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A quasiselection rule is derived that multiphonon infrared absorption in alkali halides prefers final states
containing an odd number of optical phonons. This quasiselection rule explains the recent observation of a
well-defined peak in the low-temperature infrared absorption of several alkali halides at a frequency
corresponding to the sum of three optical phonons. No corresponding peak occurs at the two- or four-optical-
phonon summation-band frequencies. It is shown that the quasiselection rule results from the relative ionic
displacements for optical modes being approximately in phase with the individual ion displacements, while the
relative ionic displacements for acoustical modes are approximately 90' out of phase. The further realization
that, at least for optical modes, the magnitude of the Fourier-transformed relative displacement is nearly
independent of the phonon wave number greatly reduces the eA'ort of the calculation. This approximation
reduces an extremely tedious momentum-dependent sum to a thermally and frequency weighted density of
states in which the phonon branches are kept distinct.

I. INTRODUCTION

The advent of high-power infrared lasers has
stimulated considerable recent interest in the
small amount of absorption of transparent solids
in the far wings of their infrared absorption bands. '
In alkali halides at frequencies greater than ap-
proximately twice the fundamental reststrahl fre-
quency, the absorption coefficient P is observed
to decrease exponentially with increasing fre-
quency. ' Until recently no structure has been ob-
served in the high-frequency, multiphonon region.
Recent experiments by Harrington et al. ' at low
temperature (80 K) show a well-defined peak in

the absorption coefficient of several alkali halides
at a frequency corresponding to the sum of three
optical phonons. No corresponding peak is ob-
served at the two- or four-optical-phonon sum-
mation frequencies and the three-optical-phonon
summation band is observed to be most pronounced
in crystals having a large mass ratio between the
heavy and light crystal ions. These observations
suggest an odd-even selection rule that allows
odd-numbered optical-phonon summation bands.
Such a selection rule is derived in this payer and
is called a quasiselection rule since it is approxi-
mate (unallowed transition-matrix elements
small, but nonzero).

Previous theories' ' generally predict a smoothly
exponentially decreasing absorption coefficient in
the multiphonon region in agreement with previous
room-temperature experiments. Structure in the
multiphonon absorption coefficient can arise from
structure in both the multiyhonon density of states
and transition-matrix elements. Evidence is pre-
sented in the present paper that much of the fine-
scale structure in the multiphonon density of states
is smoothed out by the short lifetime, hence large

spectral width, of the final-state optical yhonons
at room temperature. The remaining broad struc-
ture observed by Harrington et al. ' is shown to
result from transition-matrix elements which favor
transitions to final states containing an odd number
of optical phonons.

Many past theories treat the lattice as a set of
molecular oscillators on which a density of states
is impressed. Such past theories have neglected
the suppression of even-numbered optical-phonon
summation bands and any structure in the absorp-
tion coefficient, if predicted, occurs at both even-
and odd-numbered combinations.

The present paper is based on a perturbation-
theory calculation on actual crystal phonons by
Sparks and Sham. 4 An error in the Sparks and
Sham~ paper is corrected which, when corrected,
leads to multiphonon quasiselection rules. Fur-
ther reasonable approximations greatly simplify
the otherwise very tedious perturbation-theory
calculation.

Previously, selection rules were derived for
the two-phonon region. An exact group-theory
selection rule forbids final-state yhonons on the
same phonon branch. "'" Subsequently Duthler and
Sparks" derived a two-phonon quasiselection rule
which favors final states consisting of an optical
plus an acoustical phonon over final states con-
sisting of two optical or two acoustical phonons.
This quasiselection rule yields four quasiallowed
combinations of phonon bands: TA+ TO, LA+ TO,
TA+ LO, and LA+ LO, where 0 and A denote op-
tical and acoustical branches, and T and L denote
transverse and longitudinal. Typically four two-
phonon absorption peaks are observed in alkali
halides" in agreement with the quasiselection rule
and in contrast with numerous additional peaks
possible from the joint density of states. Eldridge
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and co-workers" have examined the absorption
peaks in LiF in detail. Strong two-phonon sum-
mation peaks were traced to the combination of
branches and the particular region of the Brillouin
zone contributing to the peak. Four strong con-
tributions were found for combinations of optical
plus acoustical branches, although branch identi-
fication is somewhat difficult in LiF due to dis-
persion curve crossings.

