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A general group-theoretical scheme is developed to discuss any symmetry-breaking effects on the 12-fold 1 s-
exciton states originating from an s-like and p-like electron-hole pair. All the possible effects on the
conduction and valence bands are taken into account by an effective Hamiltonian formalism. For the electron-
hole exchange interaction, the simplest term (including dipole-dipole interaction) is considered. The symmetry-

breaking effects treated here can be anything; e.g. , a magnetic field, an electric field, stress, the finiteness of
exciton wave vector, etc., and even the products of them. As a group-theoretical treatment, this theory
includes all the relevant previous theories as special cases.

I. INTRODUCTION

The simple model of excitons in solids has long
been established as a composite particle of an
electron and a hole which is specified by a wave
vector for the translational motion, and a set of
hydrogen-like quantum numbers for the relative
motion. In a realistic system, however, one has
very often to face an additional complexity, name-
ly, the degeneracy or near degeneracy of the Bloch
states which compose electron-hole pairs. Since
this aspect leads to the existence of degenerate
or nearly degenerate exeiton states which respond
sensitively to any perturbations, it has been
studied rather extensively for various cases. A
list of existing theories includes: (a) exchange
mixing of spin-orbit partners; (b) finite wave
vector of excitons (wurtzite" and zinc-blende'
structures); (c) stress-induced exchange splitting'
(wurtzite structure); (d} stress-induced 0 linear
term' (zinc-blends structure); (e) stress effect';
(f) magnetic field mixing". (g) electric field mix-
ing iOtII

In each ease the electron-hole exchange inter-
action and/or some of the symmetry-breaking ef-
fects were considered for a group of exciton states
which are mixed by the perturbation. They lead to
different energy-level schemes and corresponding
optical selection rules. Studying various effects
on a certain group of exciton states, we sometimes
note the similarity or complementarity between
two different effects. This must arise from the
symmetry properties of the perturbation and the
exciton states. Thus one may arrive at the idea
that all the symmetry-breaking effects can be dis-
cussed in a single group-theoretical framework.
It is the purpose of this paper to show it explicitly
in the cases of direct allowed excitons at the I"

point of cubic and wurtzite structures.
The arrangement of the paper is the following:

in Sec. II are the preliminaries, Sec. 0 discusses

the electron-hole exchange interaction, and Sec.
VI gives concluding remarks which are common
to both cubic and wurtzite structures. Sections IV
and V are devoted to the detailed formulation and

discussion of the cubic and wurtzite structures,
respectively. Therefore, each set of Secs. I-IV
and VI and Secs. I-III, V, VI provides a closed
theoretical scheme.

II. PRELIMINARIES

Throughout the paper, we consider the 12-fold
1s exciton states arising from s-like conduction
and P-like valence bands at the I' point of the
Brillouin zone. Although the energy of each state
may change by symmetry operations, the whole

energy scheme must be invariant for any sym-
metry operation of the system including time-
reversal operation K. Hereafter we use the fol-
lowing notation:

K, : time-reversal symmetric;

J1K: time-reversal antisymmetric .

There exists an effective Hamiltonian for the
subspace of the 12-fold exciton states. By solving
the eigenvalue problem for this Hamiltonian, one
gets the energy levels and the optical selection
rules.

In order to express the 12&'2 =144 matrix ele-
ments of &, it is convenient to introduce an effec-
tive spin operator o, (o, =-,') for the conduction
band, and effective spin and orbital angular mo-
mentum operators, v (o =-, }andi (/ =l), respec-
tively, for the valence bands. The spin operator
o, (o) operates only on the conduction- (valence-)
band spin states, and I operates only on the orbital
parts of the valence-band states. The products of
all the independent components in each subspace
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[(I,o„,a„,o,g) II (1, o„,a„o,}
8 (1, („,/„ I„/„ l„l, /„, I„l„ I„' —P„P)]

exhaust all the independent forms of the 144 ma-
trix elements.

If we have any symmetry breaking effects, the
Hamiltonian & depends on a set of physical quan-
tities, ", which can be, for example, a magnetic
field, an electric field, a stress, the translational
wave vector of the exeiton, or their products.
Since symmetry operations also affect ", we must
look for the invariant form of & consisting of the
quantities a„o', 1, and ".

All the invariant terms can be classified into
the following three categories: (i) inv. (cr„=)=H'";
(ii) inv. (o, )j, =) =H "; (iii) inv. (o„a, I, :-)=H„„. They
correspond to the invariant form for the conduction
band (i}, valence bands (ii), and the electron-hole
exchange interaction (ttt). Since the third group
depends on both o, and 0 at the same time, we eall
it, in a generalized sense, the exchange interac-
tion.

At this stage we introduce a simplifying assump-
tion, namely, we neglect the 1 and " dependence of
the exchange-type invariant terms, 0„,, Since the
normal exchange interaction, proportional to
(o. u, +-,')," is already a rather small effect, it
will be very difficult to identify the higher-order
effects without ambiguity except for the case where
a higher-order effect produces some qualitatively
new feature. Moreover, the inclusion of the = de-
pendence in H" ' and 0'"' exhausts most of the
presently interesting mixing schemes. Therefore,
we leave the I and " dependence of H„for future.
study when it bec ome s definitely necessar y."

The procedure to obtain the invariant expres-
sions H"' and 0'"' is an extended version of t,ut-
tinger's effective Hamiltonian theory'4 which treats
the cyclotron motion of a valence electron in cubic
semiconductors. But the meaning of the coefficient
for each invariant term is not the same in the cases
of an exciton and a Bloeh electron. As shown ex-
plicitly in the ease of magneto-optics of excitons
in the zinc-blende structure, ' the coefficients for
excitons are functions of those for Bloch electrons.
Here is another point about the general nature of
the foxmulation. One may regard H'"', for exam-
ple, as the definition of valence-band parameters
for a given =. (If:" is a magnetic field, a part of
H'"' gives I.uttinger's Hamiltonian —see Sec. 1V E 1.)
Then, in the next step, we take it as a part of the
exciton energy by adopting new coefficients which
are functions of old ones. During this procedure,
we must be careful about the following point: As
shown in Appendix A of Ref. 8, if we use the miss-
ing electron picture, a matrix element uith re-
spect to valence-band states appears as (-1) times

its comp/ex conjugate in the corresponding exc~'/on

problem~.

