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Tight-binding calculation of the properties of the F center and of isoelectronic defects in ZnS
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Using a tight-binding parametrization of the band structure of ZnS, we calculate the energy levels of the F
center associated with a vacancy of S, and of some isoelectronic defects on Zn and S sites. The calculation is
performed in a Koster-Slater scheme, using the Haydock, Heine, and Kelly recursion method to generate the
Green's functions. The theoretical results agree reasonably well with the experimental data.

I. INTRODUCTION

Recently there has been a renewed interest in
tight-binding parametrizations of the band struc-
ture of semiconductors. ' ' Most of this work is
concerned with surface properties but these para-
metrizations ean also be used to calculate the lo-
calized deep levels associated with point defects. '
In the present paper we focus our attention on the
properties of the simplest point defects in ZnS:
the sulphur vacancy and isoelectronic traps, as
there is a large number of experimental data for
such levels, obtained by' EPR and luminescence'
measurements.

These results are generally interpreted using
molecular or purely ionic models. The classical
point-ion approximation appropriated to purely
ionic crystals has been used by Wruck' to investi-
gate the properties of the F center. Such a model
is very useful for a qualitative understanding of the
E center associated with a vacancy but it cannot be
taken too seriously in a band semiconductor like
ZnS. The purpose of the present paper is to per-
form a Koster-Slater' calculation of vacancy and
impurity states in ZnS and to show how the experi-
mental results can be interpreted. We will also
improve on the description of isoelectronic traps
in ZnS by Baldereschi and Hopfield' who use a one-
band one-site model.

Our calculation is semiempirical: the matrix
elements of the Hamiltonian are determined without
explicit use of the wave functions in both perfect
and imperfect crystals. We perform a second-
nearest-neighbor Slater-Koster" fit to the disper-
sion curves obtained using a self-consistent band-
structure calculation. This procedure leads to a
fairly accurate representation of the valence bands
and a reasonable agreement for the first four con-
duction bands, while such interpolations cannot fit
accurately the higher conduction bands in purely
covalent semiconductors. "This difference is
apparently due to the ionicity of the II-VI com-
pounds and gives us some confidence that the meth-

od can be used to describe semiquantitatively the
impurity states originating from the conduction
bands (S vacancy and isoeleetronic traps on the
cation site) as well as those originating from the
valence bands (isoelectronic traps on the anion
site).

In Sec. II of the present paper, we give our re-
sults for the band structure and the corresponding
density of states of pure ZnS. Sections III and IV
are devoted to the sulphur vacancy and isoelec-
tronic traps, respectively, and to comparisons of
our results with experimental data and with other
theoretical calculations.

II. BAND STRUCTURE OF XnS

A. Tight-binding (TB) parametrization

Two tight-binding parametrizations of the band
structure of ZnS have been already published by
Kraut, one including third-neighbor interactions
and the other with only second-neighbor interac-
tions.

The first type of parametrization provides a
better fit to the dispersion curves but (i) it in-
volves seven more parameters than the second one,
(ii) it leads to second-neighbor transfer integrals
that are largely smaller than the third-neighbor
ones. Qn the other hand, the diagonal elements
E„(000) and E» (000) in the second-neighbor para-
metrization lead to an ionic picture of the band
structure of ZnS: the s and p levels of sulphur
generate the lower and upper valence bands when
the s and p levels of zine correspond to the lower
and upper conduction bands. Therefore we con-
sider that the second-neighbor parametrization is
more realistic than the third-neighbor fit. How-
ever, as the calculation of Kraut leads to a very
small coupling parameter between the "s"orbitals
on Zn and S, we preferred to perform a new sec.-
ond-neighbor fit to the dispersion curves of Stuekel
et al."using the values of Kraut for the transfer
integrals as a starting point.

The calculation of the parameters is performed
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TABLE I. Slater-Koster transfer integrals obtained in our parametrization, compared
with those of Kraut (Ref. 3).

Parameter Present work Parameter Present work Kraut

E~~(0 0 0)
Zn

E„„(oo o)

E (oo o)

E {ooo)

4.917 31

7.608 31

-10.079 69

—0.382 39

0.5224

—0.7322

0.7322

—0.079 83

1.229

5.1751

7.9147

-0.604 54

0.00477

-0.176 35

0.176 35

-0.2305

1.2821

E„(11O)
E (11O)

E„(11O)
E (1 10)

E (11O)

E„,(110)

E„(11 0)

—0.1041

0.001 06

0.034 94

0.2109

-0.3230

0.1174

0.0000

-0.102 21

0.034 05

0.130 77

0.220 92

—0.337 69

0.105 34

using the nonlinear least-square-fitting method of
Mattheiss. "

In Table I me compare the parameters obtained
in this way with those of Kraut and Table II com-
pares the energy eigenvajues me obtained for dif-
ferent points in k space vrith the values of Stuckel
et aE.

