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Wake potential of swift ions in solids
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Valence-electron density fluctuations are expected to form wakes trailing charged particles moving through
condensed matter with velocities larger than the Bohr velocity. We compute the resulting wake potential with a
quantum-mechanical dielectric response function of the electron gas which includes plasmon dispersion as well

as single-particle effects at the densities of metallic conduction electrons. The binding energy of electrons
trapped in this potential ranges from -5 eV behind protons to -50 eV behind heavy ions moving with kinetic
energies —1 MeV/amu. The effects of quantum fluctuations on the binding energy and the lifetime of the
wake-riding state are estimated.

INTRODUCTION

Recent research has been concerned with the
distribution in space and time of perturbations of
electron motion in solids caused by the passage of
swift charged particles. Neelavathi, Ritchie, and
Brandt' (NRB) pointed out that the oscillatory wake
of electron density fluctuations trailing a fast ion
in a solid may (a) influence the motion of nearby
ions traveling with nearly the same velocity, and

(b) give rise to wake-bound electron states.
Brandt, Ratkowski, and Ritchie' showed experi-
mentally and theoretically that the energy loss of
proton clusters in solids is influenced by the pres-
ence of these wakes. Arista and Ponce' derived an
analytical approximation for the cluster stopping
power. Gemmell et al. 4 studied the angular distri-
bution of protons emerging from crystals bom-
barded with (HeH)' beams under planar channeling
conditions. They found that in order to account for
their measurements it is necessary to include the
wake potential generated by the leading ion in their
particle-transmission calculations, and used the
expression for the wake potential employed by NRB.

For emphasis and simplicity, NRB presented a
starkly schematized representation of the wake
potential accompanying a swift ion. It was derived
using a local metallic dielectric function to repre-
sent the response of valence electrons in the solid. '
The binding energies of wake-bound electrons
trailing ions as a function of ion charge and veloc-
ity were estimated variationally. ' Brandt and Rit-
chie' have given an account of current work on
wake phenomena.

Recently, Day' has considered the effect of in-
cluding plasmon dispersion on the binding energy
of wake-bound electrons in an electron gas de-
scribed by Lindhard's classical dielectric func-
tion. The wake-binding energies in such a medi-
um were found to be much smaller than those given
by NRB. In particular, his treatment reduces

binding energies behind 0.5-MeV protons from
-10 eV, calculated by NRB, to -0.1 eV or less.
This would preclude detection of wake-riding states
behind protons.

We return to the question of binding energies of
wake-riding states to explore the role played by
quantum effects in the dielectric response function
of the medium. In the range of short wavelengths,
where single-particle recoil enters, quantum ef-
fects could become important in determining the
potential close to the track. The quantum dielec-
tric function of the electron gas can be expressed in
analytical form in Lindhard's pair approximation. "
It is known to describe many properties of real
metals. " The full expression for the wake poten-
tial in this approximation becomes quite cumber-
some and opaque. We have simplified, therefore,
the quantum dielectric response function such that
it retains the essential features of plasmon dis-
persion and particle-hole excitation while making
the wake potential tractable. As a result we ob-
tain more realistic estimates of wake-binding
energies than those given by NRB and by Day. Our
approach opens the way for the study of new as-
pects of the wake phenomenon. A full account of
our numerical results will be published elsewhere.

WAKE POTENTIAL

Starting with the form employed by NRB, we
write for the scalar electric potential 4(r, t) in an
homogeneous isotropic medium due to a swift
point charge Ze having constant velocity v,

Z 4PZx d(uexp k 'e '(k, &o).
v

We use atomic units throughout. The cylindrical
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coordinates, p =(z'+y'3 ' and I =z- &&, »e de-
fined relative to the position of the charge,
(0, 0, vt), at time f for the field point r =r(x, y, z).
The wave number k is related to the integration
variable as k' = z + &u'/u'. If we use for the di-
electric function of the medium, e(k, &o), the quan-
tum expression appropriate for high densities, '0

we find that Eq. (I) must be evaluated numerically
by double quadratures. For the present we employ
a simpler expression

