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Tight-binding calculations of microscopic screening of ion-ion interaction
and phonon dispersion in germanium
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A set of extreme tight-binding states for the valence and conduction bands in germanium, consistent with its
observable electronic dielectric properties, is used to calculate the effective ion-ion interaction and phonon
dispersion relations in the material. The agreement with experimental dispersion curves is comparable with
other elaborate calculations.

In an earlier paper, ' referred to hereafter as I,
we have shown that it is possible to obtain mean-
ingful results for the nonresonant part of the self-
consistent microscopic optical dielectric matrix,
the local dielectric function and microscopic fields
induced by a long- wavelength transverse- optical
field in crystals like diamond or germanium, even
if we use the extreme tight-binding electronic
states, i.e. , the molecular bonding and antibonding
states for the valence and conduction bands, in
their calculations. This simple line of approach is
based on the belief that the molecular-orbital mod-
el is expected to give fairly accurate results for
quantities which only depend upon the average
properties' of the electrons in a full band. In this
paper we show that this simple approach can also
be used to calculate microscopic response to rap-
idly varying static longitudinal external fields. We
demonstrate this by finding the effective ion-ion
interaction in germanium, and by comparing the
resulting phonon dispersion relations with the ex-
isting experimental data. While calculating the
optical fields in I, it was enough to restrict our-
selves to the calculation of the microscopic re-
sponse function er{q+6,q+ 6', & ) for an external
transverse field, in the long-wavelength limit
(q-0), where G is any reciprocal-lattice vector
of the crystal and q is the wave vector of the ex-
ternal field. In the phonon dispersion studies, we
are required to calculate the microscopic static
longitudinal dielectric function e (q+ 6,q+6', 0)
for all q values lying in the first Brillouin zone, in
order to find the net effective ion-ion interaction
because of the screening by the valence electrons.

In the context of the calculation of the effective
ion-ion interaction in metals and semiconductors,
screening properties of such systems have been
recently studied by several workers. 3 7 Martin, ~

in his calculation of phonon dispersion relations in
silicon, used the Phillips bond-charge model to

find the contribution to screening due to the off-
diagonal elements e~(q+ 6, q+ G', 0), G o 6'. For
completely delocalized electrons, &~ is, of course,
almost diagonal. The bond-charge magnitude is
taken as an adjustable parameter to obtain a good
fit for the calculated dispersion curves with the
experimental ones. Sinha, ' on the other hand, has
used a factorization scheme in which the dielectric
matrix & {q+G,q+6', 0) is written approximately in
terms of the state-independent average form fac-
tors f(q+ G),f(q+6') for the valence electrons, and
a q-dependent polarizability tensor a(q). Parame-
ters introduced in the simplified forms for f and

a, are obtained by using the acoustic sum rule, and
by comparing with the experimental dispersion
curves (best fit).

For any q in the first Brillouin zone, the dynami-
cal matrix D"~ (q) which enters into the theory of
phonon dispersion relations is given by' '

D"&&(q) = y"~ (q) —6, , Q (f&"» (0), "

where o'. and P are the three-dimensional Cartesian
components. The force constants Q ~(q) are de-
fined as

0: (q)=g (q+6).(q+6')8
~q+G ~-

GG

)& l&
0 (q+ 6&) s l (G~ R~ - 6"R~. & (2)

where Vo,.(q+6) represents the Fourier component
of the bare interaction between the charged ions
including the core electrons, R, denotes the posi-
tion of the sth basis atom with respect to the posi-
tion of the unit cell in which it is located, and
e-'- (q) is the (6, G') matrix element of the matrixGQ'
& '{q) obtained by taking the inverse of the longi-
tudinal dielectric matrix e~ —,(q) =—ez(q+ 6,q+ 5', 0).
In terms of the single-particle Bloch states,
&~ (q) is given by'

4~&' t (m~, &« ~ o &'~»"- -.(q) = ~o, o, —— Q f. && (m ~e
&" "~m) - (» -» )~ Iq+G~~q+6 i ..
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where E is the electron energy corresponding to
the Bloch state ~m); thelabel»&standsfortheband
index b, the electronic wave vector k and spin s.

We calculate e~, {q) in Ge for all q values in the
first Brillouin zone by using the approximate ex-
treme tight-binding electronic states, which have
already been discussed and defined completely,
without any parameter left, in I. In this molecul-
ar-orbital. model, 9 the eight valence electrons
per unit cell of Ge crystal are assumed to form
four equivalent tetrahedral bonds along the crystal-
lographic (111) directions. The bonding and anti-
bonding wave functions tt)„» and p,», xespectively,
fox' the electx'ons ln a bond ln the direction t al e

&)„;(F)= s ~(C';"+C.,'), (4)

(r) —~ ~( @A+ 4&&&) (5)
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where Q~'~ and p+'-~ are 8- and p-type hydx'ogen-
like normalized atomic wave functions centered on
atoms A and 8, with n = 4.

