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Localized defects in III-V semiconductors
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A Green's-function approach, closely related to that of Koster and Slater, is developed, within the one-

electron pseudopotential formalism. This is applied to single vacancies, the divacancy and vacancy-oxygen

pairs in GaAs, and single vacancies in GaP and InSb. A number of localized states are found. It is shown

that the properties of the host-crystal band structure, the electron-electron interaction, and lattice relaxation

play an important part in the formation of these states. In contrast with the Koster-Slater calculations, our

results are not very sensitive to the strength of the vacancy potential. Our calculations indicate that As and

Ga vacancies in GaAs should behave as single donors and acceptors, respectively. The V~„-0 complex behaves

as a deep neutral center. The wave functions associated with the levels introduced into the band gap are

highly localized. Since they contain admixtures of both valence- and conduction-band functions, and exhibit

large lattice distortion, they are likely to take part in nonradiative recombination processes. Finally, we note

that nonradiative recombination via some deep neutral centers is likely to be very efficient since our calculation

also indicates a possibility of localized excited states introduced by these centers.

I, INTRODUCTION

The III-V compound semiconductors have been
the object of a great deal of applied and pure re-
search over the last decade. This is because of
their importance in the technol. ogy of electron-
transfer devices, light-emitting diodes, etc. , and

also because of their interesting fundamental

properties.
In most applications one must take account of the

native defects and chemical impurities. The bound

states in the gap associated with some common
dopants —the shallow donors and acceptors —have
been well understood for some years and are
amenable to theoretical analysis. ' This is be-
cause of the simple long-range electrostatic po-
tentials they are associated with. However, there
is much evidence indicating a number of localized
states lying further within the band gap. -' The
position of these states in the gap often depends
on the method of crystal. preparation and their
chemical. nature is in many cases difficult to
establish. Nor are these defects and their effects
on the local electronic properties of the solid
well understood from a theoretical standpoint.
In particular, most of the existing studies on the
properties of vacancies (and their complexes) in

semiconductors have been confined to the group-
IV materials, namely, diamond and silicon. '
P robably the only exceptions are the works of
Parada, ' P ratt, ' and mor e recently Hemstr eet, '
on single vacancies in IV-VI compound materials.
The main reason why so little theoretical work
on these problems has been done is that there is
no generally suitable formalism available for
deal. ing with such systems.

The existing calculations on vacancies may be

divided into two groups: (i) Koster-Stater-type
and (ii) cluster calculations. The former' is root-
ed in a formalism exploiting our knowledge of
the electronic bands of the perfect material in

k space. Its advantage is that the position of the
localized defect states with respect to the band

edges of the host crystal is well defined. How-

ever, a great deal of both numerical and algebraic
work is required in using this method. In ad-
dition, the cal.culations of Callaway and Hughes'
exhibit an alarming sensitivity to the strength of
the vacancy potential. Since a good vacancy po-
tential cannot be easily obtained, the final error
in the result must be dangerously large. It is,
therefore, not surprising that a cluster calcula-
tion seemed a natural alternative. A number of
scheme. have emerged with the same basic idea
in common. They focus on a small part of. the
solid surrounding the defect. The rest of the solid
enters the problem only via the boundary con-
ditions on the cluster wave functions. The em-
phasis on l.ocal properties of the defect seems
to indicate that the cluster methods should offer
a faster and less complicated calcul. ational tech-
nique. In particular, it proirtises a self-consistent
result within its own limitations. However, the
most recent studies of Messmer and Watkins,
Hemstreet, and others indicate a number of prob-
l.ems. For example, the size of the cluster, the
choice of the surface and boundary conditions,
may significantly affect the very existence of any
localized states in the gap. Also, it is not always
obvious that the cluster calculation for the "per-
fect" sol.id does provide a reliable starting point
for the calculation with the "imperfect" cluster.
Such a situation may become particularly serious
in the case of many-valley direct-gap materials
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like GaAs or ZnSe. The conduction bands of semi-
conductors derived from a tight-binding-Like
scheme are known to be in error,

Recently, we have developed a method of cal.-
culation which has something in common with
both the Koster-Slater and cluster schemes. It
has the advantage of the first in that it allows one
to define precisely the position of the impurity
(defect) level with respect to the true band edges
of the host (unperturbed) crystal. However, it
avoids the complexities and ambiguities which
arise in working with the %annier functions. It
is really a Green's-function' approach (closely
related to that of Koster and Slater), in which the
role of the Nannier functions is taken over by a
more suitable complete set (s) of functions local-
ized at a center (s) of interest. The band structure
of the perfect crystal and atomic seLf-consistent
pseudopotential are required as input. The meth-
od has been applied" to calculate localized (one-
and two-electron) states associated with deep
donor oxygen in GaP and GaAs. The results of
these calculations lead us to believe that some
useful predictions concerning vacancies and their
complexes in III-V semiconductors can be made. '
In the absence of any theoretical prediction con-
cerning these defects, such an attempt seems
highly desirable. Furthermore, it may allow us
to compare the nature of chemica, l impurities with
that of the native defects since the input data, rep-
resenting the effect of the host-erysta, l band struc-
ture is exactly the same for both. The fact that
we have been ab1e to apply our method to a variety
of defects and chemical impurities should not be
overlooked. Defect wave functions can be generated
either in terms of a table of coefficients of the unper-
turbed Bloch pseudofunctions or in terms of a con-
venient trial set of (localized) functions. Our calcu-
lations may well be used to help in distinguishing
spectra associated with various deep levels in semi-
conductors like GaAs. Our calculations can be made
self-consistent and allow for Lattice-distortion
effects. However, a truly quantitative description
of these effects has not been achieved.