II. ABSORPTION MECHANISM

There are two possible mechanisms for multi-
phonon infrared absorption in dielectric crystals:
In the higher -order-dipole-moment mechanism
the absorbed photon directly creates n final-state
phonons, as is illustrated in Fig. 1(a). In the
anharmonic lattice mechanism only the fundamen-
tal reststrahl (TO, zero momentum) phonon couples
to the radiation field. In this case illustrated in
Fig. 1(b), the intermediate-state reststrahl phonon
is driven off resonance and decays into n final-
state phonons. It was previously thought that the
anharmonic lattice mechanism is dominant in
alkali halides, although this is now questioned
especially at large g, " The leading terms in the
transition-matrix elements for the two mechanisms
are expected to be similar"'" with the result that
the quasiselection rules derived in Sec. III for the

anharmonic lattice mechanism should also be valid
for the higher-order-dipole-moment mechanism.

To illustrate the equivalent functional form of
the leading terms of the two mechanisms, consider
the interaction Hamiltonian for radiation absorption
by the anharmonic lattice mechanism. Assuming
a central-force lattice potential, the n-phonon an-
harmonic lattice interaction Hamiltonian is pro-
portional to the nth power of the relative displace-
ment of ion pairs:

(2.1)

Here u, =u, -u, where u, and u are the dis-
placements of the 1th and mth ions from equili-
brium. The unit vector 5, is directed from the
equilibrium positions of the lth ion to the mth ion
and u& is the unit polarization vector for the ion
motion in the fundamental mode.

In rock-salt structure crystals the absorption
coefficient is independent of the direction of
propagation. Choosing the x direction for the
radiation polarization (uz =x) and keeping only the
nearest neighbors in the summation, Eq. (2.1)
becomes

(2.2)

FIG. 1. (a) In the higher-order-dipole-moment mech-
anism the absorbed photon directly creates m final-state
phonons. (b) Only the fundamental reststrahl phonon

couples to the radiation field in the anharmonic lattice
mechanism,

where now l labels the light ion in the unit cells
and the sum on m is restricted to nearest neigh-
bors at + a„„x. The multiphonon quasiselection
rule is derived from the term under the summation
with the relative ionic displacement expressed in
terms of crystalline normal modes.

It is reasonable to expect that the higher-order
dipole moment which arises from the nth power
of the relative ionic displacement is dominated
by contributions of nearest-neighbor pairs and is
directed along the line connecting the ion centers.
If these conditions are satisfied, at least the lead-
ing terms of the interaction Hamiltonian for the
higher-ordeI -dipole-moment mechanism have the
same form as Eq. (2.2) for radiation polarized in
the x direction. The leading terms of the bvo
mechanisms differ only in the proportionality con-
stant. Reasonable estimates can be made for the
proportionality constant of the anharmonic lattice
mechanism from the (n+ 1)th derivative of model
potentials, but the proportionality constant for the
higher-order-dipole-moment mechanism is highly
uncer tain.

III. DERIVATION OF QUASISELECTION RULE

The infrared dielectric constant for the anhar-
monic lattice mechanism is
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where zo and ~ are the static and high-frequency
dielectric constants, +& is the frequency of the
fundamental reststrahl mode, and F(~) is the fre-
quency-dependent relaxation frequency of the fun-
damental mode. The absorption coefficient is
given by P =k, e,/n„, where h, is the vacuum prop-
agation constallt of the radlationy 61 ls the im-
aginary part of the dielectric constant, and g~ is
the real part of the refractive index n =&' '. For

frequencies away from the resonant frequency,
peaks in the relaxation frequency will be reflected
in yeaks in the absorption coefficient.

