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One-dimensional model for transition metals and their alloys*
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We develop the one-dimensional analogs of multiple-scattering theory and Korringa-Kohn-Rostoker band

theory. The muon-tin coherent-potential approximation turns out to be quite simple in one dimension when

written in terms of the logarithmic derivatives of the radial Schrodinger equation. We develop a one-

dimensional model for transition metals which includes the effects of hybridization and resonant scattering.

Using this model we calculate the change in the density of states owing to the addition of a single impurity. A
number of surprising effects which are outside the realm of tight-binding models and which seem to have

three-dimensional analogs are observed.

I. INTRODUCTION

It is generally recognized that the coherent-
potential approximation" (CPA) is an excellent
single-site approximation for treating alloys. U'n-

fortunately the CPA equations are only easy to
solve for model Hamiltonians such as the tight-
binding model which have severe limitations when

applied to the alloy problem.
Probably the best model alloy Hamiltonian for

which the CPA is tractable is the muffin-tin model
discussed by Soven, ' Shiba, 4 and Gyorffy. ' No
three-dimensional CPA calculations using this
model have been achieved to date. Indeed, the
computational diff iculties are sufficiently great
that some authors have suggested using less so-
phisticated non-self-consistent theories such as
the average-t-matrix approximation as an alter-
native to the CPA. '

In this paper we present a formalism which is the
one-dimensional analog of the muffin-tin CPA. Ne
believe that one can understand a great deal about
the three-dimensional muffin-tin CPA from the
study of this model. Much of the calculation can
be carried through by hand in closed form and the
numerical parts of the calculation are not time
consuming. From these calculations one can draw
a number of qualitative conclusions which should

apply in three dimensions as well as in one. One
can also investigate other alloy theories such as
the ATA and define the limits of their applicability.
Finally one can obtain an exact density of states for
this one-dimensional problem which one can use
for comparison with the CPA and other approxi-
mate theories.

In this paper we set up the one-dimensional
muffin-tin formalism and show that the CPA can
be reduced to a single quartic equation. This sim-
plicity is achieved because of the simple form of
the Green's function in one dimension when ex-
pressed in terms of the logarithmic derivatives of

II. KKR THEORY IN ONE DIMENSION

%e consider a one-dimensional system with
Hamiltonian

II=—,+ vx —na
dx

(2.l)

We assume v(x) to be symmetric and to vanish
for ~x~ greater than some radius (r,). We also
assume that the distance between the centers of
the potentials is great enough that they do not
overlap:.(x)=0, r= )x(&r.. .-

1x toga.
(2.2)

(2.2)

These assumptions are analogous to the use of
nonoverlapping muQ'in-tin potentials in Korringa-
Kohn-Rostoker (KKR) theory.

%e shall expand the wave functions about the
center of each potential in terms of symmetric
and antisymmetric functions analogous to the
spherical harmonics used in KKR theory. Thus

the radial wave functions. %e also show how one
can mimic many of the characteristics of transi-
tion-metal energy bands with a simple one-dimen-
sional model. %'e investigate the one impurity
problem for this model in some detail. Several
somewhat surprising effects which may have
three-dimensional analogs are observed. A de-
tailed numerical investigation of the CPA and com-
parison with the ATA is deferred to a later paper.

In Sec. II we develop the one-dimensional analog
of KKR band theory. In Sec. III we derive a simple
closed form expression for the Green's function for
a periodic system in one dimension. In Sec. IV we
derive the CPA equations. In Sec. V we present
our model of a one-dimensional transition-metal
alloy and show the results of calculations of the
change in the density of states caused by a single
impurity.
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we define the functions

r, (x) = 1/M~,

1',(x) =1/v2 sgn(x) .
(2.4)

%e shall also need the one-dimensional analogs of
the spherical Bessel functions. %e define these as
follows

ter is almost identical in one and three dimen-
sions.

Furthermore, one can easily show that, just
as in three dimensions, the scattering amplitude

f, is simply related to the on-energy shell t ma-
trix. Thus if t(x, y) is the t matrix defined by

t(x, y) =u(x)6(x-y)+ dzi)(x)G, (x-z)t(z, y),
j,(z}=cos(z --,' hr), f=0, 1,
n, (z) = sin(z ——,

'
fw), f =0, 1,

ti;(z}=j,(z)+in, (z) =e'" ""' .