In Sec. II we give a detailed description of our
method of calculation and its convergence prop-
erties. In Sec. IIIA, we present results of our
calculation of localized states associated with
vacancies in an unrelaxed lattice. The vacancy
potential is repr es ented by an empir ica 1 ps eudo-
potential. The results are reported for single
vacancies in Gap, GaAs, and InSb, and the di-
vacancy and V,.„.

-0 complex in QaAs. In See.
IIIB we investigate the electron-electron inter-
action and the effect of Jahn-Teller distortion
on the above states. On the basis of these re-
sults we suggest in Sec. IV a prediction which

is amenabl. e to experimental verification. The
prediction for defects in GaAs is summarized
in Fig. 12.

In Sec, IV we also comment on some general
characteristic properties of deep states. In par-
ticular, we show that some neutral. centers may
introduce more than one deep state in the forbid-
den gap. This is likel. y to enhance the probability
of nonradiative recombination via such centers.

II. DESCRIPTION OF THE METHOD OF CALCULATION

In order to find the energy levels produced by
the introduction of an impurity potential h into a
pure-crystal environment we begin with the

Schrodinger equation:

(H +0h)g = etc.

The pure-crystal problem in which H„y~ „
=E, „rpk „where p& „and E& „are, respectively,
the Bloch functions and associated energies, is
assumed to be already solved. The impurity
pseudopotential. h will be initially expressed as a
general impurity complex such that

where 8, indicates the position of a potential h,
at a site i, with respect to the band-structure
origin. An expansion in terms of the host-crystal
Bloch functions is used to represent the impurity
wave function, i.e.,

where we have used the reduced-zone notation.
[In pseudopotential representation, yk „(.")
=Q-a-e&" +&& ' ', where j = v- I and where g stands
for a reciprocal-lattice vector. ] Inserting the
above expansion for g into the Schrodinger equa-
tion leads to the consistency relations

x I dry*-„, „.(r)h, (r)e-„„(r)=0 . (4)

If a finite-sampling-point technique is used then
the equations can be solved as they stand, but
we prefer to follow a method outlined by Bassani
et al." Therefore we proceed as follows. Con-
sider the above real space integral,
fdry~ „(r)h, (r)pq „(r). This can be expressed
as



d (r —R( )0'k. ((r R( )&( (j r R(j )Vk „(r R( )
integral. into a product of integrals containing
either k or k' aLone. The integral (5) now be-
comes

The coordinate change modifies the appearance
of the Bloch functions and gives

d r'(p', r')h'; r')g, . jr')

ei ( ((+ (() r '
&j (k + (, ) ~ R(

g

with r espect to the new origin at 8&. The spheric-
al. ly symmetric pseudopotential h& has been ex-
pressed as a product of the radial functions A; „h',.
as this form proves to be useful. Making use of
the complete orthonormal set of funeti. ons g
the identity

=+f'„,(k', n')f, (k, n). (8)

Introducing new coefficients,

the consistency relations take the form

is inserted. This results in a separation of the

The transformation to a. formulation in terms of
the a,. is achieved by multiplying by f, {k',n'&

and integrating over al. l k space to give

-, f: (k', n')f'. , (k', n')

i m ff' BZ

%e find solutions by Looking for & such that

== 0.

Our main interest lies with values of & in the band

gap. i.e., when Ek „—~&0. However, we also use
this method without modification to locate values
of e just inside the band edges.

The purpose of introducing the a,. rather tha, n

persevering with the Ak „ is to reduce the num-
ber of coefficients and thus make the calculation
more tractable. This can be done by making a
suitable ehoiee for the g «%e „ow reveal the
actual for m of the functions g . The familiar
spherical harmonics Y, (8, P) are an appropriate
choice for the angular part. The radial part of
the functions, which we denote by G„'(r), must
satisfy

we only deal with g cOntainlng t.he spheI'i('aL lid. r-
monics Yo, k', .