Sparks and Sham have derived formal expres-
sions for the relaxation frequency using the per-
turbation-theory result that the probability yer
unit time of a transition between two states is 2v/I
times the square of the transition-matrix element.
The total relaxation frequency of the fundamental
mode is the sum of processes involving all num-
bers of phonons with the contribution from the g-
phonon summation process shown in Fig. 1(b) being

(3.2)

where Q denotes the yhonon mode having wave
vector q, branch 5 and frequency v+, 6 is the
modified Kronecker 6 which is unity when the
argument is zero or a reciprocal-lattice vector
and zero otherwise; and

SQ&+ 1
LL
J I RN+1

where n& and n~ are Bose-Einstein occupation
numbers of the phonon mode Q and frequency co,

respectively.
The total renormalized vertex A(fQ„. . . , Q„) is

approximated by the simple vertex V(fQ„. . . , Q„)
multiplied by a vertex renormalization factor

(3.3)

~(fQ&, . , Q. ) =J(„V(flu *Q.). (3.4)

The simple vertex V(Q„. . . , Q ) involves all de-
rivatives of the potential through order m, but no
products of derivatives as does the renormalized
vertex. Sparks and Sham' justify retaining only
the mth-order derivative of the assumed nearest-
neighbor, central-force potential P!"!=d (t)/dr,
a11d obtain

where N is the number of unit cells in the crystal
and m& is the mass of the light ion in the unit cell.
The sum on y runs over the nearest-neighbor
heavy ions which, in rock-salt structure crys-
tals, are located at the six positions +a„„R, +a„„g,
and a„„z from each light ion with the directions
to these positions being given by the unit vectors
x&. The quantity

U (Q) =P ~ [w o —(m /m )')'w, o &« *;~-]

(3.6)

is the x component of the Fourier-transformed
y

relative displacement of the light ion from the
heavy ion located at x a„„. The polarization vec-
tors w&z and w& are implicitly defined by the
equation expressing the displacement u«of an
ion from its equilibrium position x,~ in terms of
phonon modes:

X/2

eq «A wQ T'Q s

U~(f) =xy ~ zoq (m, /m„)'~', (3 6)

where m„ is the reduced mass of the bvo ions in a
unit cell.

Substituting tllls result fol one of the phonon
modes in Eq. (3.5) and using Eqs. (3.3) and (3.4),
the relaxation frequency in Eq. (3.2) can be written

1)
—i

(~())+|})2 A 2 E (3.9)

where the dynamical information of the phonons is
contained in Z„:

(3.7)

Q

where z denotes the ion type andA& =a+a~&, with

a and a being phonon creation and annihilation op-
erators. With the convention used in writing Eq. (3.7),
the components of thepolarization vectorsw, z are
real numbers.

For the funda. mental reststrahl mode, the
Fourier-transformed relative displacement in
Eq. (3.6) becomes
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This result for Z„ is identical to that given in Eq. (2.21) of Sparks and Sham. In going from their Eq.
(2.21) to Eq. (2.24) Sparks and Sham' made an algebraic error when expressing Z„ in terms of real and
imaginary parts of U„(Q). Bather than simply correcting the algebra in Ref. 4, a different approach is
taken from this point on in the present paper.

Jn rock-salt structure crystals the absorption is independent of the direction of propagation. Hence,
for convenience we choose u3& =R. With this choice the only terms surviving the sums over nearest neigh-
bors in Eq. (3.10) are those located at +ra„„. Interchanging sums on y and Q, Eq. (3.10) becomes

(3.11)

An examination of Eq. (3.6) reveals that the components of the Fourier-transformed relative displacements
in the positive and negative x directions are related by

(0) = —U.*(Q) .