(2.5)
(2.12)

where G, is the free-space Green's function (A6)
then

Almost all of the familiar identities involving
spherical harmonics and spherical Bessel func-
tions have one-dimensional analogs. Some of
these are listed in Appendix A for future refer-
ence.

One can use (2.4) and (2.5) to solve the single
scatterer problem. If we have a single symmetric
potential satisfying (2.2) centered at the origin,
then

dzj, (vE r, )

= —&+ e ~ SlD6g5g)s = f)5))s

f, =-it, ME . (2.14)

%e may let

(2.6) The theory for an assembly of scatterers is
also very similar to that in three dimensions. 7

The Green's function for (2.1) satisfying

(E -H)G(x, x') =6(x —x') (2.15)
((*&=tg,R,H~ ~)R,(*). (2.7)

where R, may be expressed in terms of phase
shifts for x&~„,:

R)( E r) =j,(MEr) cos5, —n, ( E r) sin6, . (2.8)

%e may also write

G = Go+ GoTGo

with

(2.16)

can be developed in the familiar multiple-scat-
tering expansion

)1)(x)=e'~"+2+f, e' z'
(1x) (2.9)

for r& r, and with
~

k ~=ME. We then have [using
(A5)]

a =s'e' i

f, = ie") sin6, .

(2.10)

(2.11)

Thus the partial wave analysis for the single scat-

+ P g P t-R t Rt'+" (2.17)

where I; is the t matrix for scattering off the
mth potential.

Consider the case where both arguments of G,
x, and x' are outside all muffin tins. The single
scattering term in (2.16) may be written

&xIIG.t "G.ix') =) dy dz G,(x-y)t"(y -R„,z-R„)G,(z -x')

dy' dz' G, (x —y' —R„)t"(y', z')G, (z'+ R„x') . — (2.18)

Using (A6) and (2.13) we have

(*IR.t R. I*'&=/ (~R& 't, (~R I*-R.I)t', (*-R.)t",( tR ) 't, (~R I*' —R. I», (*' —R.) (2.18)

Similarly using (A6), (2.13), and (All) one can w~ite the third term in the expansion for G as



H. BUTLER

(xlG, t~G, t "G, lx') = Q (iV& ) 'hi, (~& lx —R l)Y,,(x'-R )ti Gi i (R„—R„)
lg f2

xt", (i')-'fi, (ME lx'-R„ l)I', (x R„),

and so on for the higher-order terms. Thus for x and x outside all muffin tins we obtain

(2.20)

«» x') =Go(» x')+ Q (i~E) 'hi, (~E lx-R- l»i, (x-"-)&7,"i, (i~E ) 'hi, (~E lx'-R. l»i, (x'-R.) .

(2.21)

r i "i =tP 6i i 6 .+ Q t FG'i i (R -Rp)r i"i
l3 p tft

(k) Q e- ianaG (pa)13 pro 1 3
(2.24)

(2.22)

is the scattering-path operator introduced by
Qyorffy and Stott.

Equation (2.22) applies for any arrangement of
nonoverlapping muffin-tin potentials. It is also
valid in three dimensions with obvious redefini-
tions. Let us now restrict our consideration to
identical scatterer s on a lattice. Equation (2.22)
may be solved in this case by means of a lattice
Fourier transform.

7. (t ) e- ik{m- near IP!n1
Ej l2 l~ l2

n

= t,,6... +P t, G', , (k)T, , (k), (2.23)

Equation (2.23) is a two-by-two matrix equation for
7 which has solution

(2.25)

Now the poles of r are determined by det(r ') =0
and are also the poles of the Green's function
(2.14) and are thus the eigenvalues of the Hamil-
tonian (2.1). Then

det[t, '6„,— G', ,.(k)] =0 (2.26)

is the one-dimensional analog of the KKR equation.
In one dimension a closed-form solution to (2.26)

may be obtained. Substituting from (2.13) and (A13)
into (2.26) we have

[cot6, (cos 8 —eosf) —sin&f&] [cot6, (cos 8 —cosP) —sing] —sin'8
det(t, '6„, G', )=i-'

[ (
'

), (2.27)

There would appear to be two zeros and a second-order pole in det when considered as a function of 8(= ha)
for fixed i'(=ME a). Such is not the case, however, since one of the roots (zeros of the numerator) is cos8

