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Calculations are reported for the ionic structure factor and x-ray scattering cross section of sodium (at T = 0
and 90'K) and lithium (both isotopes at T = O'K) within the harmonic approximation. An evaluation of the

appropriate displacement-displacement correlation function by the special-point method circumvents the need

for a multiphonon expansion. In the case of sodium, the structure in the one-phonon scattering is

straightforwardly accounted for and an approximate expansion is obtained for all multiphonon scattering. By

treating core and conduction electrons on an equal footing it is shown that information on the conduction-

electron system is present in the forward-scattering component. In lithium. the one-phonon cross section at

small angles aids in the determination of the effective electron-ion interaction.

I. INTRODUCTION

For some years x-ray thermal diffuse scattering
(TDS) has been used as a probe of lattice dynamics
in simple materials. ' ' Although information on
the phonon frequencies and polarizations (and also
the extent of anharmonicity) is contained in the
TDS,"it is generally hard to extract. ' The cross
section for the scattering of x rays intimately in-
volves the static structure factor of the ions,
S„,(k).' The purpose of this paper is to present
calculations of (i) S„,(k), and (ii) the x-ray scat-
tering cross section for Na and I.i in the harmonic
approximation and in their ground states. The
significant features of the calculation are the use
of a special point technique" in the computation
of the equal time displacement-displacement cor-
relation function (u,.u&) [which enters into S;,„(k)]
and the separation of the scattering cross section
into contributions from core and valence electrons.
In particular, the special point technique enables
us to avoid the customary expansion' of the inelas-
tic part of S;,„(k) into terms involving the scat-
tering of a definite number of phonons. We deter-
mine the *'one-phonon" term explicitly, but we
can also calculate al/ higher-order processes
without recourse to expansion. Further, our treat-
ment of the contribution of the valence electrons
to the cross section shows that x-ray scattering
should yield information, in light metals, on the
effective electron-ion interaction, as we demon-
strate for the particular case of l.i.

Section II contains a derivation of the x-ray scat-
tering cross section do/dG in a model of a simple
metal which distinguishes between bound and con-
duction electrons. In Sec. III we outline the cal-
culation of S„,(k) using the special point technique
(discussed in detail in the Appendix), and compare
it with the other nonexpansion techniques in the
literature. Section IV presents numerical results
for S„,(k) and der/dG for Na (at two temperatures)

and for both isotopes of Li. We draw particular
attention to the secondary maxima associated with
the one-phonon term as observed in certain crys-
tallographic directions. These maxima have spe-
cial importance in the determination of the elec-
tron-ion interaction of I.i, and also give informa-
tion about specific portions of the phonon spec-
trum directly.

G,(F, t) Jd'x(l((x, o)S(x+, t)=( (2.2)

(2.2)

%'e are considering the cross section per unit
volume for scattering a photon of momentum Sk&

and energy h(d, into a solid angle dQ with energy
loss between h(d and h(~+d(d). The quantities 5k~
and her& are, respectively, the momentum and en-
ergy of the scattered photon In Eq. .(2.2), A(r, t)
is the total electron number density operator and
the angular brackets ( ) refer to a ground state-
average. Introducing spatial Fourier transforms

dt e-"'(A(-k, O)A(k, t)), (2.4)

where A(k) is the Fourier transform of A(r).
We separate A(r) into contributions from core

II. THEORY

The differential cross section for scattering of
a photon from a sobd of N ions in volume V(at T
= 0 'K) is proportional to the space-time Fourier
transform of the Van Hove correlation function

G,(r, t):

d'o C d'r dt G, (r, t) exp(ik ~ r —i&et),
dGdv

(2.1)

where C is a constant, '0"
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and valence electrons, and we treat the core elec-
trons as if they were rigidly attached to the ions.
Any core excitations or distortions of the ions are
therefore neglected; should these occur they must
be calculated separately. In practical terms this
means that in comparing experiment and theory
the Compton scattering from the cope electrons
must first be subtracted from the data. In addi-
tion we invoke the adiabatic approximation, so that
the conduction electrons (ce) are always in a
ground state appropriate to an instantaneous ion

configuration (ion). By virtue of the rigid-ion
approximation we may write

fi(k, f) = g """*"«1(k)+it,.(k, f).

