1(i). It is easy to see
that the leading nonvanishing order of this dia-
gram is N(0)vzq&'„so we must also evaluate its
next-order correction which is a factor g' smaller.
This means that not only must we expand the
electron propagators up to the third power in k

(or inserting into the diagram up to three -v eA

vertices), but we must al.so evaluate the anom-
alous vertex part I", to next order in q'. Recalling
that l",' is defined by GE through an integral equa-
tion as represented by Fig. 2, "~' it is clear that
to find the next-order correction DI',' one must
extend the integral. equation depicted in Fig. 2 to
next order in q-, which includes, among other
things, evaluating the kernels Q, —Q, up to order
k'[ &I' or I &I '. This is a formidable task though

it can be done in principle. Fortunately, as we
shall see below, we actually do not need to find
the quantities 6I",' if we are only interested in

evaluating ( j," )„, which already contains the
desired information about a and SD. Only when
one wishes to study the )oppl behavior of j, and
e, or to explicitly verify Eq. (15), must one then
find the quantities 6I,'. The reason is that only
the gradients of 6I", appear in j," with vanishing
averages. This fact further supports our earlier
statement that Eq. (15) is not a royal road for
determining j o. In terms of OI", , we may now
present the contribution to j, from Fig. 1(i}:

8''T 2 p,

' i ' dec[(r', —I -, )+(()r', —ar-, )]

9 D—i —,&V' dec(I", —I', ) .
F Pi

(24)

Equations (19) and (21)-(24} together, constitute
our final expression for j ",. Let us first check the

I
I
I
I
I
I
l

FIG. 2. Integral equation introduced by Gor'kov and
Eliashberg to define the anomalous vertex part I"+,
whose arguments are E, k, (d or &, r, t. The corres-
ponding equation for 1 is obvious.
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gRuge lnvRllRQce of this expression by noting thRt
under a gauge transformation

a- ae'", A- A+ V'A,

2se j. , e ~AI"+I —I'++I + —cosh
2T 2T BI,

which may all be easily verified by using Eqs. (10).
It is then clear that the gradient terms in Eqs.
(23) and (24) are already gauge invariant, and that
under a gauge transfor mation,

1&-)~+, (-,'X, , P, X, ,)+(-'. P, )(iV, , P, X, , P, ~, ,)

(25)

&2 .+Pi'&i .=&2,o+(P./Pi»2
~ i

we finally establish the gauge invariance of j,.
Our next step is to rewrite j 0 in terms of the

normalized quantities of Eqs. (12). For example,
using ))(=dg exp(i28)(), @=A—ZX, it may be

(26)

EvRluRtlng tI1e E integral by R contour lnteglRtlon
method, we obtain P,N&, +(p,/2P, )N, , ——,iV;,
Substituting this result into Eq. (25), and using the
ldeQtlty

4f V + 4e'Qg

In this array, me obtain a more compact expression
fox' jo'.

j",=,' I.„+I.~ 4e' 'QX —v'

&„=-&...= [P,/(P, —P,)'l[g(-'+P, ) —(((-'+P,)1+ [P,/(P, —P, )1)t)"'(4+P,) (28)

f 8 -=&2 0- 2P.&s 1- (P /P»2 2 =[1+Pip./(Pl P.)']0"'(2+—P.)

—[p~,/(p, p, )']((")(r+ p—,) + [p,p, /p, p,)]4"'(k+p—,)

have already been defined in I for expressing our result on 8 near H„, while

1 (1+6~,/~, )g" ) (-,
'

+p, ) —(1 —1(h.,/~, )p,y
")(-,

'
+ p, ) -(1-27,/~, )p', q

("(-,
'

y p, )
Q 1+p,g")(-,'+ p, )/0("(-,'+ p, )

(29)

,T & L„+I-Q u, —,I.cV(u, +Ac, +-,'DT', &'u, ),e T

L„=Ma, —P,X,—p, '[1 —p, (()( '(—+p, )]

= [p', /( p, —p, )'][()(2+p, ) —(k+p, )]

+ [pl/(p, — )']p&'"(-'+ ) p'[+pip. /( pi p.)]4"'(l +p.)-p, '[1 —p,t"'(-'-+ p, )] (32)
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(y)(1 )
~g 30'"(z +p.) + 5P,P"'(2 +pg) + pg4 ( +pg)

1+p, il"'(—', + p, )/t{'"(-,'+ p, )

1 —p~P (2+ p, )
+ p,("'(2+p, A' ' (2+P, )

(33)

(34)

5u —= f de (&I'+ —0F ) .
C

(35)

~e remark that in bringing about u in Eqs. (27) and (31), we have used the fact that. all weighted e integrals
of I" I'- a,re proportions. l to each other [which may be easily verified by using Eq. (10c)] and therefore
can a]I be expressed in terms of u, —= —C 'U„where U, is defined as the first part of Eq. (10b). Equations
(27)-(34) constitute the main result of this section.