{d2
e(k, (u =I+p'k'+-,'k'- (u((u+io) ' (2)

and should be sufficiently accux ate for our pur-
poses over the whole (k, &u) plane. Indeed, there
is extensive evidence thRt the plasmon pole Rp-
proximation, Eq. (2), to the dielectric function
gives good accounts of the valence-electron con-
tributions to the dynamic propex ties of solids. "

We substitute Eq. (2) into Eq. (I), perform the
co integration by closing the contour in the lower
half-plane, and obtain an expression valid in the
space behind the charged particle. writing 4
=Cl'g +42+kg y we fHld ln the Limit {7 Oy

&c
4,(z, p) =Zv 2 tv~ dqqZO(v 2pQ)

@,(z, p) = —
~2 && dQ q~o(~2pq)

Qc p5

exp(iv 2yz)
(»- '&)fQ' t~-'&Pl) '

with the abbreviations,

Q. ={I/W2v)(v'- (u', )~', a =8'- q',

$ =(8'-2v'q' —&u,')~', y =(I/~2(G+o }'~',

which should give Rn Rccux'Rte desex'lptlon of the
potential at points close to the ion track. In Eq.
(2), P' =—,U~ is a constant related to the Fermi ve-
locity ez in the electron gas of plasmon frequency v»
and o is a small damping constant. Equatio~ (2},
through the term proportional to k~, gives an approxi-
mate representation of the single-particle response
of the medium with correct asymptotic behavior for
large k. It satisfies the sum rules

r +Im[e(k, ru)]d~ =
0 0 6 k~(d

~ = (I/&2) {a—a)"'
G=(q'+2p'q'+H)~', P=H p-'.

Qualitatively, C, represents the oscillatory con-
txibution to the wake potential due to plasmon ex-
citations, and 4, a pax"t due to particle-hole exci-
tations.

The potential 4„represents the contribution to
4 from the poles in the m plane of the factor k 2

in Eq. (I). This portion of the scalar potential is
nonoscillatory in the variable Z. It may be re-
garded as describing the bare potential of the
charged particle, screened in a nonsphex ically
symmetric manner by density fluctuations trailing
the particle. In the notatio~ of NRB, 4„=Z&a~(r)/v,
whex'8

The potential 4. ~ induced by the enhancement 5n
of the mean electron density n, near the pxojectile
is of interest. " At the position of the projectile,
ir i-0,4,(r) =4 (r) -Z/r becomes 4,(0) =-wZ&o~/
2v+A. The first term is contxibuted by 4„. The
quantity 6 is small by comparison and derives
from 4, originating mainly from single-particle
excitations. Equations (4) and (6) reveal that the
contributions from 4, and 4„ to the density en-
hancement, 5n=-V'4/4x, at ~r(=0 are zero. The
enhancement comes mainly from single-particle
processes underlying 4, and diminishes as v ' for
v» l. In the low-density limit {d~-0, 5n approach-
es the value given by Coulomb scattering theory. '

%8 have carried out a numerical study of the
wake potential in terms of Eqs. (4) and (5). In the
neighborhood of the first potentlRL trough fox' elec-
trons at distances Z, =3zn/2&v~ behind the ion, C,
and 4 „are both negligible compared with 4,. %8
computed the binding in the first potential trough
by fitting the potential near its minixnum with -e4
=-V, +up'+b(z -Zo)', and calculating electron
binding enex'gies in this harmonic oscillator potential
in the usual manner. Behind protons in the velocity
range under discussion, the wave function of wake-
bound electrons extends over -1.5 a.u. , and more
localized behind particles of higher charge. Vfe es-
timate that the fitting procedure introduces uncer-
tainties &3% in the binding energies.