B. Density of states

Once the parameters of the band structure are
calculated, the density of states is determined
using the method of Haydock, Heine, and Kelly"
in a cluster of 2545 atoms. This procedure, par-
ticularly mell suited to the description of localized
levels, amounts to developing the partial density of
states n"'«(E) (where X= Zn or S and I' refers to
the symmetry mode considered: I'=A. , or T, in
the tetrahedral symmetry) in a continued fraction:

n" «(E) = —(1/w) Im G «((o)

= —(u lw) 1m[(u —a —f G (&u)]
'

G ' (&u) =[to -a —h G"' (&u)]
'

Gn'-i. n-i(~) = [~ un &et(~)]

(a) =E+$0
~ &r = 1 fol Q1, Q'r = 3 fol T~.

The coefficients a„and b„are determined using
the recursion method of Haydock ef aE. and the con-
tinued fraction is terminated by the function g(u&)

such that

TABLE G. Energies (in eV) obtained by Stuckel el; al. (Ref. 11) and in our parametrization
model (TB) for selected syrnrnetry points in k space.

TB TB Stuckel TB Stuckel

L&v'
I gv
L,3v
L1C
I 3c
L].c

+iv
63v
&5v
&ic
&3c
&5c

-10.58
—4.13
-0.53

5.03
8.69
9.87

-11.44
-0.60
-0.23

4.32
7.68
8.46

-10.66
-4.20
—0.61

4.96
8.62
9.88

-11.50
-0.8
-0.2

7.5
8.2

A1v
b

A(V

A3v

A(c
Agc

Agc

~1V
~3V
&sv
&sc
&3c
gt

-11.11
-2.22
—0.25

4.66
8.95
8.34

—10.85
-2.41
-0.88

5.31
6.5
9.85

-11.00
-2.5
—0.45

4.8
8.0
8.8

—11.0
-3.0
-0.7

5.5
6.3
9.7

~~v'
~&5v
I &c

~15v

Xf v
xsv
X5v
X,c
X3c

-11.61
0.00
3.95
8.02

-10.24
-4.26
-1.43

5.21
6.23

—11.77
0.00
3.77
7.99

—10.29
-3.93
-1.61

5.01
5.95

'L, = (~/a) (1,1,1).
b A= (7t/a) (0.48, 0.48, 0.48).
'r= (~/&)(o, o, o).

"4= (~/g) (0.44, 0, 0).
'&' = (~/a) (1.o4, o, o).
X= (7r/g) (2, 0, 0).
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where a and b are related to the energies E, of the
top of the conduction band and E, of the bottom of
the valence band:

The size of the cluster leads to exact values of
a„and b„up to n = 12 when only first-nearest-neigh-
bor interactions are taken into account and to n =6
when second-nearest-neighbor interactions are in-
cluded.

A systematic study on clusters of increasing size
has shown however that even in this last case, the
coefficients a„and b„are obtained with a very good
precision up to n =12, which corresponds to 24
correct moments of the density of states.

Our results for the partial density of states on
sulphur and zinc sites are displayed on Fig. 1.
These results compare favorably with those ob-
tained by Herman" who used the classical Gilat-
Raubenheimer method. " Our tight-binding para-
metrization leads to a gap of 3.95 eV when Herman
obtains 3.77 eV. It is to be noticed however that
in our description the position of the band edges
is somewhat arbitrary: our termination procedure
replaces the true gap by a region of low density of
states which is not apparent on Fig. 1 because of
the scale used. It is comforting that, although we
use a moment method, the critical points are
clearly exhibited in the valence band.

The lower valence band is almost entirely ac-
counted for by the s orbitals on sulphur, and the

p orbitals on S give the main contribution to the

upper valence bands. The conduction band origi-
nates from the orbitals on zinc, its lower part
being of A. , symmetry. This result does not imply
that the hypothetical conduction charge density is
concentrated on Zn atoms (which is not actually
the case") because our (implicit) basis wave func-
tions are not atomic orbitals: (i) as shown by
first-principle tight-binding calculations on dia-
mond, "considering short-range interactions im-
plies the use of truncated atomic orbitals; (ii)
neglecting the overlaps amounts, through the or-
thogonalization process, to define basis functions
which are actually linear combinations of these.