In the extreme tight-binding approximation in
which the interaction between any two different
bonds is neglected, we have two flat bands (energy
independent of k), the valence band and the con-
duction band, each foux'fold degenerate. The cor-
responding electronic wave functions in the crys-

tal, in this approximation are

4'-(k ) =(~Ã) &~' Qe'""
&) -(r —R )

e -(k r) = (-'A)-'~' g c '"."
q -(r - R )

where &N is the numbex' of unit cells in the crystal
and R,. is the position of the jth cell. In I, the two
parameters entering in the characterization of the
unperturbed states, namely, F. , the average en-
ergy gap between the valence band and the conduc-
tion band, and the common effective Z value for the
s- and p-type hydrogenlike wave functions for Qe,
are fixed self-consistently by requiring that the
resultant macroscopic dielectric function (includ-
ing local field corrections) must be equal to the ex-
perimental one, and by requiring that electron
wave functions satisfy the f-sum rule. For ger-
manium one has Z =3.9 eV& Z,« =12.4, with too(0)
=17.0, and {P„;~x~

&I&„)=0.992 A. As discussed in
I, the self-consistent values for S,«are not very
much different from appxopriate averages of the
values given by Slater for 4s and 4P orbitals, and
the average energy gap E, is also very close to the
value for Ge in the theory of covalent crystals by
Phillips.

Using this approximate band structure for Ge,
e~, (q) can be written

e--, (q) =f&o o, +
) 6) )

p,
)

—Q {P„-~sin(q+5) r~g,&)(&I&„"~sin(q+5 ) r~g„;).

The summation over t in this expression simply
implies summation over all the four bonds. Based
on the above expression, we have calculated
e~ne, (q) for 6 vectors up to (400); for beyond these
values the off-diagonal elements (Gs-'6') and the
diagonal elements (6=6) are close to 0 and 1, re-
spectively. The inverse of the matrix e~(q) in
P space which enters in the calculation of the force
constants Qsss(q) of Eq. {2) is then calculated ap-
proximately by using standard numerical tech-
niques. We separate the force constant &t&"A'(q) into
two parts

@ss'(q) —
4, &c&ss'

(q) + y &s &ss'(q)

d':A'"'(q) = p (q+&).(q+&),
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The Coulomb term p 'A&*'(q), due to ions including
electrons other thaa, the valence electrons, is very
slowly convergent and is calculated by using the
standard method of Ewald. '0 The electrons. c term
&t&„"&»ss (q) corresponds to the contribution to the ef-
fective ion-ion interaction due to the presence of
the valence electrons.

To obtain @"A(q), we take a simple analytic form
of the pseudopotential V'(Q) due to a bare ion of
charge Z

V'(Q) = (4&&Z '8'/Q') sing~, /Qr, ,

whexe z, is a parameter, This foxm of the potential
was used by Sinha et a/. ' in their phonon dispersion
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quencies tend to zero in the limit g-O. In the
microscopic theory of lattice vibrations this con-
dition is equivalent to"

Q6 Q 'P. Q2 Q6

calculations for Si and Ge. They adjusted the value
of the parameter r, in such a way that the first
node in the profile of V'(Q) obtained from Eq. (14)
coincided with the Heine and Abarenkov potential,
as modified by Shaw. " In our calculation, we,
however, fix the value of y, by using the acoustic
sum rule, which states that all acoustic-mode fr e-
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FIG. 1. Phonon dispersion curves for germanium in
[111]and &100) directions. The experimental points are
from Nil. sson and Nelin (Bef. 12).

It is reassuring that the value of r, =0.19 a (a is
the lattice constant) obtained by us is not very dif-
ferent than that used by Sinha et aE.' It is then
straightforward to obtain the electronic term
P "8'** (q) numerically from Eq. (13), and the Cou-
lomb term from Eq. (12).

The phonon dispersion curves ln Ge ale obtained
for the crystallographic directions (100) and (111).
These are plotted in Fig. 1. Experimental numbers
given by ¹lsson and Nelinn are also plotted
find that there is a fairly close agreement between
the theoretical curves obtained in our model with
the experimental curves. Note that we have ob-
tained good agreement for the acoustic modes even
for large wave vectors, where i.t is usually difficult
togt hf ltd p s e.

Compared to more elaborate calculations of
Sinha et a$.' and Martin, 4 our approach is simple.
Nevertheless, it gives agreement with experimental
results which is comparable with their success.
We feel that our model would give reliable results
for phonon dispersions in other group IV-IV crys-
tals also.
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