Here f(k) is the Fourier transform of the average
core-electron density about a nucleus at the ori-
gin, and R,.(t) refers to the instantaneous position
of the ion labeled i. From E(ls. (2.4), (2.5), and
the adiabatic approximation, we then find

&1'R((0«(k a J(t& if(k) i2+ Q e &ha-«(0&f{ k){@ (k t))dAde C oe y oe
mOO fj ion i ion

+ e"' f 8„-kyo „+ dge '" A„-k~0/, kyg (2.6)

%e suppose that the interaction between con-
duction electrons and ions can be represented by
a weak pseudopotential with Fourier transform
»(k) (as is the case for many simple metals). The
density response may then be calculated to linear
order in e(k):

(ft (k f)} —
g (k)v(k) Qe'"' &'" (2.7)

=2m — e-a(Rf-Rj) k 2+2 1 Xl1 81

~ (ll„(-k)k„(k))„„,) . (2.10)

X,(k) = (0'/4»e')[1/e(k, 0) —1], (2.8)

&(k, 0) being the static dielectric function of the
uniform interacting electron gas." Equations
(2.6)-(2.8) now give

d'0 V iet ~it~(R (0)-g (t))
dAdM C

x (if(k} i
+ 2f(k)y, (k)5(k))

~ (k..(-k, kk),.(k, ))),.,..) .

(2.9)

In a typical x-ray experiment all the radiation
emex'ging Rt R given Rngle ls lnltlally IneRsux'ed.
All possible energy transfers (on the scale of typi-
cal electron and phonon energies) h&u are there-
fore included, and we pass from the cross section
for energy loss Ku&(d'o/dQd&a) to the total angular
cross section (do/dA):

™ d~o'

dA „dAde

Note that the last term is usually considered part
of the Compton scattering, and is therefore gen-
erally subtracted from the primary data. " %hat
will become apparent, in Sec. IV, is that the value
of the last term in Eq. (2.10) (the valence electron
correlation function) should be readily obtainable
from x-ray measurements. The theoretical re-
sults we present are therefore best compared to
data from which only the jonjc Compton scattering
has been subtracted.

The last term in E(l. (2.10) is difficult to cal-
culate for intexacting electrons in the presence
of the ions. For purposes of illustration we use
the free-electron value. ""

N,S,(k) —= (il„(-k)ii„(k))„i„„
Sk

S,(k) = 1, k —2k~.

(2.11)

Here N, is the number of electrons, Rnd k~ the
Fermi wave vector. Setting (for a monovalent
system} the number of electrons N, e(lual to the
number of ions N, E(ls. (2.10) and (2.11) give us
the final result

do
dA N 2gc

=S„,(k)(if(k) i'+2f(k)X, (k)v(k))+S, (k), (2.12)

where we have set

S, (k) = —pe'"'&"(-a&« for k~ 0. (2.18)
fj ion

It should be clear that except for the elements of
lowest atomic number (e.g. , Li), S,(k) makes a
small contribution to W fox all but the smallest
wave vectors It; &2k~.
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III. CALCULATION OF IONIC STRUCTURE FACTOR

We now proceed to a calculation of S„,(k) in a
model in which the solid is treated as a harmonic
crystal. Letting 8& =X,.+u&, where X& is the equil-
ibrium position of the jth ion and u& its displace-
ment

I
A.,(X,)= ~ Qe. (qj)ee(qj) „-.)

x coth[-,'p@„(qj)]cos(q X,). (3.7}

&(u, -u,.),(u, -u, ),)...=-X.,(X, -X,) (3.2)

S (k) = —Q e '" '(e '"'"i "/&) {3.1)
ij

Here, X;&= X; —X,, and the average is to be taken
over the states appropriate to a harmonic crys-
tal. With the definitions

(3.3)

(ui u@) = 5
i&

(u ~ 'u )

A, (X„)= 2{u; u;, ),.,
We see, therefore, that A,~(X) is the displace-
ment-displacement correlation function for tv'
ions separated (on average) by X. Clearly A ~(0)
is the displacement-displacement autocorrelation
function. For a cubic system,

u = (u&~ u2& u~) ~

me have the result'"