IV. PROOF OF EXACT CANCELLATION OF T

DIVERGENCES BETWEEN j~o AND g X m CONTRIBUTIONS

TO SD IN THE LOW-FIELD LIMIT

o. ~,=(vy, )
' dxdy(v j"),

Sv~e. , =(vT) ' dxdy(v j").
(37)

o =(j„").„/(h, ).,= (j"„)„/vB,

S, =y, (j"„)„/vBT
(36)

In the low-field limit when the vortices are very
far apart, we can consider an isolated vortex line
and realize that it actually occupies an area P,/B.
In terms of such an isolated-vortex-line solution
of the TDGL equations we have

(j"„),„=(B/y, ) dxdy f'", ,

We turn to the calculation of the Ettingshausen
coefficient n and the transport entropy S~ in the
low-field limit (B =0) by using Eqs. (2) —(4) and

(27). To evaluate j"„ the TDGL equations of Eqs.
(12) must first be solved and then substituted into
Eq. (27). For an arbitrary value of B below H„,
one must seek a solution of Eqs. (12) correspond-
ing to a two-dimensional triangular vortex lattice
moving with a. uniform velocity v = (8)„/B in the
x direction, when the external magnetic field is in
the e direction, and an applied electric field (h),„
is assumed to be in the y direction. Then it should
be clear from Eqs. (2) and (3) that

It is clear that if j" should turn out to approach a
finite limit a,s T - 0, then SD cc T ' in this limit and
the third law of thermodynamics would be violated.
In view of Eq. (4), we have two contributions to
SD:

SD =SD+ &SL)

and in the low-field limit,

(38)

Sv =(vT) ') dxdy(v j",),

5Sv'~= (vT) 'dxdy(v g-x m). (40)

The purpose of the present section is to show that
both SD and 6S~~ diverge like T ' in the low-tem-
pera, ture limit, but the tn)o divergences cancel each
other exactly, leaving a, physical linear T depen-
dence for SD in the limit of T- 0.

We start by eliminating X, g„and P from Eq.
(27) in favor of the gauge-invariant quantities

1P =g + —cosh "" —y, P =- deP =|t+y
4T 2T 6

so that The result is

j,"= 2' (Le+L, )V f (v V)f4me'T

(2ef)'QP, +Le(2ef)'Cp' —LJ~,vf' +=,
m QQ

(4S)

where we have replaced f by (-v. V)f for a steady
flux flow, and we have ignored the difference be-
tween (IF) and qt due to X~F-PF being much smaller
than any other characteristic length of the prob-
lem. " Using Eq. (12e), and the fact that 2ex=6
for an isolated vortex line, we obtain the equation

and the boundary condition for P, :

8 2 2 ., 1
y ——V +f f- P =—coshat ' ' 4T 2T

xy —P+ VQ
Bt

(42)
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singP ~ cosh as y-0,
88T 2T

where (r, 8, z) are the cylindrical coordinates
around a vortex core. For linear flux flow, Eq.
(42) may still be simplified to

der to uphold the third law of thermodynamics at
all 8), the proof given below is valid only in the
B-0 limit.

First we use the definition of X just below Eq.
(lie) to establish that

7'P —f f p =0 (44)
tre2+ v/4me'T = I/16ve'l). '. (52)

j",=,' ((L„+Le)[Vf (v V)f +(2ef)'QP]

—L„u,Vf 'j+ " (for p, &= 1), (45)

Before we study the low-temperature behavior of
Eq. (41), we must still recall that the TDGI. equa-
tions (12), and Eq. (27) are all derived under the
gaplessness condition v, 40«1. In order for this
condition to cover the point T = 0, we must re-
strict ourselves to the limit of high magnetic im-
purity concentrations when p, » 1. %e thus lose
p, as a free parameter but the ratio 7,/v, remains
arbitrary. In this limit we have" f, = t, (=—f'),

P, =(l/ 4T) cosh '(e/2T)P, so that Eq. (41) reduces
to

%'e also need the following identities:

J [(v V)f J'dxdy =»' (Vf )'; dr==»2C

(53)

8 x ma=[- V(P —v Q ) -v x (V x Q )] x m

= (P —v' Q()) jo —V x [(P —v' Qo)mo]

+v[V (Q, xm, )+Q, I,],
where use has been made that V' & mo = jo, and
v m, =0. Then ~sing j,=(4v) 'V x(VxQ, ) =-f',Q, /
4m%.', 23 we find

v (gx m, ) =-(4vz') '

x (f '(v Q )P -fg(v Q )' -v'0'])
—v' V x[(P —v Q,)m,]+v'V {Q,x m, ).

V'P —t 'f'P =0, P- (v/2e)(sin8/r} (46) If we further use

as y-0. Furthermore, in the limit p, »1, it can
be shown that

2~,/r,

', (v'Q )'dxdv =-,v ) f Q202odxdy,

Vx[(P —v Q,)m, ]dxdy =0

I.,—(6p,') '{1+2&2/7. ,+ 27'2/~', ) o- T',
—p-~ cc T

(47)

(46)

(49)

(since P —v Q, is regular at r = 0),"the left-hand
side of Eq. (51) becomes

C2- Le/2p, c2 T

which appears in the equation for u, [Eq. (12c)] and
is defined by Eq. (13b). Then it becomes clear
that f j",dx dy indeed behaves like a constant in the
limit T -0, but only because of the appearance of
L„ in Eq. (41). (We have assumed f:-dxdy =0,
which will be verified in Appendix B.) Thus to
prove that there is an exact cancel. lation between
the T ' divergences in SD and &SD~, we need only
show that

dxdy ~ v &f )