In calculating the real space integrals we ex-
pand the components, e'~k'~ ~

' ' of the Bloch func-
tions as products of spherical BesseL function. .

and spherical harmonies, i.e. ,

Consider now the impurity pseudopotentials A,.('Y),

These are found by fitting a real. space radia1.
function to give tabulated pseudopotentiaL" co-
efficients. The factorizable form h,.(r) =h;, A,.
=(c-'r' —d')r'"e ' is fairly flexible for fitting
data and has been used for the vacancy calculations
we have carried out. Figure 1 shows the potentials
we used for V&, and oxygen in GaAs.

%e now direct our attention towa, rds the ca.l. —

eulation of the elements of the determinant

This can be achieved by choosing
-, f:,( ', k')fn'. .. (k', ')n

where the 1.'s are the associated Laguerre poly-
nomials. %e denote the number of functions g
per site by K. If, for example, we use ten 8 and
nine P functions, then K=10. In our calculations

This has been performed for single vacancies in
GaAs and other materials and for the divacaney
and vacancy-oxygen complexes also in GaAs. An

outline will be given here for the calculation in

the case of the general double impurity in such
a material. The R, are situated at adjacent pair
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positions, that is at + (-", a)(l, 1, 1), a being the
lattice constant. The band structure is centered
about the midpoint of the pair and for the purposes
of the calculation we use the (1, 1, 1) direction
for the z axis. Beginning with Bloch functions
in the irreducible —„segment of the Brillouin zone
we cover the entire k space by applying the 48

symmetry operations, denoted by n to give

dk'
Qf ;t '„&', )f'';„(~k', ')) .

n' "+/ qg k', n' ~ at

Expanded in full, the bracketed term is

p(4 (-)')p -„"""~,.(e:„(;,) J«G.'()~, (~ )");(.)
8

4m'j' ag ~ e' ' Y*i',~' (9aq' ~ (II)aq' &r'G„' +' +, q'r')r' h) (r'j (18)
g

where q = k+ g and 0 q, Q ~q are the angular coordinates of nq.
In considering the operation-dependent part of this product we begin by looking at the separate

terms of form e ' '
~Y, (8 „,(II)„~). As R, is oriented along the (1, 1, 1) direction, the z axis,

the C,„operations have no effect upon the complex exponential. Nor do they affect 8. This means
that all products of Y„Y, „spherical harmonics remain invariant under these six operations. Thus
we need only perform the remaining eight operations, which will be denoted by p in the calcula-
tion of these products. Further scrutiny reveals that products of either YQ or F] Q

terms with
Y, , „terms vanish when a summation is made over the C,„operations y. This also holds true
between Y, , and Y, , products which can be seen to lead to doubly degenerate energy states.

+then the 1') „terms are considered the f', f' are certainly not invariant upon application of the y. How-
ever, if the sum of the products of the terms is calculated then we obtain

~ ~e "'' '(1',
, (6;,, 0„;)e'"' ' '*' 1'*,

,„(&:;,y„-, )=6ReIe " '1, .(e-„, y-, )e' '' ' '1*,, „,(8;, y;, )]. (19)

Thus all the calculations for both singlet and
doubly degenerate states can be performed by
operating with only the eight remaining operations
P. The determinant finally reduces to the form
shown below, where columns are terms in f' and
rows are terms in f, and N means terms that

h {a.uj"

are nonzero. "

Q 1 Q 1 1 Yl, 1

o N N Q Q

N X Q

0 0 X

0 0 0

We look for zeros for each of the blocks of the
determinant with elements

dk'
+6Re

Eklg' 48

Pi „,((i, n ) f'„,, (()i, n
))

.

FIG. 1. V&, and substitutional oxygen (at arsenic site)
potentials used in GaAs calculations. The real space
potentials were found by fitting to pseudopotential co-
efficients.

Each of the blocks in the determinant is built up
from elements coming from two impurity centers
and hence the possibility is allowed that we may
find two zeros for each. There is then the pos-
sibility of finding two singlet states and two doubly
degenerate states within the band gap. In our
results we never find all of these states. For the
divacancy and vacancy-oxygen pair only one singlet
state is found, the other being pushed up into the
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conduction-band region in both cases. For the
vacancy-oxygen complex one of the degenerate
states is also l.ost.

For the singl. e impurity the band structure is
centered at the impurity site and the higher sym-
metry leads to a simpler calculation. In such
cases the determinant partitions to give one singlet
state together with a triply degenerate state.

We now consider the di-impurity results with
regard to convergence with number of functions
and the effect of scaling the potential. Radial
functions G„' were used for values of Pup to 10.
This entails the calculation of a 38&38 matrix
(19 functions per site, ten for / =0, nine for / = 1)
in the case of the singlet state for each of the
trial energies & used. In Fig. 2 the convergence
of the result as a function of K value is illustrated.
It can be seen that by about K=5 (an IBX18 sub-
matrix) the position of the level is beginning to
emerge. The position of the level is obtained to
a degree sufficiently adequate for our purposes
by &=10. At this stage the error in the potential
is the factor which essentially sets the confidence
we may put on the final result. It appears that
the choice of functions is a good one. Figure 3
shows that the results are sensitive to seal. ing
(i.e. , change in the potential achieved by multi-
plying the potential by a constant P) but not un-
duly so. It is essential that this is so, otherwise
the error in the potential would be disastrous.