=cosset . Thus (2.26) has one zero and one pole.

cos8(1+ cot6, cot6, )+ cosit (I —cot6, cot6, ) —sing(cot6, + cot6,) (2.28)

Thus the KKR determinant in one dimension has
one root for a, given E and a single simple free-
electron pole. The root is given by

8=ka=cos '[cos(MEa+6, +6,)/cos(6, —6,)] .
(2.29)

6 function. It is also instructive to write (2.29) in

terms of the logarithmic derivatives of the radial
wave functions at the "Wigner-Seitz" radius, ~
=

& a. We have

y, =R;/R, l„.„=-vz tan(-,'y+6, )

In three dimensions one will in general have
several allowed k's (for a given direction) for
fixed E. However, one can show that there is
usually a single simple free-electron pole.

The Kronig-Penny formula for 5-function poten-
tials can be obtained from (2.29) by setting 6, =0
and tan6O = —X/24 E, where A. is the strength of the

y, =R,'/R, l„,»=v E cot(-,'p+6, ) .

It is easy to verify that

eos8= —(y +y, )/(y —y, ) .

(2.30)

(2.31)
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Thus many of the approximate rules of thumb which

are used in three dimensions are exact in one di-
mension, e.g., "k =0 when y0=0, " or "at least one

of the logarithmic derivatives must be negative for
the density of states to be nonzero. "

Equations (2.29) or (2.31) determine the disper-
sion relation for a periodic system in one dimen-
sion. In Sec. III we will show that ~,,",, may also
be obtained in closed form so that the Green' s
function is in principle determined by (2.21). In

practice however a multicenter expansion of this
type is not very useful. %e are mainly interested
in the Green's function G(x, x') when x and x' are
both within the same signer-Seitz cell. Let us
suppose that x and x' are both within the %'igner-
Seitz cell at the origin (but for the time being still
in the zero potential muffin-tin plateau region).
One can now use (A9) to express all terms in
(2.21) as spherical harmonic expansions about the
ol 1gln

G(x, x') = G,(x,x') + p (i v E ) 'h, ( v E
l
x

l ) Y, (x)T", , (i ME) 'h, ( v E
l
x

l )Y, (x')
l

llew.

+ Y Q ((ME('h, ,(Mz[(x/((;, g)r', ", G,', (R )j, (Mz„(*'(( (x()'
2 3

+ p j( ( v E
I
x

I
)Y( (x)G«(R )r( ', (i v E ) 'h( (v E

I
x'1)Y, (x')

lll~l3 m 0

+Pgj (~&lxl)Y (x)Gl (R-)""(G('i (R.)j((vE lx'»( (x') . (2.32)

Using the facts that

+00 tO g tO F00 tO
l1l2 l1 l1l2+ l1 l1l2 l2

Gl (R )r(((0 Goo fo
l2l3 l l l

(2.33a)

(2.33b)

l1l2 l2l3 n l1 ill 3 ~

lp

where

(2.33c)

(2.34)

«* *' = ((* G*'&'2('~~( *" (~~(l*(l)" (~~ l*~' I)(l(((@ ((*') $((„(~~(l*(l)
1 2

+(i~E) '& h (vE lxl)lY (x)Gl' [j (vE lx'I)+(ivE) '& h (~Elx'I» (x'H.

Equation (2.35) can also be written

(2.35)

G(x, x')=G"'(x,x')+ R, (vE lxl)(expi5(, )Y, (x)G", , R, (VE lx'l)(expi5(, )Y,,(x'), (2.36)

where R, (V E lx l) is given by (2.8), and G"' is the
Green's function for one potential at the origin.
Our derivation of (2.36) applies only in the region
of the cell at the origin where v= 0. However,
(2.36) satisfies (2.15) everywhere inside the ceil
and has the correct boundary conditions so that it
is in fact valid at all points within the cell at the
origin. Equation (2.35) is also valid in three di-
mensions with appropriate redefinitions.