III. ELECTRON-HOLE EXCHANGE INTERACTION

Here we give a general argument of the exchange
interaction without depending on any crystal sym-
metry. We use a notation I Q(y)) for the normalized
Slater determinant where the valence state y is
missing and the conduction band state Q is occu-
pied. The ordering of the orbitals is such that

~y(y)~ is the ground state without any permutation
for all. y. The exchange part of the Coulomb ma-
trix element between the two arbitrary exciton
states

Z&(&T)ie;.K(&;}I and Z&(~)IA-, K h. )t

q

ean be written

~-=Z Z &(i)*&(q')

+K1 X 1

x p;.„K (2) y-, .(2)*dT, dr, . (3.1)

Introducing the Wannier functions a, a, 6, and 6

for p, (t), y, and g, respectively, we can rewrite
Eq. (3.1)

dF, dr, p(r, ) p(r, )

R

p(r) = e Q G(R) Q a(r) b(r +R)*, etc. (3.3)
0

Because of the localized character of Wannier
functions, it is often. approximated as

p(r) =e G(O} Q a(r}b(r}*.

For spin- tr iplet exeitons, the summation over
spin states in Eq. {3.3) leads to the vanishing p

(and 4,„). The contribution of the RWO terms in

Eq. (3.2} can be calculated in terms of the dipole
moments

drrp r, v= drrP r (3 5)

ZD =—', (v/fl) [3p*v cos8cos8 —(p, * v)], (3.6)

where 0 is the volume of the unit cell, and 8 (8) is

where p {p) is the spin singlet part of the local-
ized charge density of the corresponding exciton
state, and is defined in terms of the Fourier trans-
form G (G) of A (A) as
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z, z, d, & .~(",)' P(".)
)

If one makes the approximation [Eq. (3.4)], J,„ is
proportional to G(0)*G(0).

In some of the recent literature, "the nonanaly-
tic part of &,„ is defined in a different way. Using
the Fourier expansion

1 p dkexp[i(k+K ) r]
r (k+ K„)'

where K„ is a reciprocal-lattice vector; one re-
writes Eq. (3.2) as

4F ~ K+K~ MK+Kf,

n (K+K„)

(3.8)

(3.9)

where

(3.10)Mq = drp r e '~', etc.

The nonanalytic part is defined as the term for
K„=O of Eq. (3.9), namely

MKM~
ex, NA '

6K K~4zpvcos 8c.os 8
(0 t

4m
KeK 'D 3g (3.11)

the angle between K and y.
* (v). In Eq. (3.6) we

have neglected a small contribution of the core
part which should be excluded from the R summa-
tion (Ref. 15, Heller and Marcus), since K
is small enough in most cases. J~ is called the
long range or dipole-dipole contribution, and is
not analytic at K =0. Thus, the total exchange
energy is given by

The last line of the equation clarifies the relation
between the two types of division of the exchange
interaction, i.e., "short-range plus dipole-dipole"
and "analytic plus nonanalytic. "

IV. CUBIC STRUCTURE

In this section we give a detailed treatment of
zinc-blende structure which has the crystal point
group T„. In Sec. IVD, it is shown that most of
the results can be directly applied to the case of
the O~ crystal point group.

Throughout this section, the Cartesian coordi-
nates (x, y, z) are defined along the three cubic
axes, which is different from the wurtzite case
(Sec. V).

A. Bloch band contributions

We first define the components of the represen-
tative variable =, which is introduced in Sec. II,
as follows:

r, :S [1];
r, . T [xi„+y I, + z I,];

(U, V) [v3 (x' —y'), 2z' —x' —y'];

r, : (P, Q, R) [I„,I„I,];
r, : (X, Y, Z) [x,y, z].

(4.1)

Their transformation properties are indicated on
the right in the square brackets. It is very useful
to classify the products of:" =(S, T, U, V, P, Q, R,
X, Y, Z) and ='=(S', T', U', V', P', Q', R', X', Y', Z')
again into symmetry adapted components given in
Eq. (4.1). The results are given in Table I. The
repeated use of the table enables us to ascribe any
products of given quantities to the components of

TABLE I. Multiplication table for the components of the irreducible representations of T~ group. The components are
defined in Eq. (4.1). This table is equivalent to that of coupling coefficients in G. F. Koster, J. O. Dimmock, R. G.
Wheeler, and H. Siaiz, ProPe~ties of Thirty'-tu'o Point GrouPs (M.I.T., Cambridge, 1963).

SS' UU'+ VV' PP'+ QQ'+ RR' XX'+ YY'+ ZZ'

T ST'

V SV' TU'

P SP'

Q SQ

R SR'

TX'

TY'

TZ'

U SO' —TV'

Uv' —VU'

UV'+ VU'

UU'- VV'

(&3U v)P

(&3U+ V)Q

2 VR'

(&3V+ U)x'

(&3v U) Y'

2 UZ'

~&3(PP —Q Q')

2RR' —PP —QQ'

QR' —RQ'

RP' —PR'

PQ' —QP'

PX' + q Y' + RZ'

2RZ' PX' —q Y'

&3(QY' —PX')

QZ'+ R Y'

RX'+ PZ'

PY'+ QX'

.&3(XX'

2ZZ' —XX' —YY'

YZ' —Z Y'

ZX' —XZ'

XY' —YX'

X SX'

Y SV'

Z SZ'

Tqt

TR'

(&3v+ U)s

(~3v U)q'

2 UR'

(&SU- V)X'

(,~SU+ V) Y'

2 VZ'

QR'+ RQ'

RP + PR'

PQ'+ QP'

QZ' —R Y'

RX' —PZ'

PY' qX'

YZ'+ ZY'

ZX'+ XZ'

XY'+ YX'
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irx"educible representations. For example, start-
ing from (P, Q, R) = (P ', Q', R') = (l„,l„ l,), we get
all the independent forms of the opex ators from
the table as

03~ ' =7'S, {4.2)

B'„"=2%(Pv„+Qv, „+Rv„),
where ~ and ~ are effective constants. As the
coefficients for the effective Hamiltonian, we use
Greek {Roman) letters for the conduction (valence)
bands, with and without bars for K and K, types
of:-, respectively. Although we use the same

(4.3)

S =l„'+P, +P„(U,V) =(v3 («2 —P,), 2P, —P, —P,),

(X, V, g) =(f«„«g, («, «„j,[«„«„]},

where [AB] = ,'(AB-+BA}. Their products with
(P",Q", R") = (v„v„v,) give ail the 36 independent
products of operators acting on the sixfold valence
bands. Their time-reversal properties are easily
obtained. Since eRch RngulRI' momentum opel RtoI'

has K character, the product consisting of an
even (odd} number of them is of k, (k ) type.