The convergence properties of the degenerate
states, shown in Fig. 4, are better but of a similar
nature to those for the singlet state. A particular-
ly interesting feature of these levels is their re-
sponse to scaling (Fig. 5). The remarkable in-
sensitivity of these is consistent with the prop-

energy

~ Q.f-

~ 0.2-

l I W I I I II

0.6 0.8 1.0 1.2

P I scGt lng I

FIG. 3. Effect of scaling upon the singlet-state results
for the di-impurity in GaAs. Equal scaling is applied to
the potentials on both sites. The solid curves are for
the divacancy and the dashed curve for the V(:,-0 complex.

erties of the degenerate states for the single va-
cancy and seems to be a general result. This
indicates that the error in the potential may not
be so crucial in dealing with states of this type.
For the single vacancy the convergence of the
results with respect to the number of functions
used is similar to that found for GaP:O." Pre-
vious cal.culations" have indicated what constitutes
an adequate sampling procedure and this has been
adopted throughout. We use a grid of 41 points
in the —„segment and sum over four valence and
six conduction bands. Each Bloch function is
formed from an expansion containing 65 recipro-
cal-lattice vectors.

Typically, the calculation for 10 trial energies
in the band gap for the 38X 38 singlet matrix re-
quires about 1000 sec of central. -processing-unit
time on an IBM 370 computer.

energy
P/7~ 0

0.95-,

O 0 P

&C

~ 0.1-
~ 0.10-

& 0.05-

No. OF S FUNCTIONS PER SITE

FIG. 2. Convergence of the singlet state results for
di-impurities in GaAs. The X value is equal to the num-
ber of s functions on each site (K =10 implies a total of
19 functions per site). The upper curve is for the di-
vacancy, the lower is VG, -O.

l I 1 I I \ I

No. QF FUNCTIONS PER SITE

I IG. 4. Convergence properties of the degenerate
states. In the dashed curve the effects upon the V~, -0
complex in GaAs can be seen. The other two curves are
for the divacancy.
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0.9-
0.8-
0.7-

+ 06-
0.5-

~ 0.&-

0.3-
0.2-

FIG. 5. Effect of scaling upon the di-impurity degen-
erate energy levels in GaAs. Labeling is the same as
Fig. 4.

III. RESULTS

A. Vacancy as an "isoelectronic" impurity

One of the first calculations of defect levels in

a semiconductor was that of Coulson and Kears-
ley." They treated the vacancy in diamond as
a "defect molecule" made up of electrons in the
sP' "dangling" orbitals from each of the four
neighboring atoms. They then constructed many-
electron states from these crbitals and found the
electron energies with respect to the energies of
the "original" dangling electrons. Since they
created a vacancy by simply removing a carbon
atom from an otherwise perfect lattice of diamond,
they had really four one-electron "defect" mo-
lecular orbitals, one of a, symmetry, and the
other three forming a triply degenerate t, state.

In an attempt to improve upon the result of
Coulson and Kearsley, larger molecules have
been. constructed. ' As a result more-complicated
systems of molecular orbitals are obtained. The
"defect" orbitals tend to spill out of the molecule
and a simple one to one connection with the "de-
fect" molecule is impossible. The number of the
molecular orbitals and their localization depend
very much on the details of the model employed
in the calculation.

However, even in the limit of an infinite cluster
of atoms, the basic problem remains the same.
Since we create a vacancy by removing a neutral.
carbon atom, we must find at least four orbitals,
more or less localized in the area of the vacancy.
For a neutral state of the vacancy, these orbitals
wil. l be populated with four ("dangling" ) electrons.
In our method which we described in Sec. II, a
solid is made of overlapping spherical pseudo-
atoms. We create a vacancy by removing a neu-
tral pseudoatom from the otherwise perfect lat-
tice. With the formalism of Sec. II we generate
bound (or resonance) states which transform ac-
cording to the irreducible representations of the

relevant symmetry group. The wave functions
associated with these states are the particular
solutions of the integral equation of our scattering
formalism. The wave functions are localized in
the area of the vacancy and are dominated by the
contributions from the valence-band Bloch func-
tions. It is clearly these states that must be oc-
cupied with the "dangling" electrons ~ The first
step in our cal.culation must be to find these states
and their properties in the otherwise perfect crys-
tal lattice.