In fact the first-principles calculation" shows
that in diamond second-neighbor interactions are
not sufficient to describe correctly the conduction
band. As mentioned in the Introduction the situa-
tion is probably less critical for partially ionic
semiconductors. It has been shown" that the hypo-
thetical charge density of the first conduction band
of ZnSe has a clear antibonding character, while
that of Ge is rather free-electron-like. Moreover
the empirical adjustment performed in the present
paper may correct somehow this drawback of the
method. Let us stress that we do not make ex-
plicit use of the wave functions in the following
defect calculations.

From the partial density of states, we obtain a
transfer of charge of 1.15 electron from Zn to S,
in good agreement with the values obtained semi-
empirically by Suchet" and by simple calculations
by Bailly" and Hubner. '-' I et us notice however

ntE)~i

xsj

FIG. 1. Partial density
of states in ZnS. Solid
line, sulphur; dashed line,
zinc.
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that the charge transfer calculated in this way does
not correspond to the excess charge on the sulphur
cell as the orbitals extend up to second neighbors
of an S atom. Then part of this charge is actually
located on the neighboring Zn cells so that the true
charge on the S cell is in fact much weaker.

III. PROPERTIES OF THE SULPHUR VACANCY

The vacancy is created by removing a sulphur ion
from site 0; owing to the charge transfer from Zn

to S, this introduces a, positive effective charge of
1.15~e~. As this charge is almost completely
screened by the electron localized in the F center,
we can describe it by a matrix element V, on the
first neighbors of the S vacancy.

In a first approximation, we assume that V, is
the Coulombic potential created by the positive ef-
fective charge of + 1.15 ~e~ centered on the S va-
cancy (V,. = —7.08 eV). The removing of the sul-
phur ion is accomplished by putting on site 0 a po-
tential V, and letting it tend to infinity. This is
equivalent to cut all bonds between this ion and the
crystal. "

In practice we introduce the potential V, in an
otherwise perfect crystal and we calculate the per-
turbed Green's functions |"„using the recursion
method of Haydock, Heine, and Kelly in a cluster
of 2545 atoms. This is possible because the meth-
od does not make use of the Bloch theorem. The
F-center levels are then given by the usual scat-
tering formula":

lim det(1 —G„; V, ) = 0 or G„=0.
1

In this way, we find a level of A. , symmetry lo-
cated 2.65 eV below the edge of the conduction band
and a T,, level located at 1.25 eV above the A, level.

Experimentally' the absorption spectra associ-
ated with the F center in ZnS are very similar to
those obtained in alkali halides like RbCl. The
absorption spectrum is made of two bands: a
strong Gaussian band centered at 2.27 eV (F band);
and a weaker asymmetric one at 2.88 eV (K band).

These bands can be interpreted as follows;
(i) The K band, which leads to photoconductivity

and the disappearance of the 1" center, is due to
transitions from the ground level of the p center
to excited levels close to the edge of the conduc-
tion band, an interpretation suggested previously
by Schneider. ' As the experimental value of 2.88
eV is very close to the theoretical value of 2.65
eV, this shows that our calculation is reliable for
determining the location of the ground state of the
F center.

(ii) As it does not lead to photoconductivity nor
disappearance of the F center, the F band can be

interpreted as due to transitions from the ground
level of the F center to the first-excited T, level.
The disagreement between our calculated value
of 1.25 eV and the experimental data can be at-
tributed, at least in part, to our imperfect des-
cription of the conduction bands.

In the spirit of this interpretation, it is not nec-
essary to appeal to the Watanabe mechanism as
suggested by Schneider, to explain the absorption
band at 2.27 eV.

I et us notice that in our simple model for the S
vacancy we do not take into account the polariza-
tion and distortion of neighboring atoms. These
are usually thought to be weak for the ground state
and the unrelaxed T, level which are calculated
here. " In fact the potentials V, (-~) and

V, (= —I.08 eV) are certainly much larger than the
perturbation introduced by the relaxation.

IV. PROPERTIES OF ISOELECTRONIC TRAPS

TABLE III. Ualues of the impurity potential U& (eU)
for Se and Te in ZnS; (a) from Herman and Skillman
(Ref. 24). (b) from a. parametrization of ZnSe and (c) val-
ues of Baldereschi and Hopfield (Ref. 9) (BH).