It is also useful to note thai

ImG(x, x') = g [R, (v E r}R, (v Er')/ i sns5in5, ,]

&&Imr(, , Y) (x)Y, (x') . (2.37)

Thus the density of states is determined directly
by F00.
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III. EVALUATION OF THE GREEN'S FUNCTION

Soven, ' Shiha, ' and Gyorffy' have shown that in
order to treat the single impurity problem in a
partial wave representation (and thus also to per-
form a muffin-tin CPA calculation) one needs

7f f i .e ., the scattering path operator for a pathl1t2&
which leaves from and returns to the origin. From
(2.23) and (2.25) this is

dk(f ' —G'(0)) '
27r lgl2 ' (3 I)

In one dimension, (3.1) can be evaluated exactly by
means of a contour integral. Substituting from
(2.13) and (A17) we have

-1 ' cot5,(cos 8- cosP)+ sing
2v, isin8

—i sine
v E (cos8 —cosp),

cot5, (cos8 —cosP)+ sing)
(3.2)

Inverting the matrix and canceling one of the roots
of the determinant against the factor cos8- cosQ,
we obtain

I = 1+ (x f)/(x'——1)'~'

and

(3 6)

~00
00

where

x = cos(P+ 5, + 5, }/cos(5, —5,),
f,= cosP —tan5, sing,

f, = cosQ —tan5, sing .

(3.3d)

(3.3e)

(3.3f)

vE -tan5, ' cos 8 f, -
2' 1+ tan5otan5, , cosa-x

-V E tan5, ' cos8 f, -
2v 1+tan5, tan5, cos8-x

-ME tan5 tan5, ' ising
2m 1+ tan5otan5, cos 8 —x

(3.3c)

(3.7a)

tan5, (3.7b)

G(x,x )=g G(~, 'r) I(x) I(x'), (3.8)

Equations (3.7a) and (3.7b), although simple, are
not easy to interpret physically. An extremely
simple and physically interesting expression can
be derived for the partial wave decomposition of
the Green's function, (2.35), for the case where x
and x' are both at one of the boundaries of the cell
at the origin. If

Note first that v', 0= -7„=0due to the odd parity of
the integrand. This means that the matrix 7" is
diagonal in one dimension. A similar thing occurs
in three dimensions as well, for cubic systems;
there the point symmetry is such that, through

E,„=2, cubic harmonics are equivalent to spheri-
cal harmonics so that the matrix T is diagonal.

Integrals (3.3a) and (3.3b) may be performed by
making a change of variables, z = exp(i8), and in-
tegrating around the unit circle:

1 ' cos8 fl dz z-'-2fz+1I=- dx =2m, cos8 —x 2ni z z' —2xz+1

(3.4)

The integrand of (3.4) has three simple poles,
z = 0, z = z&, and z = z&, where

G(-.'., —.'.) = I/[2(y. ~,) "] (3.1la)

then a little algebra yields

,)
R1(V Er() . (~ )

R, (v Er))
1fE sln51 1/E sln51

(3.9)

setting r =r ' =t;= 2 a and using some results peculiar
to one dimension, (2.29), (2.30), (3.6), and (3.7)
we have

1 (y, /y. )"

G, (r„r,)=+ ' ' =
),~, . (3.10b)I+(y /v )'"

Yo Yg Y] Yp g

If we substitute (3.10a) and (3.10b) into (3.8}we
see that

Z&Z&» 1 e (3.5)

For x real and less than 1 both z& and z& will lie on
the unit circle. However if we let E have a small
positive imaginary part one of the pair z & and z&

will move outside and the other inside the unit
circle since (3.5) must be satisfied. Thus

G(-,'a, --,'a) =G(2a, —,'a)e'" ' . (3.lib)

The density of states at the cell boundary is pro-
portional to the imaginary part of (3.lla) and is
seen to be nonzero for a periodic system of real
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potentials if and only if one and only one of the
logarithmic derivatives is negative.

Equations (3.10) can also be used to show that
within the cell at the origin, the Green's function
for the periodic system is identical to the Green's
function for a single cell surrounded by a uniform
medium, Z =E+y,y, . From (A14) we see that the
one potential Green's function is

G,'"(Y, Y') = (1/l WE)R (t' )E (Y) ) . (3.12)

Applying the Wronskian condition, (R', E, —E',E,)
= —i', we ha,ve

Substitution of (4.2) into (4.1) yields an equation
for tc:

C CAtA CBtB +(tC tA ) C( C tB )

(4.3)

It should be remembered that (4.3) represents
two equations in two unknowns tc 0 and tc, . These
equations are coupled since vc» depends on both
tc o and tc, . Equation (4.3) can be manipulated to
yield several equivalent forms which may be use-
ful in certain cases:

