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Deformable shell-model calculation of the lattice statics and dynam' of the CsBr crystal
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In this rcport wc prcscnt a simple statistical-model derivation of thc three-body interaction envisaged in the
deformable-shell model developed by Basu and Sengupta. Next the model is applied to a unified study of the
lattice statics and dynamics of the CsBr crystal, the same set of parameters being used throughout. Among
the alkali halide crystals, the cesium group of halides are distinguished from the rest by two characteristic
problems of the their own —one related to the stability of the static lattice structure and the other concerning
the correlation of the dielectric properties and the dispersion of phonons. The results of the present calculation
show that this simple model gives a, good description of the lattice mechanics of the CsBr crystal in all its

totality and the source of improvement for the remaining discrepancy is suggested.

I. INTRODUCTION

In R px'evlous pRpex' we hRve mRde Rn extensive
investigation on the dynamic properties of cry-
stals having NaCl stxuctuxe on the basis of the
deformable-shell model developed by Basu and

Sengupta. 2 The results obtained have been quite
satisfactory and the model appears to be emplrl-
eally verified. Hence in the present work we have
attempted a justification of the three-body inter-
action implied by the model from a simple statis-
tical-model consideration. Apart from the present
model there are other models, namely, the modi-
fied rigid-ion model, s the breathing-shell model, ~

Rnd the model of Singh and Verma, ' which also
more or less correctly reproduces the phonon data
of the alkali halides with NaCl structuxe. But
there have been only a few attempts to correlate
simultaneously the static and the dynamic aspects
of alkali halides in the framework of a single mo-
del. Recently we have considered such a unified
study' of the NaF crystal in the framework of the
deformable-shell model and the results obtained
have been quite encouraging. It cannot, however,
be denied that the validity of the above-mentioned
models is more rigorously tested, if they are ap-
plied to a comprehensive calculation embodying
both the static and the dynamic properties of a
solid. In a x ecent review Rxticle' we have inter-
compared these different lattice-dynamical mo-
dels and have noted that all the above-mentioned
models have the potentiality of such an appliea-
tlon. One of the motivations of the px'eseQt wox'k

is to attempt such a calculation for the CsBr cry-
stal.

The cesium group of halides are distinguished
from the rest of alkali halides by two character-
istic problems of their own. One is concerned

with the stability of these crystals. It has been
known for a long time that no reasonable two-body
central interaction' ' can predict the correct lat-
tice static structure for the three crystals, CsBr,
CsCl, and CsI. Many intensive investigations'0 "
of this problem have been earxied out in recent
times and most of the work leads us to conclude
that the many-body lntexRetlon ln some form
might be responsible for the static lattice struc-
ture of these three crystals. Sarkar and Sen-
gupta'3 have obtained the cox'rect structure for
them with a three-body potential arising out of the
deformation of the charge cloud of an ion„

The second one is eoncex'ned with the dielectric
behavior of these crystals. The dispersion of
phonons and the dielectric constants are quite
successfully correlated in the above-mentioned
polarizable models for alkali halides with NaCl
structure. Unlike other alkali halides, for this
triplet of cesium halides the dielectric properties
and the dispersion of phonons are correlated only
inexactly in the present polarizable models. For
example, in order to obtain a reasonable fit with
the phonon fx'equencles ln the symmetry dlxeetlons
for the CsBr crystal on the breathing-shen model~
the stRtlc Rnd the high-frequeQcy dleleetx'lc con-
stants have to be lowered by 40 and 45/0, respec-
tively. Moreover, in this calculation the value of
the ionic charge used is 0.85 which means that if
one ealeulates the cohesive energy of this crystal
it will be considerably lowered. On the other hand,
the value of cohesive energy ean be improved only
at the expense of agreement for the phonon data.

In the present work we have attempted a calcula-
tion of the major aspects of' the lattice statics and
the dynamics of the CsBr crystal with the deform-
able-shell model. %8 have tried to corx'elate the
following specific properties: the cohesive energy,
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the static-lattice structure, the second-order
harmonic elastic constants, and the dispersion of
phonons in the symmetry directions, and the
dielectric constants. We have consistently used
the same set of parameters in all the calculations.
In Sec. II we consider the derivation of the three-
body interaction and the method of calculation.

unaltered and correspond to the values obtained
for the isolated ions. Thus the effect of the de-
formation of the charge cloud is neglected.