(3.3)
A e(0) = 5,e — g . coth[ —,'g&0{qj)]'e 3 Mf&/ &u qj

-=g ~A'. (3.10)

y, (X,. X,.}= Q(1-cosq X„.)e (qj)
This defines A', vrhich is closely related to the
Debye-%aller' factor e ':

2W= —'Ii k A (0)= —'I& A (3.11}
x ea(qj) , , coth[2pi(u(qf)],

(0 qj)

(3.4)

(k) e if xie-i&m&&i&i~/xi&/2
ion (3.5)

Next we separate». ~(X,) as follows:

X,i&(X;)=A ~(0) -A e(X,.),

and M is the mass of an ion. In Eq. {3.4), &e(qj)
and e(qj) are the frequency and polarization vector
of the normal mode of vrave vector q and polariza-
tion index j (j = 1, 2, 3). The q sum extends over
the entire first Briilouin zone (BZ). Using the
translational symmetry of the lattice, Eqs. (3.1)-
(3.4) yield

Substituting Eqs. (3.6)-(3.11) into Eq. (3.5), we

find

(k) e i% xie k~&t&t/&~&&(0&-i&. ~i&(xi&&/2
i05

i'k~X ~ -0 Ao j2 k~AgAaia{Xq) /2 (3.12)

To proceed from this point the usual approach
is to expand the last exponential in a power series
in A,B(X,). The leading (i.e., constant) term gives
the elastic (Bragg} scattering peaks, the second
gives the one-phonon scattering, the third the hvo-
phonon scattering, and so forth. Beyond the one-
phonon contribution each term is increasingly la-
borious to evaluate. We can avoid this expansion
however, by writing S„„(k)as follows:

S„,(k) = pe 't "ie ' ~'/'+pe '~ "ie ' ~ /'[-,'/i '/iaA„~(X,)].
s f',

-if x -»'iso/2 [e~a»8~e8ix; &/2 1 '/ y A iX )]~8 te

=-S,(k}+S,(k)+ S„{k}.

Here S,(k) gives the elastic scattering, i.e.,

(3.13)

(3.14)
S (k) =f&/e ~

the K being the vectors of the reciprocal lattice. The one-phonon scattering term S,(k) is easily seen to be
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S (k)=e-~"t' h h
2m O~

x e@qk) egqk g

x cot hf-, hP&u[q(k) j]}, (3.15)

where q(k) is the vector k reduced by an appropri-
ate K to the first Brillouin zone [i.e., q(k) =k —K].
Finally, the rema. inder S„(k) will be calculated by
direct computation of A»(X, ), so that all higher-
order phonon terms are automatically taken into
account. The reason for adopting this procedure
is to assure convergence in the sum over i in

Su(k). This will be clarified in what follows.
Our method of calculation of A s(R,) and A'

makes use of special points in the first Brillouin
zone" to evaluate the integral of Eq. (3.7). By
calculating the integrand at these relatively few
special points, one obtains a good approximation
to the entire integral. This procedure differs
markedly from ordinary numerical integration in
that (as shown in the Appendix) one is effectively
using an expansion of the integrand in symmetrized
plane waves. In connection with this method we
draw attention to the behavior of A s(X) for large
X. At large X the dominant contribution to the
integral in Eq. (3.7) comes from small q, and it
can be shown" that at T=O K,

lim A»(X) -1/I'. (3.16)

Tllus 'to ensure convergence ln Su(k) I't is necessary
to make the separation indicated in Eq. (3.13).

The method may be compared with the nonexpan-
sion calculations of S„„(k)by (i) Lomer, "who

calculates the ionic structure factor directly using
the results of a computer experiment; (ii) Se-
menovskaya. and Umanskii, "who calculate A e(X)
in closed form for a model sinusoidal phonon dis-
persion law; and (iii) Reid and Smith&" who cal-
culate the multiphonon scattering S„(k) for crys-
tals whose sizes range between 100 and j.000 unit
cells. Their evaluation of A s(X) is achieved by
summing over only those q corresponding to the
normal modes of such a finite crystal. By sep-
arately calculating the q-0 portion of the integral
in Eq. (3.7), they find that a crystal of 500 unit
cells gives essentially the same Su(k) as an infi-
nite crystal, for q(k) belonging to the set of nor-
mal modes of the finite crystal.