Of course, the above-mentioned states may have
very little in common with the states created by
vacancies in real. crystals and observed by ex-
perimentalists. This may be so even if we dis-
regard for the moment the problem of lattice dis-
tortion. For if we now occupy the "defect" states
with electrons, and if the wave functions concerned
are highly localized, the self-consistent vacancy
potential must be quite different from that which
we used to generate these states. Furthermore,
the very pseudopotential which helps us to make
the first step in our calculation, in not error free.
It is noted that in their Koster-Slater calculation,
Callaway and Hughes discovered that their results
were extremely sensitive to the strength of the
pseudopotential representing a vacancy in silicon.
In Figs. 6-9 we can see the levels associated with

1 energy

As (1-10)

Ga(1- a )

Ga (3-~ )

Ga (1-6)

G a (1-10)

10 11 12 P (

scaling�)

FIG. 6. Role of different bands in the formation of the
threefold-degenerate (t 2) levels associated with the Ga
vacancy in GaAs. The bands included in the expansion
of the impurity wave function are indicated in parenthesis.
The bands are labeled 1,2, ..., 10 starting from the
lowest (in energy) of the valence bands. (The forbidden
gap falls in between bands 4 and 5, for instance. ) The
effect of sealing the vacancy potential is also shown.
The threefold-degenerate level associated with V„, ,
which appears just above the bottom of the conduction
band, is also shown.
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z//1 0

0.3-

0.2-

0
Kl

1.0 1.1 1.2 P tscaling )

10-—
a 0.8-

0.6-

In Sb

FIG 9 Position of the
threefold-degenerate level
introduced by an indium
vacancy into the band gap
of InSb. Although no results
are available for the singlet,
it is expected to occur below
the degenerate level shown
in this figure.

FIG. 7. Position of the threefold-degenerate levels
associated with the Ga vacancy in GaP, as a function of
the scaling parameter P.

single vacancies in GaP, GaAs, and InSb, ob-
tained from our pseudopotential calculation. This
is the result of the first step in our calculation
in which the vacancies are treated as "substitu-
tional impurities" in an otherwise perfect lattice.
We will now describe these results (and their
sensitivity to the strength of the potential) in some
detail.

As expected, the threefold-degenerate P-like
(i, ) states appear above the s-like (a, ) states,
which in GaP and GaAs were found to be reso-
nances in the upper part of the valence band. The
Ga vacancy potential is weak and the P states are
close to the valence-band edge. However, as we

go from GaAs to InSb the valence band becomes
more narrow and the t, l.evel rises further into
the gap. It is not clear whether the separation
between a, and t, states follows the same trend.
The a, states a,re particularly sensitive to the
properties of the lowest valence band. Unfor-

VAs

0.4

0.3
V

02- Ga

0.1-

VG
—

VA

a) V Q

FIG. 8. A summary of results for GaAs described in
Sec. IIIA. The column on the left shows the threefold-
degenerate tresonance) level for 'V„, (above the con-
duction-band edge) and for V~, (above the valence-band
edge). The level shown under the top of the valence band
indicates approximately positions of the singlet (reso-
nance) levels associated with V,-„and V„, , The column
on the right shows levels associated with V&-„,-0 complex.
The degree of degeneracy is marked by short lines be-
neath the levels concerned. The levels associated with
the divacancy are shown in the middle column.

tunately, this band is not well. represented by the
empirical-ps eudopotential band-structure cal-
culation which provides an input for our defect
level calculation. Under these circumstances the
extra effort which is required to locate a reso-
nance level. in the val. ence band can hardly be
justified. However, it mould seem that the local-
ization of the states in the valence band is not
sufficient to bring about a meaningful change in

our vacancy potential. .
The As vacancy potential is strong and the I,,

state disappears into the conduction band. The
a, state remains in the valence band. Although
we only applied our calculation to V„, , we expect
similar results for other III-V compound semi-
conductors.

We also applied our scheme to calcul, ate states
associated with the divacancy and V, . -0 complexes
in GaAs. In both cases the symmetry of the center
is lower and the t, state is split into a singlet
and a twofold-degenerate state. The states in the
gap are dominated by the gall. ium vacancy. The
states dominated by the potential on the As site
are pushed into the conduction band.

In Fig. 6 we demonstrate the role of individual
bands in the formation of the t, state associated
with V(, in GaAs. The bands included in the ex-
pansion of the impurity wave function are indicated.
It is clear that both the valence and conduction
bands are required in order to achieve conver-
gence. The upper valence bands dominate the
state. This figure and Figs. 5 and 7 also show
the sensitivity of our results to the strength of
the potentia, l.. It should be noted that the energy
levels which correspond to the fully convergent
calculation (i.e., ten bands inciuded in the ex-
pansion of the wave function P) are less sensitive
to scaling than those corresponding to calculations
with a truncated expansion of |t),

It is, however, most important for us to note
that all energy levels are surprisingly insensitive
to the strength of the potential ~ It means that the
over-all picture presented in Fig. 8 can hardly
be a, ltered by a.n error in the choice of the va-
cancy potential.
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8. Effect of Jahn-Teller distortion and electron-electron
interaction