G, (y, r)= (Z', /Z, E, /E, )-', r (3.13)
tc = CAtA+ CBtB+ (tc —tA)GC(tc —tB)

G, =t (r, t )t-
cot6c = CA cot5A+ c~ cot5~

(4.4a)

(4.4b)

Now E, must match onto outgoing waves in the
medium Z outside the cell. Hence

El /E, ~„=(d/dr)h, (Kr)/h, (llr)„„~=iK, (3.15)

+ (cot5C —cot5„)vc (cot5C —cot5B),

(4.5a)

K= (E —Z)' ~' (3.16)

(I/vE )~. ,

tannic = c„tan6A+ c~ tan5~

(4.5b)

Comparison of (3.14) with (3.10) gives the desired
result

ill=(y, y,)'" or Z=E+y, y, . (3.17)

IV. THE CPA

The CPA can be derived by requiring that the
Green's function for a system having scattering
amplitude tA or ta at the origin and the coherent
scattering amplitude tc at all other sites be equal
on the average to the Green's function for a sys-
tem having t~ on al1 sites. This is equivalent to

00 00 00CA~ C, A+ CB~ C, J3 ~ C (4.1)

where roc' is given by (3.7) with tan5, =tan5C and
oco

A is given by

rc, A, ll=(~c ll+t All .tc', l} ' . (4.2)

In the following we shall drop the superscripts on
7' and the angular-momentum subscripts on 7 and

We will use this result to derive a very simple
form of the muffin-tin CPA in Sec. IV.

The result that the Green's function within the
Wigner-Seitz cell at the origin for a periodic sys-
tem is equal to that for a single scatterer in a
uniform medium is reminiscent of a. suggestion
due to Anderson and McMillan" for treating liquid
metals. Anderson and McMillan chose their uni-
form exterior medium by requiring that the for-
um'd scattering off the cell in the medium vanish.
(3.17) on the other hand can be obtained by re-
quiring that the backsvaxd scattering vanish.

+ (tan5C —tan5A)Gc (tan5C —tan5B),

(4.6a}

Gc ——cot5c(v' c —tan5c) cot5c, (4.6b)

YC CAVA+ CBYB+ (y. yA)G—C(yc y.}—
G l El (Ys) . tr $+ E~l+s) C. ll t4 7b}

sln6g ~g sm5g

Now according to (3.9),

Gc, l= Gc, l( s s}

so that using (3.10) we have

(4.8)

+ I/I'yc (ycyc)a/2j (4.9)

and

+ (y.' —yo )(y; —y.')/(y.' —(yc y,')' "1 (4.10a)

yl = CAyl" + csyl'+ (yl'-y")(y'-yg)/fy, '- (y'y,')"]
(4.10b)

Equations (4.10) can be converted into a single
equation in one unknown Z= (yscylc). '~'

A substantial amount of algebraic manipulation
applied to (4.10a) and (4.10b) yields

ca + ca
g yA g+yA E+yB g +yB ~ ~ (4.11a)

Equations (4.1) through (4.7) have three-dimen-
sional analogs, however (4.9), because of the use
of (3.10), is peculiar to one dimension.

Equation (4.7) stands for the set of equations

PP = cA4 + c84C A I3
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where

z (ccrc)l/2 (4.11b)

G (r, r) =(IifMS)Z;(r, )F*,(r, ),
where

(4.13)

FI(r) =IV', +a, RI . (4.14)

Here N, is the real "other" solution to the Schro-
dinger equation for an A or B potential. N, satis-
fies the same %ronskian condition with A, as I', .
a, is determined by the boundary condition on I', .
Thus the density of states of angular momentum
l at r is

p' (r) = (I/~) I (a /iVZ )Z"(r)

but from (3.14) we have

(4.15)

p',
'

c(r,) = (I/v) Im[ I/(y', —Z)]

Hence

(4.16)

p',
' '(r) = (I/1r) 1m[ I/(y' , —Z)]B,"(r)/It", (r,) .