In Table II, simple examples of - are given for
certain cases of physical interest.

Although the Hamlltonian itself 18 time-1 eveI'8Rl
invaI'iant, it is useful to separate it into two parts,
H, and 0„, which consist of the K, and K parts
of =, respectively.

The contribution from the conduction band is

TABLE II. Examples of - in Tz symmetry. E: elec-
tric field, H: magnetic field, &: strain tensor, k: @rave

vector.

&3(E„'—z,') .~3(~,„—~„)
3Eg —E 2~zz —~~ —~yy

symbols irrespective of the physical content of ",
the meaning and the value of them shouM vary
according to the choice of:". For example, e, for
{X,Y', Z) =(B„,B„,B,) and e, for (X, V, Z) =(e„,e

e„,) have nothing to do with each other The.y
shouM be distinguished although we use a common
QotRtlon for slmpllclty.

The contribution from the valence bands, which
18 much IDGle complicated, ls Rs follows:

B,'"'=(a, +2a,v i)S+c,[&3U(P„- «2)+V(3P, —2)]+v2c,[v3U(l, v„—l,v„)+V(3l,v, —v. 1)]

+ v8d, [P(«„v, —l,a„)+c.p. ]+&Se,[X[«„«,] +c.p.j+v8 e,[X(l,v, + l,a, ) +c.p. j, (4 4)

(4.5)

where c.p. means the additional two terms obtained from the cyclic permutations of the first term.

B&,"' =4«, (v„[«„«.]+v, [«, Q+v. [«, «,j}T+ Mac, [U{2(«„«„jv, —g«, «.$ v, —[«, «„P v, )+WSV(««, «„] v, —[«, «, «v, )j

+v2 d, (Pl, +Q«, +R«, )+2d, (Pv„+Qv„+Rv,)+4d,[P(fl, «, j v, +[«, «, ] v,)+c.p. j

+4d, (Pv. «! +c.p.)+ v8 e, [X([«,«„j v, —[«, «.}v, ) +c.p. j+4e,[X(l;—«!)v,. +c.p.].

The numerlcRl fRctox' fol' each lnvR11RQt 18 arbitrar-
ily chosen to simplify some matrix representations.

8. Exciton basis functions

operator E„namely,

«,)mj} =m) m,.}, (m,. =1,0, -1). (4.8)

sv(=v, ), sP(=P.) (4.6}

for the conduction bands which belong to I'6, and

n(m, &, P)m, } (4.7)

for the valence bands, where e and P are usual
spin functions, and (m, ) is the eigenfunction of the

According to our basic assumption, the conduc-
tion band has atomic s character, and the valence
bands P character. Thus, we denote the Bloch
functions at the I' point as

Sometimes lt 18 mole conveQient to u8e x, p, Rnd z

character of the p functions explicitly. For that
purpose we use the definition

~1}=-(x+«y)/v2,

~0}=e,
(-1)=(x —«y)g2 .

The spin-orbit interaction (-a 1) can be diago-
nalized by the following linear combinations:
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p, =-(x+t'y)o. /v2,

4. =[2 -("y)p]H~,

4, =[2zp+(x —Iy)o]/v6,

y, =(x —ty)p/W2,

y, =[ztz+(x+Iy)p]/v3,

y, =[-zp+(x —ty)a]/v3 .

(4.10)

(I, IIMlo)

(I.olMlo)

(I, -IIMIo) -~2«+~a)

c(l, 1l&&l o)

,(I, oIMlo)

,n, -IIMli)) -{$+iq)

TABLZ IV. Dipole matrix elements in unit of M0
= &slexlx)/ ~3.

They split into two irreducible representations,
i.e., I;(P, - P, ) and I;(P„P,). We now introduce
the following 12 electron-hole pair states

+, =
I n.(4.)l,

4, =I .(e.)l,
~. =I .(~,)l,

4, =I p. (e, )l, 4, =I~.(@.)i,
~. =I p. (e.)l, 4.=I ~.(4.)I,
+, =lp. (e,)l, 4, =lp. (e.)l,
~.=I p. (4.)l, 4.=I p. (e.)l.

(4.11)

For simplicity, the 0 vector of each Bloch state
is not explicitly written for the time being. These
states can be classified according to the system's
total angular momentum 4 and its z component M~
as in Table III.

The electric-dipole transition from the ground
state I0) is nonvanishing only to the states with
4=1. The dipole matrix elements are given in
Table IV for the (g, t), g) polarized light [by taking
all the Bloch states in Eq. (4.11) at h =0]. From
this result it is easy to construct x-, p-, and z-
polarized pair states as

lx) =[II, I) - II, -I)]/~~, (2&)

Iy) =[II,I)+II, -I)]/I~2, (2tl)

1.)=-11,o), (2t)

lx) =[11,1) —II, -I),]/v2, (~&()

ly}c=[ll, I) +II, -I)o]/t~&, (~an)

I.),= -I I, 0)„(~2q}.

(4.12}

The quantities on the right in parentheses are the
dipole matrix elements in units of Me = (sl exlx}/v3.

I;: I2+) =[I2, 2)+I2, -2)]/~2,

I2, 0),
I;: Il+) =-[I2, 1)+l2, -1)]/v2,

II-) = I[12, -I)—I2, 1)]/~2,
I2-) =[I2, 2}-I2, -2}]/v 2 .

(4.14a)

(4.14b)

An exciton state is a linear combination of the
electron-hole pair states [Eq. (4.11)]for various
possible k values, for example,

2 &(q) I o.,-„;(y,,;)I, (4.13)
Q

where q and K are wave vectors, and A(q) is the
Fourier component of one of the hydrogen-like
wave functions. Using such exciton basis functions,
we can construct the whole interaction scheme for
the 12 fold hydrogen-like series (12 times ~-
dimensional states). Then, we extract the part
for the 12 1s exciton states in such a way that all
the effects from the rest are renormalized into the
coefficients of their matrix elements and wave
functions. This is the very scheme which we have
in mind as the effective Hamiltonian formalism.

Since the dipole matx ix elements for the exciton
states are obtained from Table IV [or Eq. (4.12)]
by multiplying by a factor Q-„A(q}, we can use the
values in Table IV as the relative ones also for
exciton states.