As we indicated in the first part of this section
the results in Figs. 7-9 represent vacancies in
an unrelaxed lattice. The s-like (a, ) states in the
valence band are assumed to be occupied with
two electrons so that the levels above the valence-
band edge should be related to the possible states
of the third dangling" electron. For P, As, and
Sb vacancies this is their "neutral" state since
be removing, say, an As atom we create thxee
dangling electrons. In the case of Ga and In, we
have five electrons to accommodate and the levels
in Figs. 7-9 might represent the doubly ionized
states (V") of the vacancies in an unrelaxed lat-
tice. If we wish to find the position of levels re-
lated to V', we must take into account the elec-
tron-electron interaction involving the two elec-
trons in the localized states in the gap and repeat
the calculation until the potential is self-consistent
with the wave function. This was done in the Har-
tree approximation for the Ga vacancy in GaAs,
and the resulting (one-electron) energy is shown
in Fig. 11 (solid Lines). It shows that the cor-
relation energy is comparable to the electxon
energy in the one-electron configuration. A simi-
lar calculation was performed in a study of the
two-electron levels associated with 0 impux'ity
in GaP." In both cases the wave functions are
well localized although their details are difficult
to picture. The characteristic features of these
functions are very similar. The maximum of the
radial. charge density tends to occur near the
nearest-neighbor distance. " The tail. of the func-
tion is very complicated because the function is
obtained from an expansion in Bioch states. In
the present study, we chose to generate the new
potential. with a smooth trial function in the form
ft(r)-r e 8". The parameters o.'and P were found
by demanding that the secular equation with R(r)
yields the required eigenvalue, and satisfies the
virial theorem.

The ground state of t, symmetry is threefold
degenerate and is a candidate for Jahn-Teller
distortion. As is customary in the treatment of
Jahn-Tel. ler problems, a considerable simplifica-
tion is achieved by expl. oiting the symmetry of the
problem. Since we are interested here only in

the minimum-energy configuration we can consider
the individual distortion modes separately. To
reduce the amount of computation we simulate
a trigonal. mode of distortion by moving the va-
cancy along the trigonal axis indicated in Fig. 10.
The calculation was performed for the Ga vacancy
in GaAs, in the V" charge state, and the change
in the one-electron energy as a function of the

Td

/ e

QL

FIG. 10. A trigonal displacement (indicated by the ar-
row) and the corresponding effect upon the levels trans-
forming according to the representation of the tetrahedral
group (T& ) symmetry group. The trigonal group is C3„.
The splitting due to a distortion from Cs„ to C~ symmetry
ls also shown.

trigonal displacement is shown in Fig. 11 (dashed
line). We expect this effect to be similar for the
other vacancies since the localization of the states
in the gap is very much the same.

At this point a comment on the problem of self-
consistency may be in order. We begin our cal-
culation with a self-consistent pseudopotential.
obtained from empirical-band-structur e calcu1.a-
tions. This potential has a simple meaning in
the pseudopotential theory of perfect solids if we
invoke the concept of screening. " However, in

a distorted lattice the crystal potential in the
vacancy area may not be smooth enough to justify
the assumptions on which the screening formalism
is based. In practice this means that the screen-
ing charge density should be recalculated and the
vacancy potential altered in the spirit of the self-

Y//XY

0.2-

displacernt nt
i0 20 ['/o n. n.d]

FIG. 11. Level with one full circle is the degenerate
level due to VG, in GaAs (occupied with one dangling
electron). If anothex electron is added the one-electron
energy changes. This energy (per electron) is marked
by two full circles. The effect upon the level (when
occupied by one electron) of the trigonal displacernent,
indicated by the arrow in Fig. 10, is also shown (the
dashed line). The displacernent is measured as a per-
centage of the nearest-neighbor distance (nnd) of the
perfect GaAs lattice.
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consistent-field method. " In principle, such a
calculation can be done within the formalism of
Sec. II. However, we have so far failed to obtain
a numerically meaningful appreciation of this
process. The reason for it is not difficult to grasp.
Let us recall the form of the wave-vector-de-
pendent dielectric function e(q). The most im-
portant part of the screened impurity (vacancy)
potential comes from an area near

~ q~ = k„,, ,

At this point the polarizability contribution is only

e(kz) —1=0.5." Now, our results reported in the
Sec. II indicate that the calculation is fairly in-
sensitivee

to the strength of the vacancy potential.
It would require a drastic change in the polar-
izability (50% or more} in order to produce a
change of the order of, say 0.1 eV in the vacancy
energy levels. It is difficult to see how such a
change could arise in a frozen lattice. Therefore,
if the changes in the valence charge density do
matter then the contribution must come from a
large number of smaller terms at higher q or as
a result of lattice relaxation. The convergence
problems in both instances are great. A similar
convergence problem arises when we wish to
evaluate the total energy since we have to investi-
gate all occupied states. We have not attempted
a complete calculation of the vacancy levels along
these lines. However, our present calculations
do provide an insight into the nature of the lattice
distortion and electron-electron interaction and
yield a rough quantitative evaluation of these ef-
fects. In view of the actual position of the vacancy
levels in the gap (Fig. 8)—i.e. , the Ga vacancy
levels appear in. the proximity of the valence band,
whereas V„, levels are just above the bottom of
the conduction band —we can estimate the over-
a.ll change in the position of these levels which
might result from the above corrections.