Using this result in the sums on y, Eq. (3.11) can be written

(3.12)

n n n

+21 U, (Q,)l', ,'(, . +I) I+(-I)"' o 2Q y, (3.13)
Ql, ..., Q„ j=l j=l

where the x component of the Fourier-transformed
relative displacement has been written in terms of
its magnitude and phase y&..

U„(q) =w, q„—(~, /~, )'~'w, o, e""-=
~ U„(Q)l e'~o .

{3.14)

Writing Z„ in Eq. {3.13) in terms of the magni-
tude and phase of U„(Q) puts Z„ in a form in which
the quasiselection rule is manifest. An exami-
nation of the polarization vectors of phonons
throughout the Brillouin zone reveals that the
phases of optical and acoustical phonons are ap-
proximately 0' and -90, respectively. These
approximate phases can be derived from either
a simple diatomic linear lattice model or from
more realistic three-dimensional models. Sub-
stitution of the phases in the cosine term of Eq.
(3.13) yields the quasiselection rule that the fund-
amental reststrahl phonon prefers to split into
final states containing an odd number of optical
phonons (transition-matrix elements large). Final
states containing an even number of optical pho-
nons are less favored (transition-matrix elements
small). Other statements of the quasiselection
rule are possible. It is stated in terms of the
optical phonons in the final states since, as will
be demonstrated later, those final states con-
taining primarily optical phonons dominate the ab-
sorption spectrum. The quasiselection rule places
no restriction on the number of acoustical phonons
in the final state.

For example, in the two-phonon region, the
square-bracketed term containing the cosine fac-
tor in Eq. (3.13) becomes 1 —cos(180') =2 for an
optical plus an acoustical final-state phonons. For
two optical or two acoustical final-state phonons

this term is approximately zero. In the three-
phonon region, three optical final-state phonons
yield 1 —cos(540') =2 while two optical phonons
plus an acoustical phonon yield approximately
1 —cos(360') =0. Hence quasiallowed final states
are one optical phonon plus any number of acousti-
cal phonons, three optical phonons plus any num-
ber of acoustical phonons, etc.

Departures of the phases from their idealized
values prevent the quasiselection rule from being
exact, although typically there is a large degree
of cancellation in the sum of the departures of the
n phonons. For example, the exact two-phonon
selection rule that the two final-state phonons
cannot be on the same branch follows from the
fact that the phases of the two phonons are equal
and opposite because of equal and opposite mo-
menta in spite of departures of the phases from
their idealized values.

Crystal structures other than the rock-salt
structure have not been examined yet. In other
structures, such as the zinc-blende structure,
the quasiselection rule derived here is not ex-
pected to be valid because the sum over nearest
neighbors in Eq. (3.10) is expected to yield a
different algebraic form than Eq. (3.13). The
possibility of a different quasiseleetion rule in
such crystals awaits further investigation.

The derivation of the phases of U„(Q) for acous-
tical- and optical-phonon branches using a di-
atomic linear lattice is instructive. Consider a
diatomic linear lattice having spring constant C
and nearest-neighbor spacing a with light ions at
positions 2sa and heavy ions at positions {2s+1)a,
where s is an integer. Analogous to Eq. (3.7) the
displaeements of the light and heavy ions for
standing-wave normal modes are written



4610 C. J. DUTHLER

u„=m, 'i'w, cos(2sqa) (3.15)

u„„=m, '~'w, cos[(2s+1) qa] . (3.16)

The relative displacement of ions within a unit
cell is

u -u m ' 'He[w —(m /m )'~'w e'"]e' "'
=m, 'i'lU„(g)i cos(2sqa+ po), (3.17)

(3.18)

where u is the frequency of the normal mode ob-
tained from

w' =C/m, + C [1/m„' —(4/m, m, ) sin'qa]'~'.