We shall assume that in the presence of other
ions the charge-density function of the lk ion is no
longer given by p,~. Instead it is given by

II. THREE-BODY INTERACTION AND METHOD

OF CALCULATION

Basu and Sengupta' "have considered the effect
of an isotropic scalar deformation of the electron
charge cloud on the dynamics of a crystal. They
have derived an expression for the force constants
that arises from the deformation and demonstrated
thai the force constant is due to an effective three-
body interaction between the ions in a lattice.
Sarkar and Sengupta" suggested empirically a
form for this three-body interaction which gener-
ates the same set of force constants. In the fol-
lowing me give a justification of the form from
certain simple consideration.

In the present analysis we shall follom the
Thomas-Fermi -Dirac statistical method which
has been used by Jensen and others" to study the
properties of ionic crystals. In the statistical
method, instead of wave functions the attention is
focused on the charge density around each ion.
Let p~ be the equilibrium density function around
an isolated k ion. The total energy of the ion,
E», may be obtained from an energy-density
function c such that

where 5p» is the deformation of the charge cloud.
It may be noted that we are not assuming here that
all the ions are occupying the nor mal lattice sites.
They may have arbitrary displacements from their
normal position. If we expand the energy density
function e(p, «) about po«and retain second-order
terms only, then

&(P)«) =&(Po«) +5P)«& (Po«)+«5P)«& (Po«)

When many ions are present, the energy density
function may be written

(4)

where P.,«p, « is the resultant density at any point.
Separating the overlap term me may write

where e« is the overlap energy density considered
by Jensen. In the present treatment we neglect
the effect of deformation on the overlap energy
density. Substituting for e(p») from Eq. (3), we
get from E(l. (5):

Zo~= ~ 0~ dr

The energy density here includes contributions
from the (i) classical Coulomb energy, (ii) the
zero-point kinetic energy, and (iii) the exchange
energy. The expression for e(p) is given by Born
and Huang. " The equilibrium density function p,~

as a function of r is obtained from the condition of
minimum energy.

When the ions are brought together to form a
crystal, the total energy of the crystal mill be the
sum of the individual energies of the ions plus the
additional Coulomb energy of the ions, provided
there is no overlap in the charge density of ions.
If overlap occurs, one may put the density in the
overlap region to be the sum of the densities of
the individual ions at that region. Since e(p) is not
a linear function of p, this lends extra energy of
interaction betmeen the ions, and gives rise to the
mell-known repulsive overlap interaction. In the
treatment of the overlap interaction by Jensen and
others, " it is assumed that even when the ions are
brought together, their charge densities remain

+2Z5P(«~ (Po«)+eo) ~
tl

»

So far, we have not specified the nature of the
deformation function, 5p». It has been shown by
Basu and Sengupta" that, in general, we can sep-
arate 5p, „ in terms of spherical harmonics as
follows:

+g f, (r) l',„(8,(p), (7)

the vector r being measured from the nucleus of
the ion. The first term gives the isotropic scalar
deformation, the second one a dipole deformation,
and the third one a quadrupolar deformation. We
confine our attention to the first term of the
series. The effect of the second term is adequately
incorporated in the framework of the shell model
by Woods eI, al. ", while the third term is neglec-
ted. To simplify matters we further assume that
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the deformation is defined by a single parameter
a». For small values of the deformation para-
metel Q» we mRy wx'lte

where f, is some isotropic function, the same for
all ions of type k. For the total energy of the

system we now get

I ~
(P)dr =Z E~+EoI+ZQIo Go+2 2 III'o&a ~

(9)

Sengupta. In the latter case the deformation is
defined with respect to the charge cloud of ions
occupying the equilibrium positions in the lattice,
whereas in the present case the deformation is
defined with respect to the charge cloud around a
free ion.
Substituting EII. (10) in Eq. (9), we get

(nn of 1k)

fo& (Poo)~r Rnd ~o= f1& (Poo)dr ~ (nn of 1k)

and F» is the total overlap energy. %e shall as-
sume that the deformation of the I' ion is primarily
due to overlap of those ions which are nearest
neighbors of the lA ion. Precisely we put

(nn of Ik)