The linear combinations of the J=2 states give
the basis for the I; and I'4 irreducible repxesenta-
tions as

TABLE III. IZ, M~) representation of the electron-hole
pair states.

12. I)

j2, 0)

j2, -2)

4'4

2 (4'8 ~34&)

(42 —47)/W2

2 (~346 —4 &)

jo, o) (C, + e„)/~2

li, o) '
j1,-1)

j1,1)~

j1,0)g

j1,-1}~

—.(~3+ ~3~8)

—(4', + 4', )/W2

~ (&34'( + 4'6)

(4)'4 —4'()/W2

~Definition of j1,0) and j1,—1) is different from that of
Ref. 8 by the factor (-1).

C. Matrix representation of the invariants

Using the basis functions in Sec. IVB, we ex-
press the invariants in matrix forms. %'e gen-
erally specify & of the nondiagonal elements, since
the other & are easily obtained by hermiticity.

1. BIoeh basis

As mentioned at the end of Sec. II, one may
regard 8'" and 0'"' as the definitions of the most
general forms of the energies of the Bloch states in
the presence of:".
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TABLE V. H," on the basis of valence electron functions (H.c.): Hermitian conjugate.

3a v Bd —16hv 6d+ v Bh v Bf+ v6k

2b+ c+ v 2g+ 0 v 6k+ vlf v 2(b —c)+g* —2g

2b+ c+ v 2g+ —v 6d —v 3h Be*

v Bk* —&6f*

v 6f—&Bk

v~2(c —b) + 2g* —g
—v 6h++ v Bd+

(II.c.)
b+ 2c —v 2g,

b+ 2c —v 2g,

a= (af+a2)S+ (cf+ vt 2cp)V,

b =a1S —2c&V,

c = (a1 ap)S+ (cf —v 2c~) V,

d = -df (Q+ iP) + (ef + e, ) (Y- iX),

e = —d f (Q+ iP) —(e f —ep) (F—iX),

f= v Bc1U—iv 2e1Z

g= vr 2a2S —c2V —2id&R

h = v 2d1(Q+ iP) + v 2e~(Y —iX)

k = v Bc2U —2ie2Z

g, =g+ g* = 2 v 2a S —2c,V

The matrix for H,'" and H",,' is obvious, i.e. ,

(4.15)

1 dr, dr, p„(r, ) p„(r,)
200

12

j, = drxp„r (4.16)

on the basis (e„P,). In terms of the basis [Eq.
(4.10)] we obtain Tables V and VI for H', "' and H,",',
respec tive ly.

2. Excision basis

The matrix for the exchange interaction [Eq.
(3.'l)] is given in Table VII where we use the defini-
tion

p, (r) =e g G(R)a, (r) b„(r+R):—eG(0) a, (r) b, (r).

a, (r} and b„(r) are the s- and x-like orbitals of the
Wannier functions, respectively.

In terms of the exciton basis functions [Eqs.
(4.12) and (4.14}]and

~ 0, 0) in Table III, H,'"' and
H', ",' are given in Tables VGI and IX, respectively.
The notations are defined as

TABLE VI. H~ on the basis of valence electron functions (H.c.): Hermitian conjugate.

1
3

Ba vj 6d+ v 3h

2b —c+ .~2g,

(H.c.)

vlf + V 6F

2t+u+ vse

c —2b —v 2g,

t6—
v3d —v 6h

v' 2 (b+ c) + g* —2g

v~2(t —u) * —e*

Ref + —.&Br+

b —2c —v 2g,

.&Of —v Br.

v+2(u —t)+ e

v~2(b+ c) + g —2g*

v 6h* —v Bd*

v se —(2~+ t)

2c —b+ v2g, +

a = (v 2d1+ d2+ 2d4)R,

b =d2R,

c = (—vt 2d&+ dz+ 2d4)R

d = (d1+ d3) (P —iQ) + e1(X+ i Y),

e = (d1 —d&) (P —iQ) —e1(X+ iF),

f = —ib&T —inc&U+ 2e&Z,

g= -iv'3c1V+ 2d,R,

h = (d2+ d4) (P —iQ) —e2 (X+ i Y),

7 = —i&2b& T+ zc1U —2e1Z,

(d4 —v 2d3)(P+ iQ)+ (v 2ej ep)(X —iY),

(d2+ 2d4) (P —iQ)+ 2e2(X+ ig,
(d4+ z 2dg) (P —iQ) —(v~2e1+ e, ) (X+ iF),
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(For Table VIII):

S —3gP ~

(U& V, ) = (y, U y, V) (j = 1, 2); (P„Q„R,) = (d,P, d, tv, d,R);

(X Y. g.) =(&,X, e. Y, e.g), (j =1, 2); y, =-,'(c, +v2c, );
y, =-', (v2 c, —c.); e, = (e, +2e, )/v6; e, = (e, —e, )/v3 .

(For Table IX):

T, =(v3/2)b, T; (U„V, ) =(y U, y V); (P, Q, R )=(5 P, &~Q, R), (j=3,4);

(X 1'. Z.) =(e.X e, Y e.Z) (j =1, 2); g, =-,'(125, +275, ); g, =-,'(4E, +5,);
g, =-'(12&, +155 ), g, =--,'-(45, +13& )&3;,= —,'(205, +415 }; y, =zv3 c, ;

5, = —,,', (2v2 d, +2d, +9V2 d, —5d, ); 5, =
8 (d., —v2 d, ); 5, = —,(2&2d, —d, —4v2 d, —4d, );

&, =-, (d, —v'c', d, +d, —v2 d, }; e, =(v2 e, —e, )/V3; e, =(e, +v2 e, )/v3 .

(4.17)

(4.1S)

0 -iR iQ P

0 —iP Q

(H.c.)
(4.19)

0

The sign of the fourth column is different from that
of Table IX relative to the rest of the matrix.

D. Case of OI, symmetry

In order to treat the direct excitons in alkali
halides, rare gas solids, etc. , we have to consider
the O„crystal point group. The extension of the
above theory to this case is very easy. The new

TABLE VD. Matrix for the exchange interaction. U is
a 2 X 2 matrix:

4 2.&2
U= j(u) =go+ ))(3u —1) .