We then use f,'Q, /X' = —V xb, to convert the second
term to

where we have put 4mmo=bo-H„, which follows
from the defining equation' V &mo= jo and the
boundary condition mo- -H„/4m as z- ~. %e
have also used the boundary condition" Qo-- (2er) 2e~ as r 0in ord-er to integrate a pure
divergence term. %e thus find that to prove Eq.
(51) is equivalent to proving the following identity:

( f.)*( '().) ( ' " .) = C„=2ex'[2a„-h. (0)l —(2e~)' f)2(r)r dr,

where in view of our limitation to linear re-
sponses, we have replaced f, m and Q by their
equilibrium values f„m, and Q. While we ex-
pect Eq. (51}to be valid at all values of 8 (in or-

which has already been established before [cf. Ref.
23, Eq. (56)].

This completes our proof in the low-field limit
that there is an exact cancellation of T ' diver-
gences between SD and LSD~, implying that SD as
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calculated by using the heat-current expression
Eq. (4) does obey the condition SD-0 as T-0, as
required by the third law of thermodynamics. AT

dxdy I. v Vf '-— dye q 2ef

V. EVALUATION OF So FOR THE LOW-FIELD LIMIT

AND ANALYSIS OF RESULTS FOR BOTH 8=H
AND 8-'="0

We may now evaluate S~ in the low-field limit
for gapless superconductors with arbitrary
amounts of magnetic and nonmagnetic impurities.
The starting equation is just Eq. (41) integrated
over space and without the I.„-dependent terms
since, as we have shown in Sec. PJ, such terms
axe exactly canceled by the b && m contribution in
the heat current-expression, Eq. (4). Thus

de W(e)(2e f,)'Qg,

—I„~ rf,')

The evaluation of the first term has been done
in Eq. (53), and for»» 1 the constant C„=0.2791
has already been evaluated previously. " To eval-
uate the third term, we need to find u, by solving
Eq. (12c) (to first order in v), which has already
been carried out by Gor'kov and Kopnin. " How-
ever, because of the existence of a subtle point
in connection with this quantity (to be elaborated
in Appendix B), we shall go through the solution
once again below: Dropping the y(s/at)u, term
in Eq. (12c) because it is second order in v, and
noting that af'/at= —v' Vf 02= —cos8 df 2O/dr, where
8=i&, it i-s clear that we have u, = v cos8 g(r),
where

—L„u,&f,' (54)
1d, df02

{~g) ( g
2 0

'Y d'V dY

)
e (2c +278 +2rqr~ +7~ )

(e'+ r,')'{4c'+ r, ')r,

Now in view of Eqs. {37), (52), and X '= 2eH„/»',
it is clear that

where

g(r) = —C,$ 'r ' (1 f,')r dr. - (59)

This is the solution given by Gor'kov and Kopnin. "
In Appendix 8 we shall see that this solution re-
quires a subtle modification in order not to give a
spurious contribution to (j )„and Sn, but this
modification does not affect our present evaluation
of the third term in Eq. (56), so we can just use
Eq. (59). Then

This equation may be integrated straightforwardly,
and if the integration constants are taken such that
g-0 as r- ~ and is regular at origin, then the
solution is

df' OO

d&dyu, (9''7)f0=v f rdrd8 cos'8 Z(r) =zzr vg(fo —1)~" (f 1) ——rg y de

= -7t'&C, (',' —1 @dr= -gag, (6o)

where use has been made of an identity derived
previously [Ref. 24, Eq. (39)].

To evaluate the second term in Eq. (57), it is
necessary to find P, by solving Eqs. (43) and (44).
Before we do that, we shall first transform this
term into a simpler form by using Eqs. (43), (44),
and &'Q, &'f',Q, =O. First w—e note that

(6,' —& ') f',(U'Q, )P, dxdy

v V'P -P & peQO dxdy

P —(9 Q ) —(9 Q ) Prd8—
8'v
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For r-O, it can be shown that

(8 Q )-sin8[(2sr) '-sb, (0)r],

P, -n sin8(1/4T) cosh '(s/2T)

4, ~ „„=I-,„' I.,C„+I „C,

(T /&+2T, T +2+2x)
(1+x')'(r'/r, '+ 4 ')

where the constant C, is yet unknown. Then the
last integral above may be evaluated in terms of
C, as

(1+x')' ~'K (x /(1+ x')' ~s}

K,(x,/(I +x')' "}
&& cosh '(spy} (66)

hrv(2e))~(I/4T) cosh '(s/2T) [C, —&&&(0)/20„].

