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Numerical simulation of continuous percolation conductivity*
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The electrical conductivity at a continuum percolation transition is derived by evaluating the limit of a
sequence of results obtained for conductance networks with increasing range of correlation. The conductivity
obeys the power law cr(c) ~ (C —Ca)~, with C~ = 0.145 + 0.05 and y = 1.4.

In our previous work' (I}, the simulation of elec-
trical conductivity in a random inhomogeneous
medium was carried out by incorporating correla-
tion between values of conductances initially ran-
domly assigned to adjacent bonds of a simple-cubic
network. This was done by employing a procedure
which can be iterated progressively, and which

results in the formation of regions of constant con-
ductivity extending over several lattice distances.
In the case of a noncorrelated network, each bond

is assigned a random number 0&r ' & 1, so that
the distribution function P~'~(r) of the set (ri'~) is
given by (3a)

The distribution function P '~(r~'~) of the new set
(r~"f, peaks around C =0.5. The above procedure
may be iterated to obtain the set (r~ "~}. The dis-
tribution function becomes more narrowly peaked
around C = 0.5 as n increases.

In order to obtain a sample in which a fraction C
of the bonds have the value g=1, we have to assign
this value to bonds for which ri "~ & re�"l(C). The
parameter re"~(C) is determined by means of a
closed loop procedure so that the following rela-
tion is obeyed:

N

e'"&(~,.) = c,5

(,) (I, 0 ( r~'i(1
f 0, otherwise

In order to obtain a noncorrelated conductance dis-
tribution in which a fraction C and 1 —C of the
bonds are assigned the values g = 1 and g = x, re-
spectively, all bonds with r ' &ra ' =1 —C are as-
signed the value g=1 while the others are charac-
terized by g=x. Let us specify each vertex by the
triplet of zeroes, positive, or negative integers l
and each bond between vertices by the vector pairs
l + i, l, where i is drawn from the set of nearest-
neighbor separations (+1, 0, 0), (0, +1,0), (0, 0, sl).
The first step of the six-band correlation process
[Fig. 1(a)] consists of assigning an r value to each
vertex, r~', obtained by averaging the r ' values
of all six bonds sharing it:

(2) 1~ (&)6~ 1+1 1

I

The second step consists of assigning r values to
the bonds according to the prescription

(2) (2)r- . -=x-, sgni=11+i, 1 1

(2a)
(2) (2)r- -. =r . , sgni=-11+i, 1 1+i

where

Il, ~, ~~ ~(C)

2 0 '"'(C)

(b)

I I BOND CORRELATION

(a)

6 BOND CORRE LATION

6

(3b)

where i is the nonvanishing component of i. Thus
in Fig. 1(a}, we have

(2) (2) (2) ~ (2) ~ (2) ~ (2)

FIG. 1. Schematic depiction of the correlation proce-
dure: (a) six-bond correl. ation, (b) el.even-bond correla-
tion.
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FIG. 3. Effect of high-order correlations up to n = 8

on the conductivity. I.attice size 30x 30x 30.

(defined in I) was needed to reach a reasonable
convergence rate.

In Fig. 2 the sequence of f„(»,C) for n =1-5 is
plotted vs I/n for several values of ». Each point
in Figs. 2(a) and 2(b) for» =10 ' and «=1.2x 10 '
represents the average of numerical results for
12-24 correlated networks derived from different
initial random sets fri'l), while each point in Fig.
2(c) for» =10~ corresponds to an average of six
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FIG. 5, Log-log plot off (x,C) vs C-C*: (a) x=10 4,

g) x=lo-',
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FIG. 4. Extrapolated value f (x, C) of the sequence
f„(x,C) for (a) x=10 2, lattice sizes 15x15x15 and 18
x18x18, (b) @=1.2xl0 3, lattice sizes 15xljx15 and
18x18xl8, (c) x =10, lattice size 30x30x30, (d) x
=10 5, lattice size 30x30x30.

numerical results for different random samples.
The cubic network studied were of sizes 15x15
x 15„1Sx 18x 18, and 30x 30x 30. We deduce

f„(«,C) by extrapolating each sequence of f„(»,C)
vs I/n at fixed C to I/n- 0. For 0.4«C «1 f„(»,C)
is practically independent of n in agreement with

our plevlous results ln I. It ls interesting to note
that the extrapolated values of f„(»,C) as I/s-0
are not significantly different from the values of

f, and f,. We get the impression that the sequence
flattens out for n =4, and that f„(»,C) does not in-
crease any further as I/n- 0, but fluctuates around
an average value. This property of f„(»,C) is
manifested by the sequence of values in Fig. 3



which extends v,p to e =8.
We have calculated f,(x, C) and f,4, C) for x

= j.o~ and for g = Io ' in the range 0.16 & C & 0.3.
%e coQ8idex' the avex'age of these t%0 function8 as
a good approximation to the limit f„(x,C).

Figure 4 presents f„(x,C) vs C obtained from
the x"esults of the extrapolation px'ocedux'e of Fig.
3, together with f„(~,C) derived on the N = 30 lat-
tice fox" g = Io and g= io . Avex'age valges of
f,(x, C) and f,(x, C) determined on several 30x30
x 30 lattices ale plotted on a log-log plot vs C —C
for &=10~ [Fig. 5(a)J and x=10 ' [Fig. 5(b)j.

We find that for power law f„(C)=A„(C—C*)&"
hoM8 fox' the two ~ values over the concentration
range O.I6 & C & 0.3 with the follwving values of
A„, Q~, and y„..

g = Io~,

plot of f„(x,C) vs C- C* was made for several
values of C+. The value of C+ yleMlng the best fit
to a straight line was taken Rs C~. The values of
A, „and y„were then derived fx"om this line. Within
the range C* =0.145+ 0.005 a straight line can still
be fitted for &=10 ' (see C* =0.135 and C* =0.155
in Fig. 6). The error bounds on A„and y„were
estiMated froM the straight Hnes corresponding to
C* = O. I45 ~ 0.005.

%e take C*„for g = IO ' as the best currently
availaMe figure fox C~, the continuous percolation
threshold. %'e note that the value thus obtained fox'
C~, O. I45 +0.005, is lower than. any percolation
thx'eshold knomP for a lattice.

Straley has predicted a po%'er-1MF dependence
of f(x, C*) upon x. From our results we find that
the Mlowing po%'er 1M' hold8 ln the range 10
~~ ~~~ Io fo1 contlnuou8 percolatloQ, Plg. 6:

f 4, C~) ~Be~,

with C*=o.j.45, 5=0.66, and 8 =0.76.
We also find for s =2 (nearest-neighbor correla-
tion), Fig. 7,

We are grateful to 8. Kirkpatrick for calling
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the examination of the critical index behaviox' of
f(», C').
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