($,g, &) are the direction cosines of K with respect to the
{x,y, z) axes.

t~) l~) ly) iy)c l~) l~)

j($)U 3j,('rIU pj,(f U

The matrix for II(„", splits into two diagonal
blocks, one for

[I 2+), 12, 0), I 1+}, I
1-), I-'-), l~), Iy), I z)]

and the other for [Ix)c, Iy)c, Iz)c, I0, 0)]: The
former can be obtained from Table IX by replacing
(g„g„g„l,„g,) with (--&, --, &, —,'&, --,'V3 &, -z&) and
making all the other terms zero. The latter is
given by

symmetry operations are those involving the space
inversion. Since all the products of angular mo-
mentum operators o„o, and l have even parity,
one may take only even-parity "'s. We define the
components S, T, U, V, P, Q, R, X, Y, and g
as before [Eq. (4.1)] for I", , I", , I", , I',+, and 1,'
irreducible representations, but the transformation
properties indicated in Eq. (4.1) are not all valid,
since, in the O„group (x, y, z) and (l l l,) belong
to r4 and I4, respectively. If one makes an extra
consideration about parity, one can use Table I as
it stands. The form of the effective Hamiltonian is
the same as in Eqs. (4.2}-(4.5).

From the required restrictions on the choice of
:-, we must drop out such effects as k-linear
terms, linear electric field, stress induced &-

linear terms, etc. , although they can of course
contribute as interactions with outer (2P, 3P, . . . ,
excitons) subspace.

Thus all the results in the previous sections
can be used with the proper choice of ".

E. Comparison with existing theories

In order to demonstrate the general nature of the
present theory, we derive various known examples
as special cases of the above results.

As the basis of the following discussion, we de-
scribe the fundamental structure of the exciton
level scheme in the absence of any symmetry
breaking effects and the exchange interaction. For
that purpose, we take that part of the effective
Hamiltonian which does not depend on ", in other
words, we take only the terms including S (and put
S =1) out of Eqs. (4.2) and (4.4). This gives the
diagonal energies

7 —a —aI 2

(H.c.)

j(7T) U 3jpKU

j(K) U

for

and

[I 2+), I 2, 0), 11+),l1-), I
2 —},I x), I y), I z )],
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TABLE &III. H~") on the exciton basis. Note: To avoid congestion of symbols, the tP, q, R) matrix elements are
written in the lower left corner, and the rest in the upper right corner. The complete matrix is Hermitian, i.e., one
should add their complex conjugates in the opposite corners. For the notations, see the text. The diagonal element
-(g&+ g2)S is omitted.

I2+) 12, o)

—2 V( —2U(

iXg

-iX(

-i&3X, iVSX, -i&3m;

-2iZ2 —2iU,

V, —&3U, &3Z, ,~3&; &3V, —U,

V)+ v 3' ~~3X) -Zg

-i&3P, iP,

i&3q( iql

-2iRi

2Pl

7 —QI +20~

«~ ll~)o IJ)c, lz)z, IO, O)]. Omitting the common
P»t (~ —e, ), we h«eafte~ nse s instead of a„
where

(4.20)

It is obvious that As& represents the spin-orbit

splitting of the va}.ence bands.
These diagonal energies must always be super-

imposed on any effects discussed below, con-
sMel ing Ago Rs R given IQRterial constant.

l. Luttinger theory (Ref. J4)

If we take H',"' with 8 =k'+k'+O' U =43(k'-k-)
V=8k: —k2, X=A,k„F=k,k„, g=k„k, and 0(,",'

ly)g

TABLE IX. H~ on the exciton basis. Note: To avoid the congestion of symbols, the g, F,Z) matrix elements are
written in the lower left corner, and the rest in the upper right corner. The complete matrix is Hermitian, namely, one
should add their complex conjugates in the opposite corners. For the notations, see the text.

l2, o) li+) I
t -) !2-)

-g&P —giq 2g~R -~ 3g~P v 3g&q

—&~3g~P ~ 3g~ q gsp Aq —2'~
2iU, I

-ig, q

ig3P ig4R

0 ig4q

ig4q i& 3V, —iU, iv 3Z, —i&3q4

ig4P —i~ 384 —i~~3V( —i Ug —i»' 3P4

Xf

2iz~

2iF)

—ig;P —iP4

-2i Vg

2q4

&3X, zq3

0
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y, =2m, (a, +a, ),
y2

—-2m~(c) + &2c2),

y, = ——,'v2m, (e, +2e,),
x = —(2v 2 d„+2d, + 9&2d, —5d, )/6p, s,
q =-2(d, —&2d, )/3ps,

(4.21)

where m, is the free electron mass, and p~ is the
Bohr magneton.

with P =H„, Q =H„R =H„ their sum gives an ex-
tended version of the so-called Luttinger Hamil-
tonian which describes the motion of a valence
electron in a magnetic field. The basis for this
Hamiltonian consists of the j =-,' and —,

' states
(j =&a+ I). The part corresponding to the j =-,' sub-
space is nothing but the Luttinger Hamiltonian.
The Luttinger parameters can be expressed as

ting Qf the A, 8, and C excltons ln wurtzlte struc-
ture (see Sec. VD1). (iii) Linear splitting of the

g, exciton in CuC1 due to an electric field. 'o

3. Additional selection rules due to fhe finiteness of exciton

wave vector (Ref. 4)

Since a wave vector transforms as (X, I', Z) of
K type, the additional mixing scheme for the ex-
citons with finite translational wave vector K is
given by II'„"' with X=K„F=K„Z=K,. In Ref. 4,
the eightfold exciton states from the lex I' band

pair were explicitly treated. The corresponding
part of H', ",' is given in Table X. Here we use the
basis functions ~&, M~) rather than those for the
previous tables, since it facilitates the compari-
son with Ref. 4. The result is equivalent to the
invariant term

2. Exchange mixing of spin-orbit partners (Ref. l) Hx = —~ E
~ [K„[J„(Jq

—jg)] +c.p.]
16

(4.24)

The combination of the spin-orbit term [Eq.
(4.20)] and the exchange term (Table VII) leads to
the Onodera and Toyozawa theory. Since both
terms have spherical symmetry in cubic crystals,
we may take the K direction as the quantization
axis. Then, we get the following mixing scheme:

4(j.—j,) —s&s. 2~&(j, —j,)

&W2(i, —i, ) 2(i, —ill& ), (4.22)

@=a, x=6(j, —j,). (4.23)

This mechanism leads to several important ef-
fects: (i) deviation of the oscillator strength ratio
from 2:1 which is expected in the absence of the
exchange interaction. (ii) Stress-exchange split-

for the two pairs of transverse exciton states. For
the longitudinal states, one should replace ), with
—2),. The correspondence to the parameters &

and 4 in Ref. 1 is

for the I; && I; subspace, where j = 1+o, and ) = ~.
The matrix for Eq. (4.24) is given in Ref. 4 in sev-
eral forms for different quantization axes in order
to analyze magneto-optical measurements in vari-
ous configurations. Since the booklet4 is not avail-
able to everyone, we reproduce the main results
in the Appendix.