In the limit it» 1, we have»~ 6, »d H„~»,(0),
then

Equation (66), which clearly depends on the two param-
eters p, and v', /r» has been evaluated numerically.
The combination t '4, is then plotted in Fig. 3 with
respect to

(2ef,)'(& Q,)&,dxdy

1= 2sv cosh ' ——'C —', (61)4T 2T

where the function C,(i,/$) may be obtained by
solving

for various values of r,/v, We n.ote that if in Eq.
(67) we replace p, =—(2sr, T) ' by (2sr,T,) ', then I
would become the ratio T,/T„,"where T„and T,
denote the transition temperatures before and
after magnetic impurities are introduced into the
system, respectively. Because of the gapless-
ness condition r, h, (T) « I, the replacement of f by

p, -x"' —Cp as x —0,

with x=r/$. Putting Eqs. (53), (60), and (61) into

Eq. (57), we finally obtain

4,
~

„=I„' I.,C„+L„C,

(63)

Equation (62) has already been solved previously
by numerical method, '4 so, in principle, we could
evaluate Eq. (63) exactly. However, in order to
reduce the amount of numerical work involved, we
shall be contented with an approximate evaluation,
the accuracy of which has already been estab-
lished. "s' In this approximation we put f(r) = r/
(r'+ 6+}'~' with 6= 2.83 being chosen to give exact
results for C, in the limit of high magnetic and
nonmagnetic impurity concentrations when p, » p,
»1. [In this limit C, reduces to Cs evaluated
before, see Ref. 24, Eq. {46).] Then Eq. (62) may
be solved analytically'""

O.2 0.4 Q.6
t = Tc/Tco

In view of Eq. (13c), we define x=r,s, x, =(6C,)' ',
then

FIG. 3. Plotted vs t =- exp j f (2 ) —$ (z~ -. pz)j —Tz/T&0
(the reduced transition temperature), for various values
of &~/T~ (the ratio of exchange- to total-scattering life-
times of the conduction electrons), is the combination
t '4 t~, »t, where e, is defined in Eq. (56), snd is just
the transport entropy S~ calculated in the low-field limit
8 = 0, (only for }f:»I), normalized by (${}/4~)(&~~/2& ).



4848 CH IA- REX HU 14

T,/T„ is usually a very good approximation, unless
one wishes to study the T-0 behavior of 4, when

T,/T„ is very small but still finite as in Sec. IV.
Also, if one intends to extrapolate Eq. (66) to the
region T,~,—1, it is then necessary to keep the
difference between t and T,, T„.

The corresponding results for SD in the limit
B= H„have already been presented previously
[Ref. 1, Eqs. (7}-(10)].We can write it in a form
parallel to Eq. (56):

10

where

4r tM= (-H —B)/[(2tP —1)1.16+ 1]

(68)

= (H,z
—B}/l(2/P && 1.16) for It» 1, (69)

4z = L,/La, (70)

and use has been made of Eq. (13e), as well as
2eD,H„=A. Comparing Eqs. (68} and (69) with Eq.
(56), we see that if 4, = 1.16 && 4, , we would have a
linear B dependence for SoI„„,down to B=0. The
ratio of 1.16 4, /'4, is therefore a good measure of
the deviation of So(B) from linearity, with a value
bigger than one indicating a positive curvature.
In Fig. 4 we have plotted t '4, with respect to t for
the same set of values of r,/r, as in Fig. 3, and
in Fig. 5 the ratio 1.164,/4, has been plotted in
the same way. From Fig. 5 we see that So(B) is
predicted to have a positive curvature for most
values of the two parameters t and r, /r, , except
in the limit of ~,= T, and t «1, corresponding to
a near-critical amount of exchange scattering,
combined with almost no ordinary scattering —a
situation most likely unrealizable in practice.
Figure 5 also shows that So(B) has a larger up-
ward curvature for dirtier systems (i.e. , for
smaller r, at fixed r,), especially in the low mag-
netic -impurity concentration limit.

In the following we give analytic results for the
limiting cases. For p, » 1, t - 0.140 p,' «1, cor-
responding to high concentrations of magnetic im-
purities, we use Eqs. (47) and (48) to find

1 2 T j ~27

0.2 0.4 0.6
& = Tc/Tco

0.8 1.0

FIG. 4. Plotted in the same way as in Fig. 3 is the
combination t 42, where 42 is defined in Eq. (68), and
is just the transport entropy SD calculated in the high
field limit 8 =H~2, normalized by $0/T times the mag-
nitude of the equi1ibrium magnetization [M~ = (H, t B)/—
47()1. 16(2&2—1) +1].

(29.1 t' for r, «r, «( 2tTt) '
(83.0 t' for r, = r, «(PmT) ',

where use has been made of Eqs. (47)-(50) and our
earlier results on CE.

Next we consider the limit p, = 0.203 (1 —t) «1,
corresponding to very low concentrations of mag-
netic impurities. In this limit L,= |tt"' (-, ) is inde-
pendent of p„while

La = [0(-') —t((-'+ p, )]/p, + tt"'(-')

2r, /r, 2r, 1x ' ', ln '+-
o —2,/,)', 1 —2 /, )

I8.46 t' for r, «r, «(2ttT) ',
]110.0 t' for r, =v, «(2ttT) ' .

On the other hand, in this limit 4, may be directly
evaluated from Eq. (57) by using P, = (1/4T)
xcosh ' (&/2T)P, so that

'I (""(2) «r p, » 1,
(-zg'"(z)p, for p, «1,

so that in this limit,

II for p, » 1»p„
(5.79 (T, /r, )(1 —t) ' for p„p,«1 .