In addition we can use the relation between the
integral of the square of the radial wave function
and the energy derivative of its logarithmic deriv-
ative,

R, x dh= —R)x,
0

(4.18)

to obtain an equation for the partial density of
states

Equations (4.11) are equivalent to the equation

(Z) ~ 1 ~ (j) 1 1c„G„"'(—,a, —,a, —iZ)+csGs '(—,a, —,a, —iZ)

= G(x, x, —fz), (4.12)

where G'„"(-,' a, —,'a, —iZ) is the Green's function for
a system consisting of a single scatterer sur-
rounded by a medium Z = E+ Z' evaluated at the
cell boundary and 6 is the Green's function for
the medium only. Thus we see that the muffin-tin
CPA in one dimension is equivalent to the SOBS
criterion" in which one determines a uniform self-
consistent medium by setting the average Green's
function at the boundary of a cell equal to the
Green's function for a uniform medium.

The CPA is not complete until one specifies how
the density of states is to be obtained. Since the
quantity Z (4.11b) acts as a uniform, self-con-
sistent, medjum replacing all scatterers outside
the central cell, the partial Green's functions,
G", c(i A or B), for a system with an A or 8 atom
on the central site and self-consistent scatterers
outside can be obtained from (3.12) and (3.14):

= (I/w) 1m[ I/(y, - Z)] (- 4", /«) (4»)

V. ONE-DIMENSIONAL MODEL FOR A TRANSITION METAI.

Although the formulas of Sec. I-IV are applicable
to any set of nonoverlapping, symmetric poten-
tials, we would especially like to mimic in one
dimension the resonant scattering behavior typical
of three-dimensional transition-metal potentials.
Rather than concoct a one-dimensional potential
which exhibits resonant scattering we find it more
convenient; to introduce phase shifts with the de-
sired energy dependence directly.

Thus we shall study a model potential which has
a smoothly varying 1=0 phase shift and a resonant
3= 1 phase shift analogous to the d resonance typi-
cal of transition metals. The specific forms which

we take are somewhat arbitrary:

tan5, (z) = X/(2ME),

tan5, (z) = F/(E, —E) —r/E, .

(5.1a)

The chosen forms are consistent with the requir e-
ment that 50(E=0) = 2 w and 6,(z =0) =O. In addi-
tion, 6,(E) exhibits a resonance at E =E„rising
rapidly over an energy range of 2I' from approxi-
mately zero to approximately m. %e shall say
nothing more about the potential which yields (5.1)
except to specify that if it is energy dependent this
energy dependence must be such that

a/o

[sV(r, E)/sz]It', (r)dr =0 . (5.2)

(5.2) is necessary if the density of states obtained
from the Green's function is to agree with that ob-
tained from the dispersion relation. Thus we as-
sume that over a limited energy range there exists
a potential such that (5.1) and (5.2) are approxi-
mately satisf ied.

Figure 1(a) (solid line) shows the energy bands
for A.:2 &y 2 05 F 0 5 as the parameters in

(5.1). In the following we shall take the lattice
parameter a to be unity. There is a gap in the
density of states extending from E= 1.74 to E =2.6V.
T.iis is the energy interval over which y, and y,
are both negative. If y, had been positive in this
energy range, the resonant behavior of 5, would
have induced an /= 1 band over the region of the

gap of Fig. 1(a). The dashed line in Fig. 1(a) shows
the energy bands resulting from setting 5, equal to
zero. One can see that the gap is due to l=0, 1=1
hybridization.

Hybridization is a less dominant feature of the
d bands of three-dimensional systems since there
are five d bands and only one s band. The general
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t n~i(iii ( ~t~h)i i2/~i(iI}

(5.5)

(5.6)

0
)0

: (b)

FIG. 1. (a) Energy bands for a one-dimensional model.
of a transition metal. Solid line is for A, =2.0, E&=2.05,
1 = 0.5 lsee Eq. (5.1) of textj. Dashed line has A, = 2 but

6& (8) identically zero. {b) Density of states [derivative
of the solid curve of (a)] .

Figures 2(a) and 2(b) show the change in the I = 1
component of the integrated density of states and
density of states, respectively, due to the replace-
ment of one potential of the xnetal of Fig. 1 by a
potential having parameters X=1.0, E, =4.05, 1"

=0.5. Points worthy of note are the large subtrac-
tion of states at the Van Hove peaks of the host, the
localized state in the gap, and the virtual bound
state peak centered at E = 4.3S.

The behavior of ~,(E) at the host band edge is
interesting. If the lower band edge is denoted by
E~ and the upper band edge by E~, then ~, tends
to ——,

' as E approaches E~ fxom below or E~ fxom
above. There is an additional, discontinuous,
jump of ——,

' state per atom at E =E~ and E =E~.
Also surprising is the state in the gap which in-
creases du%, (E) from —1 to 0.