IV. DISCUSSION AND CONCLUSIONS

A. States associated with vacanries

To the best of our knowledge, no detailed cal-
culations concerning el.ectronic levels associated
with vacancies in III-V semiconductors have been
reported. However, the electrical properties of
defects in GaAs have been studied experimentally
by a number of researchers. Some authors" have
concluded that Ga vacancies are acceptors while
others" that As vacancies are acceptors or even"
that both V, ,

and V„s are acceptors. More re-
cently, Hasegawa and Majerfeld'9 reported levels
which appear to be associated with Ga and As
vacancies, respectively. They found an electron
trap at 0.83 eV from the conduction band of high-
purity vapor-phase epitaxy +-type GaAs, and a
hole trap level at 0.64 eV above the valence band

of liquid-phase epitaxy P-type GaAs.
Also, there is a recent work by Chiang and

Pearson" who indicate that Ga and As vacancies
behave as singl. e acceptors and donors, respective-
ly. It is difficult to see whether the levels ob-
served in these experiments really belong to single
vacancies or whether they are related to some
more compl. icated centers. A similar lack of
consensus seems to prevail in the case of other
III-V compound s emiconductors.

In Secs. IIIA and IIIB we described the results
of our calculation concerning levels introduced
by vacancies in some III-V semiconductors. The
properties of these levels were studied under
certain restrictive assumptions, with a view to
establishing the role of the vacancy potential,
lattice distortion, and electron-electron inter-
action in the formation of these states. We must
now attempt to put the individual pieces of informa-
tion together and build a simple picture of the
energy levels which may be observed in an ex-
periment.

Our calculation showed that both the axial dis-
tortion and the electron-electron interaction rep-
resent a substantial contribution to the energy
of a state in the forbidden gap of GaAs. We also
know from a previous study" on GaP:0 that the
symmetric lattice relaxation in response to charge
localization in deep states lowers their energy
and more than compensates for the repulsive
electron-electron interaction. This effect can
only be more pronounced in the case of vacancy
states which are strongly hybridized with the val-
ence band. Therefore, our results from Sec.
IIIA, summarized in Figs. 7-9 should be recon-
sidered in the light of the above mentioned cor-
rections.

P, As, Sb vacancies

There is no doubt that the vacancy potential is
strong enough to push the t, state as far as the
conduction band. This is a decisive factor. These
vacancies should (in their neutral state) behave
as single donors. If they capture an extra elec-
tron, a two-electron state may appear in the upper
part of the gap. In materials with wider valence
bands (GaP) the level should be deeper, whereas
in InSb these levels are likely to remain in (or
in the proximity of) the conduction band.

2. Ga, In vacancies

The vacancy potential is weak and even in the
absence of lattice relaxation of any kind, the t,
states appear close to the val. ence band. When
these states are occupied with electrons, the com-
bined effect of symmetric and Jahn-Teller lattice
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relaxation most probably brings the lowest two
levels into the val. ence band. This creates a hol. e
in the valence band and leaves an empty state in

the lower part of the gap. The situation which
corresponds to a neutral gallium vacancy in GaAs
is pictured in a summary in Fig. 12. It follows
that the Ga vacancy in GaP and GaAs should behave
as a single acceptor. In materials with narrow
valence bands (or near the surface) the vacancy
potential becomes more effective and one of the
full. y occupied states may remain in the gap. The
wave functions of the states in the band gap are
highly localized and composed of contributions
not only from the valence but also from the con-
duction bands (see Fig. 6). These levels are there-
fore likely to play a prominent part in recom-
bination processes.

Our results for V, -„. -O can be interpreted in a
similar way. The extra electron supplied by
oxygen fills the hole in the valence band and the
complex in its neutral state does not behave as
an acceptor.

%e can only speculate about the position of levels
introduced by the divacancy V, - VA, . Presumab}. y
the complex behaves as a deep acceptor producing
a number of levels in the upper part, or in the
vicinity of, the val. ence band.