(10)

where 8~ is some constant characteristic of the
k-ion, and S(lk, I'k') is the overlap integral be-
tween the Lk and l'k' ions, To make this assump-
tion consistent with that of Basu and Sengupta, '

without much error, we may take that S '(lk, I'k")
is proportional to the overlap potential P(r{fk, I'k')).
It may be noted that the deformation parameter,
a, ~ defined here is different from a» in Basu and

+ —Q Q F~Boo So(fk, I'k')So(fk, I"k"). (11)
2 fk

(nn of /k)

The third and fourth terms in EII. (11) are the
contribution from an effective two-body inter-
action and may be merged with the overlap energy.
The fifth term is the contribution from an ef-
fective three-body interaction. This analysis
shows that there is an interaction energy between
l'k' and l"k" ions generated by the presence of
the common nearest-neighbor (cnn) Ik ion. If we

liow I'eplRce tile ovel'IRp IlltegI'Rl 111 EII. (11) by tile
two-body overlap interaction, @(r)=be " o, then
we get the three-body interaction (Sarkar and

Sengupta")

lk
(cnn of / 'k ' and 3 "k ")

r(fk, I'k')+r(f k, I"k")
A k)exp-—

p
(12)

whel'e A(k) Is souls constRllt wlllcll 111BRsul es the
deformability of the A' ion. Here we have assumed
that both k and k' are the same type of ions, so
that oQly one value of p 18 involved.

Here t is important to note that we do not treat
the defox mability as an additional independent de-
gree of fx'eedom whose value is determined by an
adiabatic equation as in the breathing-shell model.
If this were so as in the breathing-shell model, it
would immediately restrict deformability and
hence A(k) to values which are positive definite.
Our assumption in Eoi. (10) is thus crucial and ef-
fectively 8tates thRt the defoxmatlon 18 uniquely
determined by the instantaneous lonlc posltlon
coordinates There i.s no restriction on A(k}tobe
po sit lve.

In the px'esent model the equilibrium condition is
affected by minimizing the total static lattice en-
ergy and this is why we have used the harmonic
value of the nearest-neighbor distance and the
harmonic value of the cohesive energy in the de-
termination of the parameters.

In this treatment of the problem of the isotropic
deformation of the charge cloud we have proceeded
in a phenomenological way and used the somewhat
cx'ude statlstlcRl model. It 18 certRlnly deslx"Rble

to treat the problem of deformation in a more
fundamental way. Most of the calculations of the
energy of a crystal from a fundamental quantum-
mechanical standpoint„such as that of Lowdin"
and Lundqvist" and others which are based on a
Heitler-London approximation, are confined to
first-order effects, where the deformation of the
charge cloud is neglected. Recently, several
authors2 2~ have tried to develop a microscopic
theory of lattice dynamics which includes de-
formation. But in all these calculations, the at-
tention is confined to the dipole deformation alone.
In absence of a mox'e refined calculation the above
may be considered to be a plausibility argument
analysis in favor of EII. (12). It may, however, be
noted that EII. (12) represents a very simple and

tractable form for the three-body interaction.
Next in order to compute the properties of the
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TABLE I. Values of input data and parameters. measurement, namely, 80'K (for details see Ref.
6).

Input data Parameters

P ~ =P.5717x 10 dyn/cm
r = 3.6762 A

4 = 151.8 kcal/mol. ~

E'p = 6.45
~„=2.18'

LA 1.44 x 10'3 c

b = 2.9126 x 10 ergs.
p =0.3075X 10 8 cm
A (1) = 4.012x 10 dyn/cm
A(2) = —7.422xlp 5

Y = 8.3804
K = 230.9 x 104 dyn/cm

' See Ref. 26 ~

~ See Ref. 11~ The value quoted in this reference has
been corrected for zero point energy as estimated by
Seitz.