(3.19)

The displacements of the ions from their equi-
librium positions are plotted at the top of Fig. 2
for acoustical and optical normal modes of a di-

ACOUSTICAL OPTICAL

where He denotes the real part. The quantity
within the square bracket of Eq. (3.17) is identical
to U, (Q) in Eq. (3.14). Components w, and w of
the normalized polarization vectox" ax'e obtained
from the equation of motion and have the ratio

w, /w, = [2C (m, )'~'/(m, )'~'] cosqa/(2C —(o'm, ),

atomic chain having equal mass positive and nega-
tive ions. The relative displacements of the ions
within each unit cell, obtained by taking the differ-
ence of heavy- and light-ion displacements and
referencing the difference to the light-ion position,
are plotted at the bottom of Fig. 2. Notice that
the relative displacement curve for the optical
mode is approximately in phase with the displaee-
ments, while the relative displacement curve for
the acoustical mode is spatially displaced ap-
proximately 90'with the two relative displace-
ment curves having a mutual spatial displacement
of 90'. The departure Ay of the spatial phases
from the idealized values of 0 and -90 results
from the lattice spacing being finite compared to
the normal-mode wavelength.

In Fig. 3 the optical and the acoustical spatial phases
are plotted as functions of the normal-mode wave
number for four heavy- to light-ion mass ratios. The
magnitude of the departure of the phase from the ideal-
ized value depends on the mass ratio and the posi-
tion in the Brillouin zone. The idealized phase
values are attained at the center and edge of the
zone for all mass ratios, and ax'e attained through-
out the BrlllouHl zone for an lnfmlte mass x'atlo.
The maximum departure occurs for equal masses
near the zone boundary.

Often the sum of the departux'es of the spatial
phases from their idealized values is small ox
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zero. In the diatomic linear lattice model the
quasiselection rule is exact (sum departures zero)
for the following cases: (i) For two final-state
phonons the phase departures of the two phonons
are equal and opposite because of momentum con-
servation. (ii) For crystals having positive and

negative ions of equal mass, the linear dependence
of the spatial phase on phonon momentum yields
a zero sum for all numbers of final-state phonons
if the momenta sum to zero. (For the less likely
cases where three or more final-state phonons
sum to an odd-numbered reciprocal-lattice vector,
an exact violation of the quasiselection rule re-
sults. ) (iii) For crystals having an infinite mass
ratio between heavy and light ions there is zero
deviation from the idealized phases.

More realistic three-dimensional models yield
momentum and mass ratio dependent spatial phases
similar to those in Fig. 3. Using polarization
vectors from the deformable dipole model for
NaI, ' the following mean phases are obtained:
2.8', 2.8', and 3.9'for the optical modes and
-74', -71', and -65'for the acoustical modes.
These values for the optical modes agree with
those in Fig. 3 for a linear diatomic lattice having
the same mass ratio, although the departure of
the phases of the acoustical modes from the ideal-
ized value of -90'is somewhat larger. A large
degree of cancellation is again found in the sum
of the phase departures, although the cancellation
is now complete only for two final-state phonons
on the same branch.

IV. CALCULATION OF THE ANHARMONIC

CONTRIBUTION TO THE ABSORPTION COEFFICIENT

The perturbation-theory calculation of the re-
laxation frequency from Eqs. (3.9) and (3.13) is
greatly simplified if the magnitude of U„(Q, ) for a
given branch is replaced by the Brillouin zone
averaged value U, (b~). (This is equivalent to ne-
glecting phonon momentum conservation. ) Assum-
ing that this is valid and that the quasiselection
rule is exactly satisfied, the extremely compli-
cated momentum-dependent sum in Eq. (3.13) is
reduced to a thermal- and frequency-weighted
multiphonon density of states in which the phonon
branches are kept distinct. For a quasiallowed
combination of phonon branches, the contribution
to Z„becomes