4. Magnetic Peid effect (Ref. 8)

The Zeeman effect is described by H',",'+H",,'

with P =0„, Q =H„R =II„and the diamagnetic
effect is obtained from H,'"'+H,'" with S =H2,
V=vS(H„' —H', ), V =2~2 a2 —H2, X=—ff,a„
Y=H, II„, g =~„H,.

If we confine ourselves again to the I;~16 space,
the Zeeman matrix contains only three param-
eters, i.e., &, &„and &„[see Table IX and Eq.
(4.18)], and the diamagnetic part involves r, a, +a„
y„and c, . The relations between them and the

TABLE X. k-linear matrix for the I z& 1"8 subspace. The quantization axis is [001]. K
=K((,~, c}. c', =,"+ iq.

-8g -4&2~

4v 2f



parameters R, q, g„c, c„c,in Ref. 8 are given
by

last tw'o columns. Based on this simplex' picture,
one may call the effect "stress Zeeman effect"
in analogy %ith the magneto-Stark effect."

P. ={T—a, —a,)H',
6. Ek'C'hl"ld fMd 8ffMfS (RES. lode l/)

5. SAvss-AMfhfccd k-1&M'nfl' f'Blvd (R8f. 6)

In ox'del to explR1A the UAUSURl Rspects of the
exciton spectra in uniaxiRlly stressed CuCl, "R

mechanism involving the stx'ain tensor @,& and the
exc1ton %'Rve vectox' K wRS px'oposed by SRkodR RQd

Onodera. e Among various possibilities, they took
t%'o terms px'opox't1onR1 to

(e„K„—e K,) I, +c.p. ,

Both of them correspond to the fourth term of Eq.
(4.5) which has the coefficient d, . This means that
the effect is equivalent to a, certain magnetic field.
It is generally true that a longitudinal exciton state
becomes allo%ed in the a' spectrum of the goigt
configuration (K&H&E„~„,„J. Actually the most
UAU8URl feRtUr6 of the experiment %'Rs the growth
of the longitudinal g, exciton state in certain geom
etx'ies. Thus it mould be interesting to reinterpret
the results from the standpoint of equivalent mag-
netic fields. Let us denote the effective fields

H„' = (e„-e„)K„, etc. (4.28)

TABI.E XI. Orientation of the effective IRgnetic fleM
H and H Tlute signs + and ~~ lndlcate the Faraday and
Voight configurations. E„and E~ are the components of
the electric-field vec or of the incident light with re-
spect to the direction of the uniaxial stress, and (T and x
are the corresponding notations ln the analog/ of a 1Tlag-
netlc fieM. 6 = -2&~zj&~ .

taboo]

tx~oI
arbitl al"p

I &B]
I&ToI

(4.29)

Since K' H"=0, the field H R1%'ays gives the Voigt
configuration. In Table XI, the dix'ections of H'

Rnd H are g1ven fol' R g1ven unlax1al stx'ess Rnd K
direction in the cases of the configurations actually
measured. The obsex'vat1on of the loAgltudlnRl ex-
citon state does correspond to the cases of "Voigt"
configuration in the Table %'ith the sign o in the

A linear splitting of the Z, (1,& I;) excitons in

Cupel was observed in R electric field by Mohler. '0

It is intex'px'eted as the combined effect of Rn elec-
tric field and the exchange interaction: As seen
in Table VIII, the states (lx), ly), lz)} show a linear
splitting through (X, I', Z) =(E„,Z, , E,) It .is ob-
vious that the exchange mixing (Table V) between
(I&) l&), ls)} and (lx)c l&)c, l~)g transfers some
of the linear splitting effect in the former subset
into the latter.

Since (E„E„,Z, ), (E„E„E,E„,Z„E„), and

(&„„&,„,e„,) have the same transformation prop-
erties as (X, I', Z), we can expect similar effects
for the g, excitons undex R Uniaxial stress ox a
(quadrutic) electric field.

A combined effect of E and K was theoretically
studied 1Q the cRse of thle g3 excltons 1n CUCl.
Since the only products appearing in the I'6&I;
subspRce Rx'e the thx'ee components of

K&E,

as seen in Table IX, this is again equivalent to a
certain magnetic field like the one discussed in
Sec. IVE 5. Since the vector K&K is perpendicular
to K, the effective field is in the Voigt configura-
tion. The px'ediction in Ref. I1 about the appear-
ance of the longitudinal and triplet (Para) excitons
just corresponds to the situations of the v and v

magneto-optical spectra, x espectively.

Simple examples of " are given in Table II, but
there are still empty columns in it. If %'e consider
the higher-order effects of the quantities alxeady
included there, we can fill the empty part, and
also find similax effects to the lower-order ones.
By this procedure one may be lead to ne% mixing
schemes, ox' to simpler interpretations of com-
plicated effects as mentioned in Sec. IVE {"mag-
netic-field"-like effect caused by stx'ess ox' elec-
tric field in combination. %'ith the finite wave vec-
tor of the exciton). Therefore it is interesting to
list the transforIQRtlon px'opex't1es of the products
of 81mpler quant1tles. This can be easily done by
the use of Tables I and, II. Here %e show an
example of ho% to classify the products in the case
of stress-induced k-linear effects. All the other
cases can be treated similarly. %e start with
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S =e«+evv+e«(=coo) r

(U, V) =(&3(e„—e,„),2e„—e,„—e„),
(X, Y, Z) = (e„,e„,e„),

(4.30)

For K,
T =E,H„+EyHy+E, Hz,

$, U, V, e ~ ~

(4.33)

(X', Y', Z') =(K„,K„K,).
Since a strain tensor and a wave vector have K,
and K properties, respectively, all the products
are of K type. Then, we simply look for the ex-
pressions of symmetry-adapted products of primed
and unprimed quantities in Table I, and we get the
following 18 linear combinations of the products:

$ =KzE yz +KyCz z +Kzt&y

U = v3 (K,e„—K„e,„);
V = 2KzCgy K~K yz

—KyCz

(P„Q, , R, )

= v3 ((e„,—e„)K„(e„—e„,)K„(e„-e„)K,);

(P„Q„R,)

(4.31)
(X„Yr Zr) ='oo(K.