B. Properties of deep neutral centers

There is probably no need to emphasize that
the states associated with predominantly short-
range potentials have wave functions extending
over a very large area of the k space. The ex-
tent to which this is so has been studied in a num-
ber of papers and the reader may wish to compare
our Fig. 6 with similar results for oxygen levels. "

Ga As

In all cases the final result depends on a delicate
process of cancellation involving a large number
of numerical. ly significant contributions. Since
every part of the band structure has its own sym-
metry properties it is clear that the convergence
in bands is absolutely necessary. It is, of course,
possible to choose only a limited area of k space
and still arrive at seemingly correct impurity
energies. There is now plenty of evidence to
show to what degree such an agreement with ex-
periment is merely accidental. "' ' Although one
or two bands may play a dominant role in the
formation of the state in question, the contribu-
tion due to the rest of the band structux e may lead
to an error ranging from 0 to 100%. The position
of an impurity level in the gap is not in itself a
good indication of the degree of localization of the
wave function or its composition. Nor does it
necessarily indicate which bands are important.
Ne believe that the band structure must be well
represented if one is to achieve unambiguous un-
derstanding of the problem or if one simply re-
quires an accurate knowledge of the impurity wave
function.

One of the important parameters which enables
us to assess the role of a deep center in affecting
carrier densities in a given material. is the ability
of such a center to capture electrons and holes.
A complete description of the process of capture
requires the knowledge of al/ localized states in
or in the vicinity of the gap. Indeed it is wel. l

known that, for instance, the cascade model" is
not applicable to centers with short-range po-
tentials since they do not possess a large number
of excited states separated by less than one phonon
energy. In fact, it has been argued that a deep
neutral center cannot possess any excited states
at al.l." This result has been widely accepted. '
It means that a carrier must dispose of a large
amount of energy if it is to be captured. This
imposes a severe limitation on the efficiency of
phonon-assisted processes. As we can see in

Fig. 13 the probability might be increased if an
excited state with a wel. l-localized wave function
was present. In view of the recent x'evival of

O 0
V V

FIG. 12. Final assessment of the available impurity
levels for neutral impurity systems (Ga vacancy, As
vacancy, Ga-vacancy —oxygen, and divacancy) in GaAs
when both the electron-electron interaction and Jahn-
Teller distortion have been taken into account. All en-
ergy levels shown are singlets. The bars indicate ap-
proximately the degree of uncertainty in the position of
the levels concerned.

~BE
E(9~p)

dl spLacement

FIG. 13. Configuration
coordinate diagram involving
the valence and conduction
bands and two impurity levels.
E~ and Ez indicate the equi-
librium positions. Efficiency
of nonradiative capture at
high temperatures is sensi-
tive to the position of the
crossing of the potential-well
curves.
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FIG. 14. Impurity potential which corresponds to the
results in Fig. 15.

interest in multiphonon processes" it is worth
asking whether the result of Bonch-Bruevich and
Glasko is generally valid. They considered a
neutral impurity in a semiconductor, such as
silicon. They chose a potential following an earlier
paper by I ax,"and determined its strength by
demanding that there be a. deep level (split off
the valence band) in the middle of the gap. The
band structure of the host crystal was represented
by a single parabolic band, in the spirit of the
well-known effective-mass theory. ' The Schro-
dinger equation was then solved numerically. The
calculation showed that no excited state was pos-
sible for realistic values of polarizability.

We set out to investigate the problem at an equal-
ly general level. It seems to us that the final
verdict concerning the bound states associated
with any particular neutral center can only be
provided by a detailed calculation for that center.
The purpose of our investigation is to find out
whether under some physically meaningful. circum-
stances the excited states may appear. If so, we
should be in a position to show why our result
disagrees with those of Bonch-Bruevich and Glas-
ko. We chose a potential. which might well be a
suitable realistic potentia. l (attractive to holes)
for a deep neutral center (Fig. 14). Its maximum
is just outside the core of the gallium atom and
its strength characteristic for deep centers (com-
pare with Fig. 1). The impurity is positioned at
the gallium site and the calculation is performed
according to Sec. II. The results are shown in

Fig. 15. The states of a, (A) and t, (T) symmetry

I&

It
I

I I I I I ! I I I I

0.8 0.6 0.4 0.2
P (scaling)

FIG. 15. Realistic impurity potential is used to study
the formation of a& and t2 levels as a function of bands
which are labeled as in Fig. 6 (a& .A;t2. .-7).

a,re shown. The number of bands in the expansion of
the impurity wave functions is indicated. The bands
a.re bands are labeled 1, 2, . . . , 10starting from the
lowest valence band. It is evident that the fully con-
vergent calculation, with a realistic potential which
produces a deep ground state in the gap, can also yield
an excited state. The impurity energies vary slowly
with the strength of the potential. On the other hand,
the levels which correspond to a truncated wave
function are much more sensitive to the strength
of the potential and the separation between a, and

t, levels is large. Therefore, a calculation based
on a truncated band model is less likely to pro-
duce excited states for a physically meaningful
short-range impurity potential. It is worth noting
that the above result is not peculiar to the potential
in Fig. 14. For instance, a slightly scaled Ga-
vacancy potential shown'in Fig. 1 would also yield
two states in the band gap. " Consequently, we
are led to believe that some neutral centers may
exhibit several localized states in the forbidden
band gap.
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