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Tbermoreflectance of V, Nb, and paramagnetic Cr
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Thermoreflectance measurements of V, Nb, and Cr films were performed near 80 and 340 K to investigate the
electronic properties of these metals. The thermoreflectance spectra 6 R/R were Kramers-Kronig analyzed to
determine the temperature dependence of the dielectric functions. The results were compared with previous
derivative measurements of Mo and with static measurements of the optical reflectance of the bcc metals.
Interpretation of the structures was guided by recent band calculations. It was shown that the observed
features reflect the behavior of large volumes of the Brillouin zone rather than well-defined singularities.

INTRODUCTION

The last few years have seen considerable inter-
est in the electronic properties of the transition
metals. ' Numerous studies have been reported
with the predictable outcome that our understand-
ing of the metals has increased dramatically. The
contributions of optical studies have been funda-
mental. For many of the transition metals, first
generation optical experiments in which the reflec-
tivity was measured over a wide energy range
have been completed, ' ' and it has been shown that,
while the low-energy optical properties (g v s 10
eV) vary significantly with the filling of the d
bands, the high-energy behavior is very similar
from metal to metal. The low-energy structure
can be attributed to transitions within the hy-
bridized sp and d bands within which the Fermi
level lies. With the horizontal progression across
the periodic table, the average energy of the d
bands drops with respect to the sp bands and the
Fermi level rises within them. ' Accompanying
this, the width of the d band first increases,
reaching a maximum with the Cr group, then de-
creases until, at the noble metals, the d bands
are completely filled and lie ~2 eV below E~. Sim-
ilarly, with progression from 3d to 4d to 5d
metals, the d bandwidth increases. Such syste-
matics are particularly interesting, and the inter-
play between theory and experiment has proved
mutually beneficial. Calculations of the optical
absorption from first principles (though generally
without consideration of wave functions and matrix
elements) are becoming more reliable.

To better understand the low-energy features ob-
served in the bcc transition metals, we have ex-

ploited thermoderivative techniques and measured
the thermoderivative of the reflectance, the ther-
moreflectance hR/R. The technique is not a new
one, and it has seen wide application for the noble
metals, "semiconductors, "and insulators, "but
few of the transition metals have been so studied. "
We find, in the present study, that the derivative
spectra of transition metals do not possess the
sharp and distinctive features observed when
dealing with semiconductors since critical-point
contributions are minimal. Instead, the broad
structures clearly arise from large volumes of
k space. Further, since the interband absorption
persists to very low photon energies and generally
involves states of hybridized angular momentum,
line shapes cannot be calculated without detailed
wave functions and matrix elements.

EXPERIMENTAL TECHNIQUE

The thermoreflectance of V, Nb, and Cr has been
measured near 80 and 340 K between 0.5 and 5
eV. The general techniques of thermoderivative
spectroscopy"'" have been described in detail
elsewhere and need be only briefly reviewed here.
The samples were opaque films evaporated by
electron-beam bombardment in vacua of -10 '
Torr. They were approximately 3 && 25 mm, were
evaporated onto quartz substrates, and had 2 —5-Q
electrical resistance. After evaporation, each
was quickly attached to the tip of a cryofinger-
sample-chamber, and the chamber was evacuated
(working pressure -10 ' Torr).

The thermal excursion of -1 K deg was provided
by a unipolar 7-Hz square wave with -2-W power
dissipation. Conventional light sources (W- iodine
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bands has an important influence on the low-energy
optical properties. The Z transitions identified
as being responsible for the first structure in bR/A
for V and Nb are still possible for Cr and Mo,
though they might be expected to appear at higher
energy and be weaker since the x'espective Fermi
levels are no longer involved, but additional struc-
ture due to transitions along 4 also come into
play. The degeneracy of the 6, bands in Cr is
lifted by relativistic effects in Mo and %, Rnd the
optical features associated with the 62(6,}
-&,(4„&,) transitions reflect the changes. In Cr,
only a single feature is observed in fl or AR/A;
in Mo, static measurements failed to resolve the
splitting of the initial states, ' but the derivative
spectra clearly showed the separation' (see Fig.
3); in W, the spin-orbit splitting is -0.5 eV, and
static measurements4 were able to resolve struc-
tures in A Rnd &,. Hence, the assignment of the
first structure in Cr as 4,' 4, seems secure.

The identification of the second derivative struc-
ture in V and Nb and the third in Cr and Mo is dif-
ficult, but large volumes of k space are certainly
involved. In their x ecent relativistic-augmented-
plane-wave calculations for Mo, Koelling et gl."
concluded that the experimental feature in z, at
4.1 eV was built up from transitions between bands
along I, 6, and Z. Cr would be expected to have
an analogous structure in &» but the extrapolation
of those transitions to the Cr bands of Rath and

Callaway is thwarted: Examination shows the band
separation at E to be about 2 eV, at G to be 2.6
eV, and along Z to be about 2.3 eV. Few new
"high- symmetry*' candidates present themselves.
Transitions like P~ —P, are allowed by selection
rules, have large joint densities of states, and
would probably have non-negligible matrix ele-
ments since P, wave functions are =100%d-like

and those at P, are 20% p-like, 80% d-like. "
Nevertheless, though the energy difference is ap-
proximately correct in Cr(-3.5 eV), it is too great
to account for the features in the other bcc metals,
based upon existing energy bands for those metals.
Probably, then, the P transitions are of minimal
importance. Transitions like 4, ,—b,, can also be
discounted by analogy to Mo and%' since, if such
transitions were evident in Cr, they could be ex-
pected to carry over to Mo and %' and result in
pRlx'8 of structul es& the sepRx'Rtlon of which would
grow with the spin-orbit splitting. No such fea-
tures were observed.

The recent calculations of Pickett and Allen"
indicate that the d bands in the txansition metals
Nb and M0 tend to be flatter array from symmetry
lines than along them. Their calculations showed
that major contributions to the g, structure in Nb
near 4.3 eV and in Mo near 4.1 eV arose from the
region around k = (—,', —,', —,'}. Though there have been
no calculations of a similar nature fox V and
paramagnetic Cr, one might expect that the ex-
perimental features in Cr near 3.5 eV (4e,) or
3.3 ev (o), and in V near 2.5 ev (ae, ) or 2.35 (&,)
could be explained by transitions in that part of
the Brillouin zone. The consequence of the Pic-
kett-Allen calculations was that structures which
is observed in the experimental spectra can arise
from off-symmetry parts of the zone.

It is clear from our measurements that the de-
rivative features in the transition metals Rre
broad, thereby indicating that large volumes of
k space are contributing to the structures. It is
also apparent that the last word is not in as far as
calculations are concerned, and identifications
such as those put forth tentatively here are sub-
ject to improvement. This refining must come
after good agreement with experimental data is
achieved; such agreement must result from the
inclusion of matrix elements in the calculations.
The derivative spectra reported here provide yet
another set of experimental data to which the
theorist must compare his calculations.
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