As for the behavior of 4, in the limit p, «1, we
note that in Eq. (66), L,/L„ is just 4„L„=(Sv')
X (1+6r~/T ), Cz/La = 0.293(1 —t) ', while in the x
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I I I

0.2
l I I

OA 0.6 0 B.
&

= Tc/Tcc
I.O

FIG. 5. Plotted in the same way as in Figs. 3 and 4 is
the ratio 1.16 C JK) f/4 t, which is just the ratio of the
transport entropy SD calculated in the limit B = 0 as-
suming t(: » 1, and its would-be value if the linear field
dependence predicted for &D near H, 2 is extrapolated
down to B = 0.

VI. CONCLUSIONS

In this paper we have calculated microscopically
the transport entropy SD of vortices in gapless
superconductors containing arbitrary amounts of

integral, one may replace the factor cosh '(7tpp)
by 1, and use xo=4.05 (1 —t) '~' for p, » 1 and
=1.68 (r,/v, )'~' for p', «1. Thus for p, »1 it may
be shown that the second term dominates in Eq.
(66), and

4, ~„„=0.362(1 —t) ' for p, » 1» p, ,

but when both p, and p, are small in comparison
with one, then all three terms in Eq. (66) become
equally important, and we have

4, cc (1 —t) ' for p„p,«1,
where the constant of proportionality (still a func-
tion of r,/r, ) can only be obtained numerically.

magnetic and nonmagnetic impurities, by using
a new general prescription for calculating heat-
current responses in magnetic conductors de-
veloped recently by the author. This new prescrip-
tion differs from the old one existing in the liter-
ature for nonmagnetic materials, by a new addi-
tive contribution to the local heat-current response
j~, equal to the cross product of the local electric
field g and the local magnetization m. The pres-
ent calculation, plus a previous work of the au-
thor, ' demonstrated in both the high- and low-field
limits and for arbitrary ratio of exchange- to
ordinary-scattering lifetimes, that this new addi-
tive contribution to j" is necessary in order for
the calculated SD to approach zero as the absolute
temperature T approaches zero, as is required
by the third law of thermodynamics. It is worth
emphasizing that when both g and m are space
dependent, then the space average of gx m does
not in general equal to the cross product of the
space averages. This implies that an earlier
simpler prescription proposed by Maki' for re-
moving the unphysical divergences of a calculated
SD at low temperatures is valid only in the vicinity
of H„when $ is essentially uniform in space. '
Thus the exact proof that S~-0 as T-0 presented
in this paper for the lose-field limit, which has not
been achieved by anybody previous to us, should
constitute a strong support for the correctness of
our new prescription for calculating heat-current
responses in any magnetic conductors, including
type-II superconductors.

Combining our high- and low-field results on S~,
under the gaplessness condition T Ap«1, we pre-
dict that SD will first rise linearly as the average
magnetic induction B is lowered below H„, and
then it will bend upward for practically all con-
centrations of magnetic and nonmagnetic impuri-
ties as B is further lowered toward zero, but S~
will always reach a finite value at B =0, for any
fixed Tg0. The exact amount of upward bending
depends on the concentrations of magnetic and
nonmagnetic impurities, but is generally larger
for dirtier systems. These results are sum-
marized in Figs. 3-5. While experimentally
there have not been measurements of SD on gap-
less superconductors containing paramagnetic
impurities, there do exist measurements of So(B)
on superconductors with a finite energy gap. A

very recent such measurement by deLange and
Otter" for the full range of fields 0&B &H,» does
show essentially the same type of field dependence
of SD predicted here for gapless superconductors,
suggesting that the dynamic properties of type-II
superconductors with and without gaps are at least
qualitatively similar, in spite of the fact that the
dynamic equations governing type-II superconduc-
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u, =(v/6p, L, ) 5T,

or, because U, =-Cu, and Eqs. (llc), (34), we
have

«. 0'"(k+P.)+P.4'"(-'+P.) 5T1-p. 0'"(l+p.)
(72)

There exist two internal-consistency checks
on this identification. First, from Eq. (59) and
M, =vcos8g(Y), we note the long-range nature of
u, (i.e. , u, a- s8c/roeven for r»A), which implies
that it cannot be of electromagnetic origin, since

tors with a nonvanishing gap are drastically more
complicated than those for gapless type-II con-
ductors. Nevertheless, a direct test for the pres-
ent theory by measuring SD(B) in superconductors
with paramagnetic impurities remains worthwhile,
particularly with regard to the verification of the
predicted increase of the upward curvature of
S~(B) as one increases the amount of nonmagnetic
scatterings in the system, which may very well be
a more general feature pertaining also to super-
conductors with a finite gap.

