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The electrical conductivity at a continuum percolation transition is derived by evaluating the limit of a
sequence of results obtained for conductance networks with increasing range of correlation. The conductivity
obeys the power law o(c) « (C — C*)”, with C* = 0.145+0.05 and y = 1.4.

In our previous work® (I), the simulation of elec-
trical conductivity in a random inhomogeneous
medium was carried out by incorporating correla-
tion between values of conductances initially ran-
domly assigned to adjacent bonds of a simple-cubic
network. This was done by employing a procedure
which can be iterated progressively, and which
results in the formation of regions of constant con-
ductivity extending over several lattice distances.
In the case of a noncorrelated network, each bond
is assigned a random number 0<7»"’< 1, so that
the distribution function PV (r) of the set {r{V} is
given by

{1, 0<#V<1

(1) =
) ]0, otherwise.

(1)
In order to obtain a noncorrelated conductance dis-
tribution in which a fraction C and 1 - C of the
bonds are assigned the values g=1 and g=x, re-
spectively, all bonds with »¥>»(V=1- C are as-
signed the value g=1 while the others are charac-
terized by g=x. Let us specify each vertex by the
triplet of zeroes, positive, or negative integers i
and each bond between vertices by the vector pairs
T+T, .1’, where i is drawn from the set of nearest-
neighbor separations (1,0, 0), (0,+1,0), (0,0, £1).
The first step of the six-band correlation process
[ Fig. 1(a)] consists of assigning an » value to each
vertex, r%z’, obtained by averaging the 7V values
of all six bonds sharing it:

(2 _1 (1)
7'1* -GZ 7’-1’ +TT (2)
i

The second step consists of assigning » values to
the bonds according to the prescription
A2 (2)

T.5.7°7T  seni=l
( (2a)
) 2) .
y(,"’- =ry.y, Sgni=-—

where i is the nonvanishing component of . Thus
in Fig. 1(a), we have

7,.(12) =7‘£2) =,,(32) #7’,(,2) + ,rgz) # ,ng) .

The distribution function P("’)(r(”) of the new set
{#®}, peaks around C =0.5. The above procedure
may be iterated to obtain the set {#{™}. The dis-
tribution function becomes more narrowly peaked
around C =0.5 as »n increases.

In order to obtain a sample in which a fraction C
of the bonds have the value g=1, we have to assign
this value to bonds for which (" > rf,")(C). The
parameter »{"(C) is determined by means of a
closed loop procedure so that the following rela-
tion is obeyed:

iNie(")(‘ri)=C (3a)
Nb i=1 ’
where
(1, 7> 7" (C)
e(n)(y,):}‘o, r, < 7P(C) (3b)

(b)

|| BOND CORRELATION

(a)

6 BOND CORRELATION

FIG. 1. Schematic depiction of the correlation proce-
dure: (a) six-bond correlation, (b) eleven-bond correla-
tion.
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and N, is the total number of bonds in the lattice.

Let us denote the numerical results for the con-
ductivity on the noncorrelated lattice by f,(x, C)
=0,(x,C)/0(C=1). f,(x,C) is thus the first term in
a sequence of functions f,(x, C) which represent
the conductivity of the progressively correlated
networks. In our previous work' we have concen-
trated on deriving the values of f,(x, C), the near-
est-neighbor correlation case, and f,(x,C), the
conductivity of the second-order correlated net-
work.

In this note we proceed beyond second-order cor-
relation, and study higher correlated networks up
to n=5. From our results we can extrapolate the
sequence f,(x, C) to n—« and thus achieve a close
approach to the simulation of the conductivity of a
continuous random system. In particular, in the
case x < 1, we obtain information on the behavior
of electrical conductivity near a continuous perco-
lation transition.

Information on higher terms of the sequence
falx,C) in the limit x~0 in the concentration range
0<C < 0.3 is important for the determination of
C*, the continuous percolation threshold. To
achieve a better convergence of the sequence of
successive correlations in this limit we have em-
ployed in this case an enhanced correlation pro-
cedure. The set of random numbers {r(")} is now
obtained from the set {#(” ="} by means of the fol-
lowing transformation:

#“=l-§irﬁ'” (4)
1 11 = J ¢

The ten bonds 7,,...,7,, are all the bonds which
share a common vertex with », as demonstrated
in Fig. 1(b). In the covering lattice® of our cubic
lattice, which is the lattice formed by all the mid-
points of the bonds in the original lattice, the ten
corresponding points are the nearest neighbors of
the point which corresponds to »,. In contrast to
the six-bond correlation process, each bond gets
a different value of rﬁ;, T (and 7%22;'7, generally)
following the 11-bond correlation procedure. This
difference between the two schemes is immaterial
because similar configurations of metallic and non-
metallic regions are generated by both after suf-
ficient iteration.