(a)
BH (X=o)

(c)
BH (X=1)

Se
Te

0.7
1.3

1 ~ 1
3 4

0.24
1.19

1.63
4.21

Using our parametrization we have also studied
the properties of crystals of ZnS containing Se or
Te substituted for S. These defects have already
been studied by Baldereschi and Hopfield' in a
Koster-Slater scheme but in a one-band, one-site
model. We maintain the one-site approximation
which seems reasonable for isoelectronic defects
but we relax the one-band approximation which
cannot be justified for localized defects. The per-
turbing potential U„ in the mode of I symmetry is
estimated using two different methods. In the first
one [(a) in Table III] we identify Ur with the dif-
ference of the energies of the atomic levels as
given by Herman and Skillman. " In the second
method, we perform a tight-binding parametriza-
tion of ZnS and ZnTe using the values obtained
for ZnS as a starting point and cha.nging only the
diagonal elements on the anion. In this process
the U„perturbing potential is identified with the
change of these diagonal elements, the relative
positions of the different band structures being
fixed using the experimental ionization energy tab-
ulated by Van Vechten. " We compare in Table III
the values we obtain with those of Baldereschi and

Hopfield (HH).
A level appears in the gap when
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1 —G~«s(0)U~&0 or U~&1.25. TABLE 1V. Value of the impurity potential Us for
cation isoelectronic defects in ZnS (eV).

Therefore a localized state appears on Te and a
resonant one on a Se impurity. Notice that our
threshold energy (1.25 eV) is somewhat larger than
that obtained by Baldereschi and Hopfield (0.9 eV)
with their generalized one-band one-site approxi-
mation. Let us investigate the approximations
made in the one-band treatment to which this dis-
crepancy could be traced.

(i) The trace G(&u) of the Green's function over an
elementary cell is actually

G((u} = 3G~„'((u) + G', ((u) + 3G~„"((u) + G'„"((u),

and the numerical values of the four terms enter-
ing this expression are, respectively, 2.4, 0.09,
—0.09, and —0.12 eV for co=0. This shows that it
is a good approximation to assume that 3G~„'(0)
= G(0) as done in the calculation of Baldereschi and

Hopf ield.
(ii) In our calculation we calculate the true

Green's function G(+), including valence and con-
duction bands. In a rough approximation, the con-
duction bands contribute

G, (a)) = I/((u —R„")+3/(&u —&p~")

to the total Green's function, which is negative for
v =0.

Therefore neglecting G, (&u} overestimates the
Green's function G(&u) and leads to a, smaller
threshold energy. In the present case for instance,
the threshold energy is reduced from 1.25 to 1.04
eV if such an approximation is made, which could
explain the discrepancy between our results and
those of Baldereschi and Hopfield.

In order to obtain the energy of the level associ-
ated with a Te impurity, we follow Baldereschi and
Hopfield and introduce the relaxation factor.

X=R/(R, —R„),

where R is the displacement of the first neighbors
with respect to their crystallographic positions and

(R,. —R„) is the difference between the bond lengths
in Zn Te and ZnS. We may assume that X= 0 (no
relaxation) corresponds to our choice (a) of the
perturbing parameters and that X=1 corresponds
to the second choice (b). Using a. linear interpo-
lation and the value of X=0.5 given by Baldereschi
and Hopfield, the impurity level on Te appears lo-
cated at 0.64 eV.

This result is in good agreement with the experi-

Cd Be Ca Sr

Us (a) + 0.24 0.56 1.84 3.26 3.51
U, (b) 0.46

3.83

mental result of Fukushima and Shionoya" (0.4 eV),
in view of the approximations introduced in the cal-
culationn.

Turning now to the case of substitutional impuri-
ties on the cation site, we must explain why no iso-
electronic traps have been found on them, in spite
of many experimental investigations. " This fea-
ture can be understood using the preceding method:
in order to extract a localized state from the con-
duction band, an attractive potential larger than
1.6 eV is necessary. It is shown in Table IV that
all elements isoelectronic to zinc are actually re-
pulsive or weakly attractive impurities. Then no
localized level is to be expected on such centers.

V. CONCLUSION

Our results for the F center, obtained in a band
model, give a reasonable account for the ground-
state level, and predict the correct sequence:
ground state, T, level and edge of the conduction
band. This appears interesting since even in the
case of purely ionic crystals it is difficult to ob-
tain the relative position of the ground-state level
and the band edges. For isoelectronic traps, our
results give no localized level for Se, and a Te
level in reasonable agreement with the experiment-
al data. We also show that the one-band-one-site
model may underestimate the threshold energy for
the appearance of a bound state.

As already indicated the major weakness of the
method lies in the description of the conduction
band. This could be the reason for our underesti-
mate of the A, —T, transition. Unfortunately in this
semiempirical scheme it does not seem reasonable
to take into account longer-range interactions or
higher l orbitals because this would introduce a
large number of new parameters.

As it stands such a tight-binding analysis could
be useful in II-VI compounds to describe more
complicated defects semiquantitatively (for in-
stance the zinc vacancy) especially when combined
with the method of Haydock, Heine, and Kelly
which does not appeal to the Bloch theorem.
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