The method of Reid and Smith appears to be the
most accurate and practical, but has the disadvan-
tages that one can calculate S„(k) at relatively few
points, and that the matrices A s(X) for a real
crystal are inaccessible. We are able to circum-
vent these limitations by dA ectly calculating the

correlation matrices A»(X}. (These are of con-
siderable interest, of course, in a wide range of
problems. )

We illustrate the method by its application to Na

and Li. In both cases the phonon spectrum was
calculated from a force-constant model designed
to fit the experimental data. The corresponding
S,,„(k) has been calculated for Na at two tempera-
tures (0 and 90'K) and for both isotopes of Li
(at T=o K),

In the case of Na the force constants were those
that fit the data at T=90'K.22 A simple estimate
(supported by some theoretical results" ) indicates
that the change in phonon frequencies between 0
and 90'K is everywhere less than the experimental
error. Hence the only effect of temperature we

allow is through the hyperbolic cotangent function
In Eq. (3.7). To slmpllfy tile calculation we use
the T=D'K value of A 8(X,) for X, & 0 in the 90'K
calculation, but use the T= 90'K value of A»(0). '
The 90 K results are therefoxe meant to 5e indicative

of the effects of temperature, but they are only

approximate. We use the value of r, determined
from the 5 K lattice constant measurement, "i.e.,
r, =3.931 a,.u. (r, is defined by '-, v(r, ,a)'=V /i„V

where a, is the Bohr radius. )
The force constants for 'Li were similarly taken

to be those which fit the experimental phonon dis-
persion'7 measured at T =98 K. The value of r,
was also deduced from the lattice constant, "in

this case at 78 K (r, =3.248 a.u.}. To calculate
S,„(k) we have set T=D'K. In order to obtain

S,(k), A', and A,~(X,) for 'Li, we have assumed
that both substances are truly harmonic. This
g1ve s

A»(X) ~ M ' ~' for all X,
(3.17)

s (k) ~M

1V. RESULTS

In this section we present numerical results for
both S„,(k) and the x-ray scattering cross sec-
tions for Na and Li. The structure factor calcula-
tions were carr'led out as described above. As
regards the cross sections, we give two sets of
results. One corresponds to the theory outlined
in Sec. II:

do V
dA N 2wC

S(k=) [[f{k)
~

+2f'(k)y{k)o,{k)]+S(k),
while the other corresponds to the more common-
ly used expression
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by the phonons at the point q = (~, 2, 0) in the first
Brillouin zone. At (—,', —,', 0), Na has an anomalous-
ly low transverse frequency. " Furthermore,
since q is nearly perpendicular to the [310]direc-
tion, the factor Z, [e(jq) k]' will select out the
transverse frequencies. The resulting single,
large, maximum swamps any other effects. Thus
we see that any particularly low pbonon frequency
will cause a sequence of one ptumon ma-xima along
the appropriate direction. This property of the
one-phonon scattering has been widely used to
study soft modes, "but the discussion is often set
in real space. In terms of identifying the maxima
with a particular vibrational mode we see that it
is advantageous to treat the problem in reciprocal
space.

The comparison of W and W, for Na in Figs.
8-10 shows that at large k the only significant dif-
ference is a shift arising from the term S,(k} in
W', which is a constant for k&2k~. However, at

2.50—

small k Fig. 11 shows that the presence of S,(k)
in W contributes to a difference in shape between
W and W, . The small k portion of the x-ray cross
section (with only ionic Compton scattering sub-
tracted out) thus gives us information about the
conduction electrons. " Note also that for Na the
presence of the pseudopotential v(k) in W seems
to make little difference in the final cross section.
This is not so for elements of very low atomic
number. For example, in Figs. 12 and 13 we plot
8' for 'Li at low values of k, for two choices of
the core radius appearing in the empty-core pseu-
dopotential. " The maximum percentage differ-
ence is slight in both cases, but in Fig. 13 the
actual shape of the one-phonon maximum is no-
ticeably altered. In fact, the differences between
pseudopotentials will always be most noticeable in
low-k one-phonon maxima. In order for v(k) to
have any influence in Eq. (4.1), we need to have
k(2kr (otherwise lt, is exceedingly small} and S(k)
to be not too small. Figure 14 emphasizes this
point: Here we plot W —S,(k), so we subtract all
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FIG. 8. Cross sections W(%) and W, (k) for Na at
T =O'K along [100].
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the Compton scattering. What remains shows a
maxked dependence on the pseudopotential.