The virtual bound state also has surprising fea-

0.4 -(a)

picture is that of a broad, parabolic s -p band
hybridizing with one of the narrow d' bands in such
a way as to create a gap over the approximate en-
ergy range of the original unhybridized d band.
Superimposed on this hybridization structure ax'e

the unhybridized or weakly hybridized d bands. It
is these unhybridized bands which are missing in
our one-dimensional model. The hybridized bands
of Fig. 1(a) are, in fact, quite similar to the I},,
bands of bcc transition metals. The density of
states for our model transition metal is shown in
Fig. 1(b).

A formula for the change in the integrated density
of states induced by a substitutional impurity has
been derived by Lasseter and Soven" and an equiv-
alent formula has been obtained by Holzwarth. "
The derivation is straightforward so we only quote
the result, as adapted to one dimension.

E0 -0.4

Ii} —Q

4 '(b)

Q
d}

C

Q}

CJ

Il}

2-
- (c)

2, 5 3.0 3.5 4.0 4.5 5.0

(5.3) 20 3.0 40
ENERGY

5.0

Here QI Rnd QI Rre logarithmic derivatives of the
impurity and host x adial wave functions. Using
(3.10) for G, we have

(5 4)

ox'

FIG. 2. (a) Change in the integrated density of states
due to one substitutional impurity. The host atom is the
same as in Fig. 1. The impurity atom parameters are
A. = 1.0, E

&
= 4.05, I' = 0.5. (b) Change in the density of

states. (c) Solid l,ine: impurity potential in free-elec-
tron matrix (4~0 = 6& = 0). Dotted line: impurity potential
in host matrix with (5& set to zero. Dashed line: impurity
potential in host matrix.
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tures. There is a substantial shift in the position
of the peak from E =4.05 (for a free-electron host
matrix) to E =4.38 for the matrix of Fig. 1. In
addition the total number of states under the
virtual-bound-state peak is substantially less
than one. It is difficult to find a simple formula
for the position of the virtual-bound-state maxi-
mum. The shift does not seem to be a simple
band repulsion effect, in fact, most of the shift

: . . . . i . . . . I . . . . i . „.. . I . .
0 2

s.. . . . I. . . . i. . . . l. . . . i. .

3
ENERGY

FIG. 4. Change in density of states. The host is that
of Fig. 1. The impurity has parameters A, = 1.0, E

&
= 2.30,

I =0.5.

FIG. 3. Three-dimensional cluster calculations. (a)
Change in the integrated density of states when ¹ is sub-
stituted for Cu at the center of a 13-atom Cu cluster.
Q) Change in density of states.

l. . . , i. . . . l. . . .„i.. . , l, .
2 3

ENERGY

FIG. 5. Change in density of states. The host param-
eters are A, = 1.0, E

&

= 4.05, I = 0.5. The impurity param-
eters areA = 2.0, E& = 2.05, I' = 0.5.

in this case is due to the host 3=0 phase shift
[Fig. 2(c)j. The host /= 1 phase shift has the ef-
fect of sharpening the virtual bound state.

Certain qualitative features of these one-dimen-
sional model spectra seem to persist in three di-
mensions. Figures 3(a) and 3(b) show the changes
in the integrated density of states and density of
states, respectively, when an Ni atom is substi-
tuted for a Cu atom at the center of a 13-atom
cluster of Cu atoms. The cluster is surrounded
by a zero-potential background equal to the muffin-
tin zero, and the geometry of the cluster is that of
a Cu atom with its 12 nearest neighbors in metallic
Cu. Figure 3 may be compared with Fig. 2 since
in both cases the impurity resonance occurs at a
somewhat higher energy than that of the host. In
both cases there is a subtraction of states near the
band edge, and ddt, goes to zero within the band.
In both cases the virtual bound state is shifted to
higher energy and reduced in width by the host.

Figures 4 and 5 show results analogous to those
of Fig. 2 for two additional alloys. In Fig. 4, the
host is the same as in Fig. 2 and the impurity pa-
rameters are X=1.0, E, =2.30, and 7=0.5. For
this alloy the host and impurity resonances are
much closer together. The results are qualita-
tively similar, however. Note that there is still
a virtual bound state maximum, even though E,
is well within the host gap.