In the remaining part of this section, we pre-
sent a plausible identification of the physical
meaning of the anomalous quantity u, (or U, = —Cu,
before normalization) in the TDGL equations, Eqs.
(12a) and (12c), which was first discovered by
Eliashberg. " While it has been demonstrated in
various places (Refs. 13, 15, 18, and the present
work) that u, plays a very important role in the
dynamics of gapless superconductors, particularly
in the limit of low magnetic impurity concentra-
tions, so far the physical meaning of u, seems to
have not been discussed beyond the general associ-
ation of the anomalous terms with a nonequilibrium
distribution of quasiparticles. "'" Some insight
into this question has been revealed by our Eqs.
(27) and (31), which show that the gradient of u,
appears as a contribution to the local heat-current
density j [i.e. , the third term in Eq. (31)]. Since
this term does not depend on the superconductive
order parameter explicitly, its existence can be
reconciled only by identifying u, as being propor-
tional to the local temperature deviation from
equilibrium 5T. The proportionality constant be-
tween Qy and 5T may then be determined by setting
the third term of Eq. (31) equal to -K„V5T, where
the normal state (electronic) thermoconductivity
K„may be related to the normal-state electric
conductivity o by the Wiedemann-Franz law IC„/o
=(v2/3e2) T, which is exactly valid for the systems
considered here, since our model includes only
elastic scattering. In this way we obtain

U, =- (1/T) [1-p.0'"(-.'+ p.)1 ~T (73)

Comparing this equation with Eq. (72), we find
them to agree only in the limit of high concentra-
tions of magnetic impurities when both expressions
reduce to

U, = —(-', v'7,'T) 5T (whe. n T, «T„).

The discrepancy between Eqs. (72) and (73) in the
general case is not fully understood yet, but we
do not think that it is a serious alarm to our as-
sociation of u, with 5T, since one already has a
similar difficulty when one tries to identify

fg, de=as the electrochemical potential. Refer-
ring to Eqs. (12b), (12d), (12f), and (12g), we see
that a different weighted average of g„namely,
u» appears in the equation for the phase X of the
order parameter, while it is g which appears in
the equations for j and p. We have u, =g only when
the magnetic impurity concentration is high. Ap-
parently, when a gapless superconductor with a
not-very-high concentration of magnetic impurities
is driven out of equilibrium, by say, an external
electromagnetic perturbation, then its elementary-
excitation distribution function is more complicated
than can be described by a local equilibrium dis-
tribution, which is characterized by only two
space-dependent parameters 6T(r) and 5g(r).
Thus any attempt to identify 5T and 5g in the
equations for j" and j, can only be taken in an
effective sense, unless the magnetic impurity
concentration is high, as we have cautiously stated
in Sec. I.

any electromagnetic disturbance in a superconduc-
tor should be screened off within a distance X or
&, with ~ -T. Identifying u, as a temperature dis-
turbance is then supported by noticing that the

(r, 8) dependence of u, agrees precisely with a
corresponding behavior of 5T outside a vortex core
obtained previously by Clem" in a phenomenologi-
cal theory. (Note that the overall sign also agrees. )
As our second check on the identification u, cc 5T,
let us see whether the U, n, term in Eq. (10a} may
be attributed to a variation of temperature in the
corresponding equilibrium Qinzberg- Landau equa-
tion, which is just Eq. (10a) without the terms
96/sf and Ub, . While the coefficients B, C, and

D, all depend on T except in the limit of high con-
centrations of magnetic impurities, it is not dif-
ficult to convince oneself, using the order analysis
of Sec. II, that the dominant T dependence is in

the Aa term Set. ting (dX /dT) (5T)n. equal to U, a,
we find
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APPENDIX A

In this appendix we illustrate the real-time Feynman-diagram method of Gor'kov and Eliashberg, for
studying dynamic properties of superconductors at finite temperatures, by giving more details of our
evaluation of two diagrams contributing to (j ,"). They are Figs. 1(c) and 1(d) which involve s and z* as
the anomalous vertices. Using the Feynman rules reviewed in Sec. II, we evaluate Fig. 1(c) as

N(0) ",

" dg (2e —(d) v (&u, /2T) cosh '(e/2T)b. R(1)a*(2)
cR4vtp , ~ 4v (I —$+v'8A+giTg)[e —(h)h+$ —v'(kg- eA) +t/2 Th][ e—(d —$+v'(k+eA) —

p iT']h

where ~ =~, +(d„k=k, +k» b, ~~ ~ and 5* ~ denote renormalized vertices which, to the lowest order in g
needed here, is just the bare vertices A and a* multiplied by the factor (2&+i/T, )/(2e~2i/T, )." Note that
we can include the effects of the vector potential A by including it in the electron propagators, because the
commutator of k (or (h)) and A(r) is negligible within the order of interest. In view of the (d2 factor in the
anomalous-vertex factor and that only linear response is considered here, we may drop all other ~ depen-
dences. Then we can expand the integral to first power in k or eA, perform the $ integral (by contour in-
tegration) and the angular average, to obtain

co

2e f +S/Ts 2C +&/Tj &iTj 4T

Figure 1(d) may be evaluated similarly, giving precisely the above result with the replacement i- i, -
(d2-(d„and (k, —2RA)-(k2+2eA). The two contributions may be combined (after the substitution e- —e
in the second contribution), and the e integrations may be performed by contour method (after an integra-
tion by parts)

pp . cosh '
)

=)-p. p'"(-,' p, ),e+z T, 4T

yl+ g 'Pl+ p

(o+ / )(po / ) OP
" hT 4oP~ (P ~ —,

'
P )( ', +P, ) P

'
P " '+P )

n=O

Then ~sing the definitio~ for N„„ in Eq. (20), we can finally cast our result into the form given m Eq. (22).