We should discuss the relative composition of
the TDS [i.e., of S(k)]. Figure 1 shows the con-
tribution of the one-phonon term, and @re see that
at large k the many-phonon terms become quite
important. From Eqs. (3.11) and (3.13), we have"

(k) s-i'(&gksa&gs(0) /2[siha(sakes(0) /s 1 (p y A (0)]

Q s-ik %(s-kek((ae(((0)/2

ill

x [e'-'s"s("*"'-1——,'u. u,A.,(X,.)].
(4.4)

From the Appendix ere also note that for Na,
TrA, s(X()«TrA s(0) (for X,. W 0). Typically at
least 90% of S„(k) in Na comes from the first term
in Eq. (4.4), i.e.,

S„(k)=1 .-"»s"s» [1.—,'~J,A.,(0)]. (4.6)

In Eq. (4.5) we have confirmed a well-known ap-
proximation (Eldridge and Lomer").

In spite of the fact that the X, sum in S„(k) con-
verges roughly as Z;(X() ', we have found it ade-

quate to take only nine shells (136 vectors) in the
sum. [Taking only seven shells changes S(k) for
Na by considerably less than 1%, for example. ]
This can be understood by noting that

TrA s(Xs) «TrA s(X,) «7 rA s(0), (4.6)

LI {T=O K)

where X, and X9 are typical vectors in the first
and ninth shells. The point is that the asymptotic
limit of A,s(X,.) (~ 1/X', ) is only reached at large
X, where the structure factor is almost independent
of the contribution of the remaining shells. ln ad-
dition, the X; sum actually converges more quick-
ly than Q,.I/X, since the term e '"'"( in Eq. (4.4)
introduces (except for k = K) considerable self-
cancellation.
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and x = 2.00. Note the expanded horizontal scale.
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V. DISCUSSION

The extension of our method of calculation of
the ionic structure factor to systems without cubic
symmetry and to systems with a basis is complete-
ly straightforward. (Special points have been
found' for systems of hexagonal symmetry, and
they can be generated for systems of any symme-
try. ) The occurrence of one-phonon maxima is
equally general. The abQity to calculate the
A,s(X,) by a procedure which avoids a difficult
three-dimensional numerical integration should
prove valuable in a variety of contexts, including,
for example, the self-consistent harmonic theory
of phonons" and the computation of static lattice
Green' s functions. "

Much of the theory of x-ray scattering from
simple metals presented in Sec. II can be extend-
ed to liquid metals. Egelstaff, March, and
McGill4' have derived a formula for the x-ray
cross section in liquid metals that is identical to
Eq. (2.6), except that they do not make the adia-
batic approximation in the terms involving the cor-
relation of conduction electrons with the ions.
Making that approximation, and introducing the
pseudopotential v(k), we conclude that Eq. (2.12)
is as valid for liquid metals as it is for crystals.
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FIG. 14. Cross section with all Compton scattering
subtracted, W{K)—S~ (k), for ~Li at T = 0 K along t111],
for two different values of the core radius, &~ = 1.06
and ~~ = 2.00. Note the expanded vertical and horizontal
scales.

Finally, our calculation has neglected possible
anharmonic effects. Those anharmonic terms
which are retained in the self-consistent phonon
theory" are in a sense taken into account here.
The formalism we have presented is not altered
by using the self-consistent theory, but the fre-
quencies are changed from their harmonic values.

I .25
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FIG. 13. Cross section W(k) for ~Li at T =0 K along
[111] for two different values of the core radius, r~ =1.06
and r~ =2.00. Note the expanded vertical and horizontal
scales.