The error resulting from taking the mean value
of the magnitude of U„(Q&) is small if the magnitude
is insensitive to position in the Brillouin zone.
Magnitudes obtained from the linear diatomic chain
model are plotted as a function of normal-mode
wave number in Fig. 4 for four mass ratios. The
assumption of a constant magnitude is best satis-
fied for the optical branch of crystals having a
large mass ratio. Acoustical branches of crys-
tals having equally massive positive and negative
ions are most sensitive to the phonon wave vector.
However, the error resulting from the strong
dependence of

~ U„(Q, )~ of acoustical branches on

phonon wave vector is ameliorated by the follow-
ing considerations: First, the region near the
zone center contains only a small fraction of the
Brillouin zone volume and there are no peaks in
the acoustical-phonon density of states in this
region. Second, as will be seen below, the re-
laxation frequency is dominated by final states
containing primarily optical-branch phonons with

final states containing primarily acoustical pho-
nons being buried under lower-order combinations
of optical-branch phonons.

Magnitudes of U„(Q, ) similar to those in Fig. 4

are found using the deformable dipole model. "
This model yields the root-mean-square magni-
tudes 0.589, 0.595, and 0.611 for the optical
branches of NaI and 0.137, 0.188, and 0.221 for
the acoustical branches. Using these magnitudes
and assuming that the quasiselection rule is ex-
actly satisfied, the relaxation frequency of NaI at
80 K has been calculated and is presented in Fig.
5. All derivatives of the potential were evaluated
using the method of Eldridge and Howard. " For
the fourth derivative, or greater, use of only the
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FIG. 5. Relaxation frequency of the fundamental rest-
strahl mode as a function of frequency. The dashed
curve presents the quasiunallo~ed contribution from two

optical phonons. Inset presents the spectral vridth func-
tion of the zero-momentum ID phonon at 300 K (solid
curve) and 90 K (dashed curve). [Inset after Covrley,
et ul. (Ref. 20).j

Born-Mayer repulsive term yields equivalent re-
sults. 4

The total relaxation frequency is the sum of the
quasiallowed combinations in Fig. 5. To illustrate
the validity of the quasiselectiou rule, the quasiuu-
Rllowed combination of two optical-branch phonons
has been calculated and is presented as a dashed
curve in Fig. 5.'2 Notice that the spectrum is
domlDRted by the two coIQblnRtlons A+0 Rnd

0+0+0. Hence, there would be little loss in

accuracy if contributions to I' from final states
containing more than one acoustical phonon were
neglected. The peak in I' from three optical pho-
nons will be reflected in a peak in the absorption
coefficient near this fx'equency.

The calculated absorption coefficient of NRI at
80 K is compared to experimental data from Har-
rington et al. 3 in Fig. 6. The frequencies of the
experimental and theoretical three-phonon sum-
mation bands agree, although the theoretical curve
is much sharpex than the experimental curve. At
room tempexature the experimental peak is almost
completely smoothed out while the room-tempera-
ture theoretical curve is nearly as strongly peaked

as the low-temperature curve. Using a density of
states from a shell-model calculation of Cowley
et al."yields an even more strongly peaked curve
at nearly the same frequency.

The increased width in the experimental peak
is not due to violations of the quasiselection rule,
but rather is thought to result from the linewidth
of the final-state phonons. In calculating I' in Fig.
5 it is tacitly assumed that the final-state line-
width is less than the histogram bin width of 11
cm . This ls SRtlsf led fol the RcoustlcRl RQd some
optical phonons at 80 K, but is not satisfied for
longitudinal-optical phonons. The spectral width
function of the q =0, Lo phonon as calculated by
Cowley et al.20 is shown in the inset in Fig. 5. The
large spectral width of the LO phonons broadens
the 0+A contribution to I' on the high-frequency
side and fills in the sharp dip between the two-
and three-phonon regions. Beside bx'oadening the
80-K theoretical peak, the strong temperature
dependence of the spectral width function is thought
to account for the disappearance of the distinct
peak at x'oom temperature.