Figures 1, 2, and 3 show wake-binding energies
F. , so computed for protons, oxygen ions, and
sulphur ions (solid curves), and the corresponding
energies calculated in the approximation of NRB
(dashed curves). Our binding energies are some-
what smaller but of the same order of magnitude
than those of NRH. It is instructive that they turn
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out to be much larger than those found by Day
based on a classical dielectric function. The ap-
proximation to the quantum-mechanical e(k, v)
used here, Eq. (2), should give an accurate poten-
tial close to the particle track. This domain is
very important in obtaining reliable values of F. .
The results of the present treatment support the
general conclusions reached by NHB about the
wake states of electrons trailing swift particles in
condensed matter.

CORRELATION EFFECTS
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Nonlocal correlation effects decrease the elec-
tron density in the neighborhood of a wake-bound
electron, resulting in an increase in the binding
energy compared with the values shown in Figs.
1-3. This is the dynamical analog in an electron
gas of the correlation effects which give rise to pola-
rons in solids. The real part of the self-energy of
a wake-bound electron gives the additional binding
due to correlations. The imaginary part describes
dewaking, i.e. , the rate of loss of the electron from
the wake-riding state due to quantum fluctuations
of the system.

We estimate the self-energy Z(&u, 7&, n) in the pair
approximation as

IO
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FIG. 2. Wake-binding energies of an electron in the
first potential trough behind a fast bare 0+" ion and
S+' ion in an electron gas at a density corresponding to
the conduction band in Al metal. The solid curves show
the present results, while the dashed curves show the
results of NRB (Ref. l).

where Q is the normalization volume of the system
and G(&o, 7&, n) the Green function of the leading-
ion and wake-riding-electron pair. The pair is
considered to be in its nth state of internal excita-

X G(ld —(O', K', n'),
2

I 000

v/v,
6 IO 20

v/v,
6

I

IO

H
C3

C)
z',

CG

C3
K + Z

err

LLI

~ loo—
Z 0 eff

O

m

I
'

Q. I I

IQN KINETIC ENERGY ( MeV/amu)
IO

FIG. 1. Wake-binding energies of an electron in the
first potential trough behind a fast proton in an electron
gas at a density corresponding to the conduction band in
Al metal. The lower solid curve shows the present re-
sults, while the dashed curve shows the results of NRB
(Ref. 1).
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FIG. 3. Wake-binding energies of an electron in the
first potential trough behind a fast 0+ "' ion and 8+~«f
ion, where Zeff(e) =Sfl —exp( —v/& vp)], in an electron
gas at a density corresporAmg to the conduction band in
Al metal. The solid curves show the present results,
while the dashed curves show the results of NBB (Ref. l).
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tion and described by a state vector
~ v, n) of eigen-

energy co-„„, where K is the center-of-mass mo-
mentum of the pair. The matrix element W of the

vertex interaction between the pair and the medium

can be approximated by

W(K ~Pl! K, 8~k)={K «Yl ~8 ~K~72)g (8}

where r denotes the position of the wake-riding
electron. The difficult task of solving Eq. {7)self-
consistently by aeeounting for the effect of corre-
lations on the wave function of the make-bound elec-
tron will not be attempted here. Instead, we re-

place the Green function by the non-inter-
acting form (u —a „-„+id}', employ a har-
monic-oscillator wave function for the electron
ground state, and approximate excited states by
plane waves. %e insert the total unperturbed en-
ergy of the pair K'/2(1+M) —E, where M is the
ion mass, as the trial value for &u of Z(&u, v, u) and
achieve limited self-consistency with respect to
energy by iteration. In the present context, it
suffices to use in Eq. (7) a properly acausal quan-
tum dielectric function obtained from Eq. {2) by
simply requiring that the poles of c lie on op-
posite sides of the real axis. Then,

"d~' 1 1

„2v (u" —(ar, —icr)' u!' —d, (o —sh'

where P =p+k-v, p being the wave vector of the
electron after ionization from the wake-riding
state; u- =f d re' 'u~ '(r) is the Fourier trans-
form of the ground-state wave function, u "(r) of
the wake-bound electron, and ~, =(&u', + P'k'+-,'k')' '.
The pair energy difference 6& = z-„„-&-,.„be-
comes

h(o =v k- [E +-,'(p —v)'].