[100]

FIG. 15. Lines of equal value of the function 1/cl q(%)l
in a (001) plane of the lattice reciprocal to the bcc lattice.
8 is the point (2m'/a)(0, 0, 0), P the point (2m/a)(2, 2, 0),
and S is the point {27(/a){3,1, 0), where a is the lattice
constant. The numbers 1.00, 0.50, 0.33, and 0.25 indi-
cate the relative value of the function.
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We briefly review the special point method, "
which was designed for the integration of quan-
tities varying slavey over the first Brillouin zone.
Here, by a slight modification, we use it to eval-
uate the integral of oscillating functions [see Eq.
(2 7)]

The general integral to be evaluated is

g~I f(i(=
2

fd'q'f. (q, (Al)

where f(q) is assumed to be invariant under the
operations of the cx'ystal point group, and 0, is
the primitive cell volume, [Iff(q) is not symme-
tric, it can, of course, be easily symmetrized. j
One expands f(q) in symmetrized plane waves
A„(q):

f(q) =f.+Z f&.(q), (A2)

x.(q) =g e"'
2;m

In the case of sodium, this change is small. '3

Other anharmonic effects are not taken into ac-
count. For example, the intexference between
one- and two-phonon scattering can cause a no-
ticeable change'4' in S„,(k). As shown by Glyde, '
how'ever, it amounts to only a small shift in the
one-phonon scattering for Na at high temperatures.
Since both the anharmonic frequency shifts and the
inverse phonon lifetimes become quite small at
low temperatures, "the size of this contribution
shouM decrease corx espondingly. Interference
effects, as well as other effects due to anharmoni-
city, may of course be of somewhat greater im-
portance in the case of lithium.

Using Eqs. (A5) and (A6) in Eq. (A2):

fo=2 &;f(q() -Q o(;&&„(q;)f~„+' " . (A7)

Since f, is the desired integral, Eq. (A7) gives an
appx'oximation to the integral consisting of an
evaluation of f(q) at a (small) set of points. The
first neglected term can be shown to be +f„„.
Nof all coefficients f for m&N have been neglect-
ed, as Eq. (A5) is always satisfied for an infinite
number of shells. The index of the first shell for
which Eq. (A5) is not satisfied is %+1. With in-
creasing number of points n in the set, both the
number and the magnitude of the neglected texms
become smaller.

At T=O K, TrA z(0) (x:Z&&1/~(jq) is a smooth
function, and we may apply the special point meth-
od. Although the expansion coefficients f de-
crease slowly with increasing m for large m, they
are much smaller than TrA„(((0) itself. Thus we
expect increasing the number of special points pg

to have a small effect on TrA ~(0). From Table
I we see the convergence is more rapid for T
=O'K than for T=90 K.

The calculation of A,~(X,), X,.40 is more trou-
blesome, and we illustrate by examining the trace
of this matrix, Symmetrizing the integrand of
A,~(X,):

QZ

TrA ~(X,) ~ Q, . A, . (AB
(d (jq

qd

Applying the special-point method to this integral
means neglecting some of the coefficients f
whose form is (we are at T =O'K)

(A9
4

Now A. ,A is itself a sum of syrnmetrized plane

g n (A (q ) = 0 for m = I, . . . , IV,
1=1

e; =1.
gal

(A5)

f =— ', f d'qfgrlA (cj). (A4)

X; nz refers to all lattice vectors X with the same
length X that are related by point group opera-
tions. R ls the numbex' of vectox's ln this Pith
shell, and the sum in Eq. (A2) is ordered so that
those shells with lowest X come first.

A set (q,j of special points is defined as a set of
n points in the BZ with associated weights a,. which
satisfy

40

M (T=O'K)
M'{X=90 K)
M{R=(i,i, i))
M(R= {2,0, 0))
~(R = (2, 2, 0))
M{~= (s, i, i))
M(R = (2, a, 2))
M{IT=(4, o, o))
M{R= (3, 3, 1))
M(R= (4, 2, 0))
m(R= (4, 2, 2))