Harrington et al. ' observe that the three-optical-
phoQOQ peRk ls IQost px'oQounced ln cx"ystRls hRving
a large heavy- to light-ion mass ratio. Such crys-
tals have frequency gaps in their phonon spectra.
Consequently they have more structure in their
multiphonon densities of states. This together
with the facts that the idealized phase values are



QUASISELECTION RULES FOR MULTIPHONON ABSORPTION. . .

more nearly attained and the magnitudes of the
relative displacements are more nearly constant
in the case of large mass ratios, favors structure
in the multiyhonon absorption coefficient.

V. VFRTEX RENORMALIZATION FACTORS

Sparks and Sham' treat higher-order diagrams
involving intermediate-state phonons as a vertex
renormalization factor A„ to the simple vertex
where the fundamental phonon splits directly into
g final-state phonons. The contribution of these
diagrams to the relaxation frequency ean be ex-
plicitly calculated using a more general quasi-
selection rule and the above method of calculation
where mean values of I U, (Q)l are used. Pertur-
bation-theory analysis of the general n-phonon
vertex yields a cosine factor similar to that in
Eq. (3.13) from which a more general quasiselec-
tion rule is derived that quasiallowed vertices
contain an even number of optical phonons. In
this more general case incoming as well as out-
going phonons are counted and the number and
wave vectors of the incoming phonons are not
restricted. The previously considered case of
a single zero-momentum, TO incoming yhonon is
a special ease.

For three final-state yhonons ther e is only one
higher-order diagram containing an intermediate-
state yhonon. This diagram is sketched in Fig. 7.
At the first vertex the fundamental phonon must
split into an optical phonon plus an acoustical
phonon with splitting into two optical or two acous-
tical yhonons being unallowed by the quasiselection
rule. The intermediate-state phonon, labeled byI, can be eit:her the optical or the acoustical pho-
non with the final-state phonon, labeled by 1, being
the other.

In the case where the intermediate-state phonon
is the optical phonon, the above general quaslse-
lection rule requires that it split into an optical
plus an acoustical phonon at the second vertex.
Hence the final state consists of one optical plus
two acoustical phonons.

In the other case where the intermediate-state
phonon is the acoustical phonon, this phonon is
allowed by the general quasiseleetion rule to
decay into either two optical yhonons or two
acoustical phonons at the second vertex. Hence
the two possible final states in this case are three
optical phonons or one optical phonon plus two
acoustical yhonons.

These two quasiallowed final states for the
higher-order diagram are exactly the same as
for the simple vertex where the fundamental pho-
non splits directly into three final-state phonons.
Therefore the quasiselection rule for the simple

FIG. 7. Higher-order three-phonon diagram involving
an intermediate-State phonon.

&(fQ Qi) &(QmQ. Q3)~ t(~ ~o, )'-~&.]-~(fQ, Q, Q. )

(5 3)

.(Q„.",Q. ) =3
I ~„(Q,)l ~ ~ ~

I ~, (Q„)I

for quasiallowed diagrams and approximately zero
otherwise. For the final state consisting of three
optical phonons the intermediate-state phonon is
an acoustical phonon. Approximating the square-
braeketed frequency term by 4u&2 and multiplying
by 3 for the three quasiallowed acoustical branches
yields

&fl&sl~& 3 (@'")' I~(&)I'
~,"g

= 1.5x10 for NaI. (5.3)

Hence the vertex correction factor is A, = 1.1015
which implies that the quantity $ defined by Sparks
and Sham' is $ =0.020. Bather than explicitly eval-
uating the vertex corrections to the higher-order
diagrams, this quantity is used to obtain A4=1.04

vertex remains valid overall even though two of
the final-state phonons came from an intermediate-
state phonon. Similarly for more than three final-
state phonons, an examination of the higher-order
diagrams in these eases reveals that the quasi-
seleetion rule for the simple vertex remains valid
overall as long as the general quasiselection rule
is satisfied at every intermediate-state vertex.