~ See Ref. 23 ~

CsBr crystal the interactions retained are the
Coulomb interaction, the repulsive interaction be-
tween nearest neighbors only, the Van der Waals
interaction, and the three-body interaction given
by Eq. (12). The dipole forces are calculated in
the framework of a polarizable negative ion shell
model. "

Assuming the ionic charge to be unity the six
parameters of the model, namely, b, p (short-
range repulsive parameters), Y (negative ion
shell charge), K(core-shell spring constant), and

A(1) and A(2) (many-body interaction parameters)
have been calculated from the harmonic value of
the cohesive energy, the harmonic bulk modulus,
the LO-phonon frequency at q =(v/a)(1, 0, 0) di-
rection, and the static and high-frequency dielec-
tric constants, c, and e„. The expressions for the
cohesive energy and the elastic constants and the
force-constants corresponding to the three-body
interaction are evaluated in the usual procedure.
The values of the parameters together with the
input data are given in Table I. While calculating
the dispersion relation we use the quasiharmonic
approximation. The values of r', Eo 6 used there-
fore correspond to the temperature of the phonon

III. RESULTS AND DISCUSSION

First of all we have considered the stability of
the static lattice structure of the crystal. The
detailed method of the calculation is given in Refs.
6 and 13. In Table II we have compared the value
of the harmonic cohesive energy of the real lat-
tice with that in the hypothetical structure (Nacl
structure in this case) and it is seen that the cor-
rect structure is predicted. With the same set of
parameters the second-order harmonic elastic
constants have also been calculated and compared
with experiment. The agreement is found to be
quite satisfactory. The results also show that the
presence of the explicit many-body interaction
takes account of the breakdown of the Cauchy re-
lation for this crystal.

Next we have calculated the phonon frequencies
in the symmetry directions with the same set of
parameters used for the evaluation of the static
properties. The dynamical equations are the
same as given in Ref. 1. The calculated and ex-
perimental frequencies" are displayed in Fig. I.

The results of the present calculation show that
a satisfactory description of both the static and
dynamic aspects of the CsBr crystal is obtainable
in the deformable shell model. However, a close
examination of Fig. I will reveal that there exist
certain discrepancies (-10%%up) in the LO branches
of the dispersion curves apart from some minor
discrepancies in the acoustic branches. The LA
frequencies in the [100] and [110]directions may
be somewhat improved by the inclusion of theshort-
range potential beyond nearest neighbors. But the
overall discrepancy seems to be arising partly out
of the neglect of the polarizability of the positive
ion. But it is apparent from the works of Roland-
son et al."that even this inclusion is unable to

TABLE II ~ Relative stability and second-order harmonic elastic constants.

Structure
Harmonic

nn distance Cohesive energy
Phase transition

pressure

Nacl
CsCl

3.6085 A

3.6762 A
151.3 kcal/mol.
151.8 kcal/mol.

—1.454
kbar

Elastic
constants Calc. (].0'-' dyn/cm ) E~t. (10~2 dyn/cm-')

C~q

C44

0.3471
0 ~ 1014
0 ~ 1215

0 ~ 3445
0 ~ 1036
0 ~ 1042

~ Hypothetical structure.
b Stable structure.
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Llooj P log

FIG. 1. Phonon dispersion
curves ln the syTnTnetry dT-

rections; solid line repre-
sents the theoretical curves.
Experimental points are
taken from Ref. 23.

correlate dieleetrie properties Rnd the phonon
dlspex'Sion I'elRtlon Rs discussed eRl llel. There
are two other recent calculations on the phonon
dispersion of the crystal by I al et aE.' and
Agrnwnl el' 0/. In the cRlcnlRtion hp AgrRwel
et al. the ionic charge has been significantly
lowered to improve agreement for phonon dis-
peI sion whereas ln thRt of LRl et Alt. the full
ionic charge has been retained at the cost of agree-
ment for phonon data which is worse than the pre-
sent calculation. Moreover, the present ealeula-
tion alone predicts the correct structure of the
crystal in addition to a reasonable description of
the other properties in the framework of a single
model, Rncl using the same Set of pRrRmeteI's.

FI om the present investigation and the above
discussions lt 18 quite eleRl that no dlpolar foI'ee
model is capable of rendering a consistent des-
cription of the dielectric properties and the dis-
persion of phonons. In view of this it seems I'ea-
sonable to conclude that the remaining discrepancy
with experiment in the present model might be
due to the neglect of the third term in Eq. ('f),
i.e. , the quadrupola. r deformation of the charge
cloud.

Our sincerest thanks are due to Professor S.
Sengupta for helpful discussion and for suggesting
the use of the Thomas-Fermi-Dirac statistical
method.
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