(X„Y„Z,)

= ((3m„„—e ~)K„(3e„—e„)K„(3e« —e )K,);

(X„Y,, Z, )

In this way we can at once obtain correct forms
of the products which fit to our theory as they
stand.

Instead of repeating the same procedure for all
the combinations of H, E, e, and K, we simply
mention some examples of product quantities which
fill the empty columns of Table II: for K„
T =K„H„+KyH +K, Hz,.

(P, Q, R) (4.32)

V. WURTZITE STRUCTURE

The Cartesian coordinates (x, y, z) for wurtzite
structure are chosen in such a way that z is paral-
lel to the c axis.

A. Bloch band contributions

Corresponding to the six irreducible representa-
tions of the C„single group which is the crystal
point group of wurtzite, we introduce a set of
representative variables for a physical quantity

r, :s [e];
r, : T [l.];
I;: U [(3x' —y')y];

r, : V [(3y'-x')x]..

I;: (X, Y) [x,y];
r. (W, Z) [x' —y', 2xy].

(5. 1)

The transformation properties of each variable are
indicated on the right in the square brackets. Sim-
ple examples of " are given in Table XII. The
product of two ='s are reduced into symmetry
adapted components in Table XIII. The repeated
use of Table XIII gives us all the independent
forms of the products of the operators o„o, and

The invariant forms for the K, and K parts of
the contributions from the conduction and valence
bands are

see Eri. (4.31).
The I and:- dependence of H,„, which is neglected

in this paper, can be similarly constructed with

the aid of Table I.

a,("=Ts,

H",,
' =2ATg„+2ir, (Yg,„—X g„),

H,'"' = [a, +a, P + 2a, l,g, + 2a, (l g, + l g, )]S + &2b, (l,g, —l,g, )T + 2v2 e, (Xl, + Yl, )g, + 2e, (Xg, + Yg, ) l,

+2v2 e, (X(l„l, j+Y(l, l, j)+f [W(l„' —P)+2Z(l, l, }]+v2f [(l,o, —l,g, )W+ (l„g„+l,o„)z],
H', ",' = 2v 2 a, ((l, l, jg, —(l, l, }g„)S + [ b, l, + 2b,g, + 2b, l', g, + 2v 2 b ((l, l,}g„ i (l, l, j g„)]T

+ c,[(l,' —P, )g, —2 (l, l,}g, ] U +d, [(lo —P, )g, + 2 (l, l }o', ] V + v 2 e, (l, Y —l,X ) + 2 (e, + e, P, ) (g, Y —g, X)

+ 4 v 2 e, ((l, l, j Y —(l„l, jX)g, + e,( [(P„—P )g„+2 (l„ l, jg„] Y + [(l„' —P )o„—2 (l„ l, }g„]X)

+2f [(l„' —P)g, Z —2(l, l, jo', W]+2v2 f [((l, l, }g,+(l, l, jg, )W —((l„l, }g,—(l, l,}g,)z].

(5.2)

(5.3)

(5.4)

(5.5)
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TABLE XII. Simple examples of - in C6„symmetry. E: electric field; H: magnetic field;
strain tensor; K: wave vector.

K K,

Kz E E„+E ~8~ ~~+ ~yy

H

r4

K

H+z

HH

2H„H

E„—E

2E/~

pZ

2E

The small Greek and Roman letters are arbitrarily
defined (real) coefficients with and without bars
on them corresponding to the K and K, charac-
ters of ", respectively.

B. Basis functions

more intuitive method is to diagonalize the spin-
orbit interaction (-j o} and an effective stress
energy along the z axis (quasicubic model" }. The
eigenfunctions are given by"

r, (a): y, =dlo)n yl»P-,

The conduction-band functions transform as the
I; irreducible representation. We denote them as
before by

sn(=n, ), sp(=p, ).
In this case, however, the orbital part s may
contain some z character, since both of them be-
long to I;. The valence-band functions consisting
of the products of (x,y, z) and (n, p) can be reduced
into I, +I;+I;. The most general forms of the
symmetry-adapted linear combinations of the spin-
orbitals can be obtained by noting the Kramers
degeneracy and the conservation of the z compo-
nent of the total angular momentum (f, +o,). The

r, (c): y, =-ylo)n-&ll)p,

P~ =&l-1)n+yl0)P;

1;(A}: p, =-l1)n,

e, =l-»p,
where (l 1), l0), l

—1)) are the eigenfunctions of l,
and defined in the same way as in Eq. (4.9}. The
parameters y and & are defined as

y =[2/(2+&')] '
d =&./(2+&')'"

Bo = -3 + 34E/d ~,

TABLE XIII. Multiplication table for the components of irreducible representations. This
table is equivalent to that of coupling coefficients in G. F. Koster, J. O. Dimmock, R. G.
Wheeler, and H. Statz, Properties of Thirty-Turo Point Groups (M.I.T., Cambridge, 1963).

UU' XX'+ YY' WW'+ ZZ'

ST' UV' XY' YX' WZ' —Z W'

SU' TV' XZ'+ YW'

r4 TU' YZ' —XW'

X SX'

SY' —TX'

UZ'

UW'

—VW'

VZ'

XZ ' —YW'

YZ'+ XW'

SZ'

TZ'

—TW'

—VX' XX' —YY'

XY'+ YX'

ZZ' —WW'

WZ'+ ZW'



14 UNIFIED THEORY OF SYMMETRY-BREAKING EFFECTS ON. . . 4475

r, (A):

r, (A):

1;(B):

r, (B):

I;(B):
r, (c):

r, (c):

r, (c):

lx)~ =(C', +C'.)/~2. (~3(),

ly), =i(4, -4, )/~2, (~3n);

l t)„=—i(@,+@,)/W2, (0),

Ii') =(4', -4,)/~2, (0);

l~). =(~, +~,)/~2, (~~y$),

lx), =i(~, -~,)/v2, (~3y0);

lz) =(e, —4,)/v2, (&65/);

lt)s =-i(4, +0,)/v2, (0) ..

lx) =(@',+@,)/~2, (~35&),

lx). =i(~, -~.)/~2, (~»n);

ls), =(+, —4,)/~2, (&6yr.),
li), =i(~, +~,)/W2, (0),

(5.9)

where the quantities on the right in parentheses
are the dipole moment of each state for the light
polarized along (t', qi g) in units of M, (=(slexlx)/
Ws).

where b, E is the energy of the r, (B) state measured
from that of 19(A), and b is the spin-orbit split-
ting of the valence bands in the virtual cubic limit.
Note that y and 6 are normalized, i.e„y +6' =1.
In the limit of strong crystal field as in ZnO, y=0
and & =1, and for the weak crystal field limit,
y =I/v3 and 6 =-v —, , which correspond to the case
of cubic structure.