The function ~u~-"~' is so strongly peaked about the
point P =0 that we may approximate it by (2v)'
times a. 5 function of its argument.

Carrying out the integrations we obtain, finally,

(10)

( )
&dp dk, 0!,—2!k

2m@ k+ 0, +vk

{n.E/E) -=Im(Z)/[E„+Re(Z)], (13)

which leads to values ranging from 0.15 to 0.25
for an electron bound to a proton. Equation (12)
can be approximated by setting (d, = (d~ in the inte-
grand and by replacing 4, and k, by simple forms.

(d 2 dk
Im(Z) =-~ (12)

k ~A

where k, and k, are the real roots of Uk =E +k'/2
+&„=Q,. The damping due to the interaction of
the wake-riding electron with the excitations in the
system set up by the guiding ion is considered to be
small and has been neglected.

Equation (11) leads one to estimate that in a
metallic medium characterized by ~, = 2 and in the
velocity range of interest, the correlation-induced
polaronlike increment of the wake-riding binding
energy, Re(Z) = 4 eV, is comparable to the initial
binding energy for Z=1, and decreases slowly
with increasing g.

The relative width of the wake-bound state is
given by

%e find

v'k', X/2

lm(Z) =
2

ln 1+[ ( )],
where k, —

&u, /vr.
The mean free path A for dewaking due to quan-

tum fluctuations in the electron gas becomes A
= v/2 Im(Z). Since Eq. (14}varies only weakly
with g, A is approximately the same for all ions
moving at the same velocity in dense media and
has the value A (A) = r',~'U where r„defined by

~m', rg, =1, and U are given in atomic units. In-
asmuch as the initial and final wave functions of
the ion-electron pair used in this model calcula-
tion are approximate and not mutually orthogonal,
this value of A may constitute an underestimate of
the correct value. In real metals, except under
channeling conditions, additional damping is ex-
pected to occur in scattering events with ion cores.

CONCLUSIONS

The binding energy of electrons to the wakes of
electron density fluctuations trailing ions moving
in metallic media has been calculated in a quan-
tum-mechanical approximation of the response
function which treats the electron response ac-
curately near the particle track, and the self-en-
ergy due to correlations has been estimated. The
results apply best under conditions where interac-
tion with ion cores is weak, such as in metals with
small ionic cores, or in crystal channels. The
binding energies are found to be significantly larger
than those obtained by Day with a classical approx-
imation of the response function. They are of the
order of 10 eV behind protons and some 50 eV be-
hind heavy ions. Polaronlike nonlocal effects in
the wakes increase the binding energies by some
4 eV. The mean free path due to quantum fluctua-
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tions for the decay of a make-riding state is esti-
mated to be 10-20 A. This implies that detectable
manifestations of wake-riding states in the proper-
ties of beams emerging from a solid are dictated
by the last atomic layers, and may be influenced
by the surface.

Although couched in the language of the electron
gas, our results also apply to semiconductors and
insulators, where collective excitations centered
at some resonance frequency (do are known to ex-
ist. " The form of the wake will be influenced to a.

greater extent than in metals by the damping of
the collective excitations in such media.

%ell-defined wake phenomena are expected to
exist only in substances sufficiently dense that the
wake can be considered continuous as subsumed in

Eq. (l). Continuity requires that the mean inter-
atomic distance in the medium be small compared
to the wavelength associated with the wake, 2sU(rue.

Under these conditions the relative density fluc-
tuations, 5n/us, happen to remain sufficiently
small for linear-response theory to apply. Our

results, therefore, should be valid fox more rea-
listic situations than implied by the simple model
from which they have been derived. %ake phenom-
ena may contribute to observable dynamic effects
induced by charged particles in a wide range of
materials.
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