The alloy of Fig. 5 has host parameters A. = 1,
E, =4.05, l =0.5 and the impurity potential has
parameters X=2, E, =2.05, I"=0.5. In this case
the host seems to be acting very much like a free-
electron matrix in the energy range of the virtual
bound state since the virtual bound state is very
broad and not perceptively shifted.

The results of these model calculations empha-
size the importance of the proper treatment of
resonant scattering and hybridization. Contrast
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the density of states shown in Fig. 2(a} with the
predictions of the two level tight-binding model.
In this model one takes a Hamiltonian of the form

g Y, (x)Y, , (x) = 6„..

Closure:

(A1)

H= p E", (2)(2 I+ Q w I2) (j I
(5.7)

(A2)

for the host. E," would generally be taken to be the
host atom resonance energy (2.05 in this case} and
W would be adjusted to give the correct band width,
(W=0.47), in this case. The two level tight-binding
model prediction for the change in the integrated
density of states is

ddt(E) = —(1/22) lm ln {1-(E,' —E", )/ [ (E E,)'

j,(z)(dn, /dz) n, (z-)(dj, /dz) = 1.
Sum rule:

(As)

Wronskian relation for "spherical Bessel func-
tions":

+22] 2/2)

(5 8)

l=0, 1

Plane-wave expansion:

(A4)

The host band is centered at E, and extends from
E, —W to E, + 8' in the two-level tight-binding mod-
el whereas the results of Fig. 2 yield a gap in this
range. Furthermore, the two-level tight-binding
model predicts an infinitely sharp localized state
at approximately

E=E'+ W'/2(E2-E,") . (5 9)
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APPENDIX A

We collect here some useful relations involving
the "one-dimensional spherical harmonics and
spherical Bessel functions" defined in (2.4) and
(2.5). Orthonormality of "spherical harmonics"

The resonant scattering model however gives a
virtual bound state whose width and position depend
on the behavior of the 3=0 and l=1 host logarithmic
derivatives. The shift in peak position does not
scale as W' as we verified by changing the width
of the host bands in Fig. 2 by reducing I'. When
I and hence W was reduced by a factor of two, the
shift was reduced by only 7%.

One must be careful in drawing conclusions about
three-dimensional systems from one-dimensional
models. It is clear that hybridization effects will
not be quite so dominant in three dimensions as in

one. However, these calculations do illustrate
the need for three-dimensional muffin-tin CPA
calculations, and the danger of naive acceptance
of tight-binding CPA calculations which ignore
hybridization.

e' "= 2 g i'j, (kr)1', (x)Y,(k).
1=0y 1

(A5)

Two-center expansions:

j2(k Ix —y l)Y2(x-y)

=2 g i" " 'j&, (k I» I)j2 (k I y I )

x Y, (x)Y, ( y)C(l, l22 i2), (A7)

where

C(l, l„L)=Q Y) (k)Y), (k)Y2(k)

=(1/W2)5, , l =0,
= (1/v 2) (1 —5.. .,), (A6)

(1/i')h, (~E I
x —y l)Y, (» —y)

=Q GI,2,(y}ji,(~&lxl)Y2, (x), ly I lxl (A&)

where

G;...(y) =(2/;~E) g h2, (WE ly I)

x Y, (jj)2 2 2 3C(l„ l„ l,),
(A10)

Free-particle propagator partial-wave expansion:

Go(» x') (1/22'~g)e' JE'(I *

= (1/i v E ) P j, (WE r, )h, (WE r, )Y, (») Y, (x '
) .

(A6)
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&& 1', (~)q, (vX i
~' i)1,,(x'),

i sing
, ( )

1 cosH —cosy
i&E'

cos8 cosp

sin8
cos8- cosp

i sin(t)
+cos'H —

'

cosy i

l~' I& l~+v I,
One-scatterer Green's function":

Expllc1t forms fol G)gI .
a"'(x, ~ ) =(1/i&Z) P a, (~,)J,(r, )1,(x)V, (x'),

(A14)

si/slyi (G'(v) =

(isg, o(W

i 'sgn(j))

j
(A12)

sphere A', is the regular solution to the radial
Schrodinger equation and I, is a linear combination
of regular and irregular solutions satisfying

Z, F', -Z', r, =iWz. (A15)
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