The ratio of the transition-matrix element for
the higher-order diagram in Fig. 7 to the simple
vei'tex is

(fi~'. Ii& ~ 4".'(fQ-Q. ) ~(Q.Q, Q. )

(fl&. li& ~ 3+I(~-~o,)'-.o. l '(fQgQ2Q3) '

(5.1)

where for fixed initial and final states it is only
necessary to sum over the branches of the. in-
termediate-state phonon denoted by m. Evalu-
ating the vertices, Eq. (5.1) becomes

(fl&'. I'& 4 (y'")'
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and A, = 1.08. These corrections are negligible.
They are much smaller than those obtained by
Mcoill et aE.6 and are even smaller than those
obtained by Sparks and Sham. '

Corrections arising from confluence diagrams
in the multiphonon region are still smaller. Since
confluence dI.agrams contRin predoII1Inantly in-
coming RcousticRl phonons, th6 Qvex'Rll quasise-
lection rule for allowed final states remains valid.

VI. CONCLUSIONS

Many of the basic assumptions and approxima-
tions made by Sparks and Sham' remain in the
present papex, although sevex al improvements
have been made and new results have been ob-
ta?ned. These assumptions Rnd Rppx'oxiIDRtiQns
Rre summarized Rs follows: (1) As iustlfied bV

he perturbation-theory Rp-
pl'ORcil is RssuIlled valid. (11) Only tile RIlhR1'111OIlic-

lattice mechanism is included in the calculation of
the absorption coefficient. It is argued in Sec. II
that the inclusion of the highex'-order dipole-
moment mechanism is expected to only change
the strength of the interaction, leaving the phonon
dynamics and the quasiselection rule unchanged.
(iii) A nearest-neighbor central-force potential is
assumed. Use of only the Born-Mayer repulsive
term for three, ox more, yhonons is convenient,
but not essential. (iv) The iifetimes of final-state
phonons are taken to be infinite in the calculated
curves. However, evidence is presented that the
large spectral width of optical phonons, especially
at room tempex'ature, contributes considex able
broadening to the theoretical curves bringing the
calculated line shape of the thx'ee-optical-phonon
summation band into better agreement with ex-
periment. (v) An error in the Sparks and Sham

paper, ' on which the use of the central-limit the-
orem was based, has been coxrected. In the pres-
ent payer multiple sums over phonon modes have
been approximated by Brillouin zone averages in
which the yhonon branches are kept distinct. It is

shown in Sec. IV that this is a reasonable approxi-
mation, especially for optical phonons which
dominate the spectrum.

The results of this paper are: (i) A quasiselec-
tion rule is derived that infx ared absorption in
alkali halide cx'ystRls tends to cx'cate fiI1Rl states
having an odd number of optical phonons. This
quasiselection rule follows from the observation
that the relative motion between ions in a unit
cell is approximately spatially in phase with the
ion motion for optical modes, while the acoustical
modes are approximately 90' spatially out of
phase with the ion motions. (ii) The quasiselec-
tion I'ule explains the observations of Harrington
ef; al. ' of a three-optical-phonon summation-band
peak in the absorption coefficient with no corres-
ponding peak being observed at two or four optical
phonons. (iii) Using a constant magnitude Fourier-
transformed relative displacement greatly reduces
the effort of the perturbation-theory calculation.
This approximation is justified by the demonstra-
tion that Rt leRst fox' opticRl modes the magnitude
of the Fourler-transformed relative displRceIQent
is insensitive to the phonon momentum for a given
branch. This allows an extremely complicated
momentum-dependent sum over phonon modes to
be reduced to an easily evaluated thermally and
frequency-weighted density of states in which the
phonon branches are kept distinct. (iv) A more
genexal quasiselection rule allows easy evaluation
of vertex correction factors from higher-order
diagx'ams containing intermediate-state phonons.
These factors are found to be smaller than those
estimated by Sparks and Sham, ' and, in agreement
with Sparks and Sham, are found to be negligible.
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