= —v 'U ' V Q&dxdgAPPENDIX 8
In Secs. III and V, we have assumed that the

gradient term = of j", [cf. Eqs. (27) and (31)] give
null contributions to ( j ",)„and Sn. From the
physical point of view, this assumption might be
easily acceptable, but to prove it mathematically
turns out to involve an interesting subtle point
which we elaborate in this appendix.

The subtlety actually arises only from the sec-
ond, third and fourth terms in Eq. (31), so let
us first show that the first and last terms have
null space averages. We notice from Eq. (12c)
that in the linear-response limit V'u, cc sf '/st,
so both the last term and the first term of Eq. (31)
give rise to the following integral:

1
= —vm' — rg r ~r 6r

(1-f,') r dv

= vvC, (ln R+ 0.497) g0, (Bl)

1
=uv ——r f, r dv =O. —.

N'

Now let us consider the simplest of the three mid-
dle terms in Eq. (31), viz. , the term in direct,
proportion to -Vux. If we use the solution for g,
given by Gor'kov and Kopnin [i.e. , Eq. (59) and

u, =vcos&g(r)], we find

where use has been made of Ref. 24, Eqs. (14),
(18), and (28). It is easy to see that this result
is necessarily unphysical. In our earlier analysis
of the order of each diagram, we have already
noted that this contribution is larger than the oth-
ers by a factor q '. Its inn dependence also makes
it dominant over the other terms. Then, because
this contribution does not have a factor ~', in front,
it does not even vanish when T is let to approach
T,. In the conclusion section of the main text, we
argue that u, has the physical interpretation of
being proportional to the temperature deviation
from equilibrium [cf. Eq. (71)]. If this is further
confirmed, it then becomes very clear that we
must have (-V'u, )„=0, or else the isolated vortex
line under consideration would be subject to a non-
vanishing average temperature gradient in the —8
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direction, which would of course drive a heat flow
in the direction v. This dilemma is resolved by
noting the long-range nature of M, (i.e. , u, ~ c os8/r
even for r»X), which implies that there is really
no "isolated vortex limit" for u, . We must there-
fore regard the vortex line under consideration to
be located at the center of a unit cell. Since u, is
odd with respect to the transformation r-- r, it
must vanish on the cell boundary. If we adopt a
Wigner-Seitz approximation, then we must solve
Eq. (58) with the boundary condition g(r)-0 as
x-R, where R =(p, /mB)'~'»)). is the radius of the
circular unit cell. Then the solution is only slight-
ly different from that of Eq. (59):

(1 y, )r-2dv.

Because 6 ~ (g/R)'in'«l, it is negligible in most

calculations involving u„such as in all the earlier
results for flux-flow resistivity in the low-field
limit. "'" However, if Eq. (B2) in place of Eq. (59)
is used in evaluating f dx dy(- Vu, ), the result is
no longer that given in Eq. (Bl), but is exactly
zero, as it must be from a physical point of view.

Using the new solution for u, in Eqs. (B2) and

(B3), it is not difficult to show that the second
term in Eq. (31) also has a vanishing space inte-
gration. Since we did not yet derive an expression
for 5u„ it is not possible for us to explicitly veri-
fy that J dxdy (-V5u, ) also vanishes. However,
in view of the fact that 5u, is a higher order cor-
rection to u„ it should be safe to assume that the
fourth term in Eq. (31) also does not contribute
to (j")„and Sn. We shall be contented with this
unverified assertion in this work, since the der-
ivation of 5Q~ could amount to doubllDg the pres-
ent effort, as we have explained in Sec. III. It
would seem reasonable to postpone this task until
one studies the local distribution of heat flow,
where the gradient terms become important.

*Supported in part by the NSF under Grant No. GH-34509.
/Present; address: Dept. of Physics, Texas ASM Uni-

versity, College Station, Tex. 77843.
~C.-R. Hu, Phys. Rev. B 13, 4780 (1976).
2A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 (1957)

[Sov. Phys. -JETP 5, 1174 (1957)].
H. B. Callen, Thermodynamics {Wiley, New York,
1960), Chap. 17.

This amounts to ignoring &1,~~ and T jEJ; with respect
to 1, where 7„ is the transport lifetime, (d~ —= ea/m*c
is the eyelotron frequency, T is the temperature, and

Ez is the Fermi energy. Using H &H~2, it may be
shown that for the gapless superconductors considered
here, &„~, is at most of the order {7,40) (Do/Ez). Thus
both conditions are easily satisfied whenever T~ «EF.

5For a review on flux-flow phenomena, see, for example,
Y. B.Kim and M. J. Stephen, in Superconductivity,
edited by R. D. Parks (Marcel Dekker, New York,
1969), Vol. 2, Chap. 19.

6C. Caroli and K„Maki, Phys. Rev. 164, 591 (1967) ~

'K. Maki, Phys. Rev. Lett. 21, 1755 {1968);J. Low
Temp. Phys. 1, 45 (1969).

8The boundary condition that m=: 0 outside the sample
ean not be met only if the sample is multiply connected,
with a persistent current flowing around one of its
"holes. " Such a situation does not concern us here and
may be safely excluded from our consideration.