3.4367
7.9897
1.126
0.538
0.283
0.240
0.473
0.174
0.169
0,140
0.116

3.4762
8.5890
1.134
0.541
0.261
0.223
0.479
0.167
0.152
0.099
0.137

3,4832
8.8258
1.133
0„540
0.259
0.221
0.477
0.f. 64
0.148
0.095
0.113

TABLE I. M = 2I(2k+) A (in units of 1.0 ). M(R)
= ~(24&)~ ~ Tr A 8(R) (in units of 10 ). N is the nurnbex'
of special points (Na, T=O'K).
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A,.(q)A (q) = Pa, (i, m)A, .(q), (A10)

where the first j for which a, (i, I)4 0 is that for
which X,. =IX -X;~. From Eqs. (A8)-(A10) it is
clear that the f for large m will be much less than
TrA ~(X,)only if the f themselves decrease rapid-
ly with increasing m. This, however, is not the
case, for just as in Eq. (3.18),

lim . A,.(q)
- —,.j. 1

(A11)
«q (d gq X

~

The origin of this behavior is the I/q behavior of
I/ur(jq) as q-0 (see Ref. 18 and Schober et al. ,
Ref. 39).

To circumvent this difficulty one must find a
matrix M z(q) whose behavior at the origin is the
same as that of Z&[1/&e(jq)]e {jq)ez( jq), and which
leads to an integral f»d'qM ~(q) cos(q'X), which
can be evaluated analytically. Then we write

A,B(X,)= p g . e,(jq)e~(jq) -M,a(q) cos(q X,)+ QM, B(q)cos(q'X;),

and compute the first integral by the special point
method. Since the integrand has no troublesome
I/q behavior, its expansion coefficients f should
then decrease rapidly, and the number of special
points then needed for an accurate determination
of A ~(X;) should be (and is in fact) correspond-
ingly small.

To simplify the calculation, we have actually
only treated the trace of A,a(X;) in the above fash-
ion, subtracting off a function M(q) whose behavior
as q-0 is approximately that of —,'ZJI/&u( jq). (As

I

q-0, Z&1/&o(jq) - I/d(q)q, where d{q) is a function
of direction. We have approximated d(q) with

[ZJ1d0,1/c~(q)] ', where the c,(q) are the three
speeds of sound. } Tables I and II show the ele-
ments of A,z(X,), for X, in the first nine shells
(T=O'K), TrA~(X, ), and A,~(0) for T=O'K and
T=90 K. Three different (bcc) special point sets
were used, with n=8, 40, and 240. Although one
can only expect TrA, ~(X;) to converge well, the
individual matrix elements also show good con-
vergence.

TABLE II. M~8(R) = 2(2k&) A«(B) (in units of 10 ). N is the nuynber of special points (Na,
T =0 'K).

B=(i, 1, 1)

B=(2, O, O)

B= (2, 2, 0)

B=(3,1, 1)

B=(2, 2, 2)

B={4,0, 0)

B={3,3, 1)

R=(4, 2, O)

R=(4, 2, 2)

8
40

240
8

40
240

8
40

240
8

40
240

8
40

240
8

40
240

8
40

240
8

40
240

8
40

240

3.754
3.780
3.778
0.822
0.716
0.708
1.278
1.215
1.207
0.715
O. 557
0.541
1.578
1 ~ 598
1.589
0.581
0.212
0.186
0.680
0.668
0.653
0.465
0.356
0.331
0.388
0.386
0.363

2.610
2.664
2.666

0
0
0

0.698
0.740
0.744
0.225
0.230
0.233
1.039
1.133
1.139

0
0
0

0.528
0.458
0.464
0.275
0.167
0.171
0.304
0.208
0.214

3.754
3.780
3.778
2.278
2.345
2.345
1.278
1.215
1.207
0.842
0.836
0.832
1.578
1.598
1.589
0.581
0.727
0.730
0.680
0.668
0.653
0.465
0.400
0.391
0.388
0.491
0.482

2.610
2.664
2.666

0
0
0
0
0
0

0.225
0.230
0.233
1.039
1.133
1.139

0
0
0

0.073
o.i2o
0.125

0
0
0

0 ~ 304
0.208
0.214

2.610
2.664
2.666

0
0
0
0
0
0

0.316
0.444
0.448
1.039
1.133
1.139

0
0
0

0.073
0.120
0.125

0
0
0
0

0.303
0.314

3,754
3.780
3.778
2.278
2.345
2.345
0.270
0.184
0.181
0.842
0.836
0.832
1.578
1.598
1.589
0.581
0.727
0.730
0.331
0.188
0.179
0.465
0.234
0.227
0.388
0.491
0.482
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