For the study of f,(x,C) down to C =0 we had to
increase the lattice size to 30x30x30 in order to
avoid the large fluctuations which characterize the
results calculated on different samples of smaller
size in this region. We managed to achieve this
increase by densely packing several numbers into
one word of the CDC 6600 memory, which is con-
ventionally reserved for pne number. A careful
optimization of the overrelaxation parameter
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FIG. 2. Conductivity of nth-order correlated net-
works plotted against 1/2: (@) x =1072, lattice sizes
15x15% 15 and 18x 18x 18, (b) x=1.2x1073, lattice
sizes 15x15x 15 and 18x 18x 18, (c) x =104, lattice

size 30x 30x30.
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FIG. 3. Effect of high-order correlations up to n =8
on the conductivity. Lattice size 30x 30x 30.

(defined in I) was needed to reach a reasonable
convergence rate.

In Fig. 2 the sequence of f,(x, C) for n =1-5 is
plotted vs 1/n for several values of x. Each point
in Figs. 2(a) and 2(b) for x =1072 and x=1.2x10"3
represents the average of numerical results for
12-24 correlated networks derived from different
initial random sets {#("’}, while each point in Fig.
2(c) for x =107 corresponds to an average of six

X=12x16>
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FIG. 4. Extrapolated value f(x,C) of the sequence
fn(x,C) for (a) x =1072, lattice sizes 15x 15x 15 and 18
x18x18, () x=1.2x1073%, lattice sizes 15x15x 15 and
18x 18x 18, (c) x =107%, lattice size 30x30x 30, (d) x
=107%, lattice size 30x 30x 30.
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FIG. 5. Log-log plot of f.,(x,C) vs C-C*: (a) x=107%,
b) x=1075,

numerical results for different random samples.
The cubic network studied were of sizes 15x15
x15, 18x18x18, and 30x30x30. We deduce

f«(x, C) by extrapolating each sequence of f,(x, C)
vs 1/n at fixed C to 1/~ 0. For 0.4<C<1 f,(x,C)
is practically independent of » in agreement with
our previous results in I. It is interesting to note
that the extrapolated values of f,(x,C) as 1/n~0
are not significantly different from the values of
f, and f,. We get the impression that the sequence
flattens out for n=4, and that f,(x, C) does not in-
crease any further as 1/zn— 0, but fluctuates around
an average value. This property of f,(x,C) is
manifested by the sequence of values in Fig. 3
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FIG. 6. Log f.(x,C*) vs log x.

which extends up to n=8.

We have calculated f,(x, C) and f;(x, C) for x
=10"* and for x=10"% in the range 0.16 < C < 0.3.
We consider the average of these two functions as
a good approximation to the limit f.(x, C).

Figure 4 presents f.(x,C) vs C obtained from
the results of the extrapolation procedure of Fig.
2, together with f,(x, C) derived on the N =30 lat-
tice for x=10" and x=10"5, Average values of
falx,C) and f.(x, C) determined on several 30x 30
X 30 lattices are plotted on a log-log plot vs C - C*,
for x=10"* [ Fig. 5(a)] and x=10"° [Fig. 5(b)].

We find that for power law f,(C)=A4,(C - C¥)’=
holds for the two x values over the concentration
range 0.16 < C < 0.3 with the following values of
A, C%, and vy,

x=10",
C¥=0.140+0.005,
A.=1.05+0.05,
Y =1.4+£0.05;
=10-3,
C¥=0.145x0,005,
A.=1.0£0.05,
Yeo=1.4£0.05,

(5)

»

The final values of C,, A., and y,, and their
error bounds were estimated as follows. A log-log
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FIG. 7. Logf,(x,C;) vs logx.

plot of f.(x,C) vs C — C* was made for several
values of C*. The value of C* yielding the best fit
to a straight line was taken as C%. The values of
A, and y,, were then derived from this line. Within
the range C*=0,145+0.005 a straight line can still
be fitted for x=10"° (see C* =0.135 and C* =0.155
in Fig. 6). The error bounds on A, and y,, were
estimated from the straight lines corresponding to
C*=0.145+0.005.

We take C* for x=107° as the best currently
available figure for C*, the continuous percolation
threshold. We note that the value thus obtained for
C*, 0.145+0.005, is lower than any percolation
threshold known? for a lattice.

Straley® has predicted a power-law dependence
of f(x,C*) upon x. From our results we find that
the following power law holds in the range 10~°
<x<10"! for continuous percolation, Fig. 6:

Falx,C*)=Rx®, (6)

with C*=0.145, 6=0.66, and R =0.76.
We also find for » =2 (nearest-neighbor correla-
tion), Fig. 7,

fa(x, CF)=Rx®, (7
with C¥=0.185, 5=0.73, and R =0.91.

We are grateful to S. Kirkpatrick for calling
Straley’s work to our attention and for suggesting
the examination of the critical index behavior of

flx,C*).
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