See, for example, A. L.Fetter and J. D. Walecka,
Quantum Theory of Many Particle Systems (McGraw-
Hill, New York, 1971), p. 228. The substitution
t =- —i7 is not made in our Eq. (9), because we shall
eventually use the real-time diagram technique of
Gor'kov and Eliashberg for evaluating causal response
functions at finite temperatures {see Refs. 12 and 13).

' So far j has been called the energy current operator

as if & is the energy density. More properly j should
be called the magnetic enthalpy current operator, and
& the magnetic enthalpy density, so that u==&+m b,
which satisfies the thermodynamic relation 6u =- TBs
+ p6n + b. 6m, may be identified as the internal energy.
Then we can understand the relation at nonequilibrium
situations: u =- (h&) —(—m- b) —pP, viz. , the internal
energy is simply the total energy minus all the external
energies. This further explains why we should let
~ =—A~ —pQ.

' A. A. Abrikosov and L. P. Gor'kov, Zh. Eksp. Teor.
Fiz. 39, 1781 (1960) [Sov. Phys. -JETP 12, 1243 (1961)j.

' L. P. Gor'kov and G. M. Eliashberg, Zh. Eksp. Teor.
Fiz. 54, 612 (1968) [Sov. Phys. -JETP 27, 328 (1968)j.

'~G. M. Rliashberg, Zh. Eksp. Teor. Fiz. 55, 2443 {1968)
[Sov. Phys. —JETP 28, 1298 (1969)].

i44For an explicit definition of ~j and 7~ in terms of im-
purity potentials, see, for example, Y. Baba and
K. Maki, Prog. Theor. Phys. 44, 1431 (1970).

' C.-R. Hu and R. S. Thompson, Phys. Rev. I.ett. 31,
217 (1973). In the linear-response limit, the TDGL
equations derived in this reference and reproduced in
Eqs. (10) and (12) here may also be derived by a method
which avoids the enumeration of diagrams. See, for
example, A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp.
Teor. Fiz. 64, 1096 (1973) [Sov. Phys. -JETP 37, 557
(1973)j.

6J. R. Clem, Phys. Rev. Lett. 20, 735 (1968).
VG. S. Cohen and G. Rickayzen, J. Phys. F 3, 1582
(1973).

' L. P. Gor'kov and N. B. Kopnin, Zh. Eksp. Teor. Fiz.
60, 2331 (1971) [Sov. Phys. -JETP 33, 1251 {1971)].
The assumption does not exclude the limiting cases
when '7~&&'T, when 2x7 T «1, or when 2mvtT «1.
Instead, it allows for the inclusion of all relevant



TRANSPORT ENTROPY OF VORTiCES IN SUPERCONDUCTORS.

Feynman diagrams, some of which may become un-

important in one or more of the limiting cases. Sim-
ilarly, the conclusion ~ —eQ - qd«obtained in Eqs.
(14b} and (14d) does not exclude the limiting case
~, eP «qbo either, but in fact implies that the val-
idity of Eqs. (10) is not restricted by the latter condi-
tion.
To explicitly verify this statement by evaluating all
relevant Feynman diagrams up to the order prescribed
in Eq. (16), one must be careful not to use the approxi-
mate vertex equation (18) in place of the exact equation
(19) in any diagram with three or less electron propa-
(,atore, for which f dsp cannot be replaced by N(0) fd$.
To illustrate our systematic order analysis using
these two diagrams, we note that the heat current ver-
tex gives a factor vz/7, , the three electron propaga-
tors together give a factor 7, , the internal frequency
sum and the internal momental integral together give
a factor N(0) 7 ~2, the two & vertices give a factor ~0,
the anomalous vertex factor gives a factor q, and
finally one must still count in another factor of g due
to the expansion of the product of all electron propaga-
tore to first power in v' k (or due to the insertion of
an extra —v'eA vertex) in order to attain a nonvanish-
ing angular integration. Multiplying all contributing
factors together, one obtains the final-order estimate

of &(0)&~g &0 for these two diagrams.
22R. S. Thompson and C.-R. Hu, Phys. Rev. Lett. 27,

1352 (1971).
C.-R. Hu and R. S. Thompson, Phys. Rev. 8 6, 110
(1972).

24C.-R. Hu, Phys. Rev. 8 6, 1756 (1972).
250. L. deLange and F. A. Otter, Jr. , J. Low Temp,

Phys. 18, 31 (1975).
26A. Schmid and G. Schon, J. Low Temp. Phys. 20, 207

(1975).27¹B. Kopnin, Zh. Eksp. Teor. Fiz. 69, 364 (1975}.
This reference has also proposed a magnetic correction
term to the heat current expression using an argument
which does not seem to be complete. Thus he obtained
for the heat current: g= j&

—j~ with &' j~ = jo E, which
is solvable only when «E = —~b/&t = 0. More gener-
ally, one must add to the left-hand side a term
—Illo' (BK/Bt), where Vx tno =—jz. Then j', = —Bx mo,
and his expression for q would agree with our equation
(4). Furthermore, the first term in his continuity equa-
tion, T '(8&/Bt)&+V (q/T) =au/T, would be changed
to Bs/Bt, where T6s =6m —p6n+mo'6b, exactly the
entropy continuity equation obtained in Ref. 1 by the
present author, except for the restriction of m to mo,
which is valid in the linear response limit only.