In terms of the wave functions [Eqs. (5.6) and
(5.7)] we form electron-hole pair states just in
the same way as in Eq. (4.11).

Then, the wave functions with appropriate polar-
ization character are given for the A, B, and C
excitons as follows:

l. Bloch basis

Using the basis (o„P,), we get the matrix for the
conduction-band contributions, H,'" +H",,', as

XT p, (Y+ iX)vS+
g (Y —iX) -P.T

(5.10)

For the valence-band contribution, we define
the following combinations of parameters: for the

K, quantities,

n,' =a, +y'(a, —a, ) —2yba, , n2 =a, +a, +a, ,

a,' =a, +52(a, —a, )+2yba, ,

o., = (y' —5')a, +yb(a, —a, ), (5.11)

e, =ye, —6(e, +e,), e, =be, +y(e, +e,), e, =e, —e, ,

n) =bf, —yf, , n. = yf, —bf-, ,

and for the K quantities,

p, =b, +b, +b~, p2 =6'b2+y'(b, —b2 —b~) —2ybb

p, =y'b, +5'(b, —b, —b, )+2ybb, ,

p, = (y' —5')b, —yb(2b, + b, —b, ),

e, = y(e, + e,) —5 (e, + e,), e, = (e, + e4) +y(e, + e,),

e, =2yb(e, —e, ) —y'e, —6'e2,

e, =2yb(e, —e, ) —6'e, —y'e, ,

e, = (6' —y')(e, —e, ) +yb(e, —e,),

(5.12)

ni= yf, —bf, , q-, =yf, —bf, .

In terms of these newly defined constants, H,'"' and
H'"' are given in Tables XIV and XV, respectively.

C. Matrix representations

Corresponding to the dual character of the in-
variants, the one as the definition of Bloch band
parameters and the other as the partial contribu-
tions to the exciton energies, we give matrices
on both Bloch and exciton bases. n, =r —o.,'. (j =1, 2, 3). (5.13)

2. Excision basis

Using the basis [Eq. (5.9)] we obtain the Tables
XVI and XVG for H,'" +H,'"' and H",,'+H', ",', respec-
tively. In Table XVI we used the notations:

TABLE XIV. Matrix representation of H,."'.

n2S 0 E f(X—z Y) q((W —iZ) ~,(X-zr) q, (W —zZ)

n2S pg(W+ zZ) —Eg(X+ zg 'g2(W+ zZ) —E'g(X+ z Y)

n($
n'S

1

n4S+ ipse T c3(X—i Y)

—E3(X+iY) n4$ —ipgT

n,'S

n&$
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TABLE XV. Matrix repxesentation of H~("~.

P)T -ygU+ i6)V ~({F+iX)

~3(F+ gC)

-PpT

q, (z ~w)

P4T+ jn g8

qg(Z+ jW) &2(F+ jX) q2(Z+ jP)
~2(F- gX)

e4(T+ jX)

-p3T

Usjng 'the WRve fllllc'tloIls [Eq. (5.9)] we cRI1 ex-
pl'ess the excllRnge 'ill'tel'Rctloll [EII. (3.V)] ill teI'nls
of the iwo cormtants j, and j, [Eq. (4.16)]. The
norlvRniShing pRrt Of the IRtrix iS, fOr the bRSiS
func tlons

(5.14)

j(u) =j,+ j, (3II' —1),

j E V, 3j FqV, 3jggV,

j(q)v, 3j,gv,
l (H.c.) j(E)v,

whe~e {t,q, K) are direction cosines of the exciton
wave vector K with respect to the (x, y, g) axes,
Rnd

5 y)
v =3&2~ y& y'

P y5

It is easily shown that EII. (5.14) reduces into

Table VII in the virtual cubic limit (y = I/&3,
S =-v-,') by a simple rearrangement of the basis
functions.

TABLE XVI. Matrix repxesentation of H~~~+ H~~"~.

1~4 I&4 I&'&& lt)~ l~&s ly)s l~&s

n&S 0 0 0

0

0 0

o,'gS 0

n3S ~
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D. Comparison with existing theories

to the B-excitons,

A„~ to the C-excitons,

(5.16)

by arbitrarily choosing the zero of energy.
The fundamental framework of the problem is,

therefore, the exchange matrix, (5.14), plus the
diagonal energies, (5.16). This part corresponds
to Sec. IVE 2 (exchange mixing of spin-orbit part-
ners). In the wurtzite structure also, the exchange
interaction mixes the different exciton series A,
8, and C. One of the direct consequences of this
mixing effect is the stress splitting of these exci-
ton states (see Sec. VD1).

1. Stress-exchange splitting (Ref. 5)

No stress can lift the degeneracy of the I; or I;
band edges each of which forms a Kramers doub-
let, while a linear splitting of I; exciton states
(x and y polarized) can be expected from group
theory for a uniaxial stress perpendicular to the
c axis (I', &&I', contains I', ). This apparent paradox
was solved by introducing an interplay between
stress and exchange interaction. '

If we take K IIc ($ =q =0, j=1) and the uniaxial
stress perpendicular to c (We0, Se0, T =U =V
=X =& =Z =0) corresponding to the experimental
situation, " the relevant matrix is given by

The energy-level scheme without any symmetry
breaking effect is obtained from H,'" +H,'"' with
S =1 and H,„. Table XVI apparently suggests the
existence of a nondiagonal element with the coeffi-
cient n, . Actually the parameters y and & are so
chosen that this nondiagonal term becomes zero.
Thus we ascribe the diagonal energies

to the A-excitons,

J yJ qW ~J~qW

y'J+~A~ y&J- as

l (H.c.) ~'J+~~c

(5.17)

where the "+" and "-"signs are for (Ix)„,Ix)a,
Ix)c} and (Iy)A, Iy)a, Iy)c}, respectively, and

~=&(i, —i, ) 1

ns =n, e„+ n,'(e„„+ e„},
& =~xx —~y&.

(5.18)

(5.19)

(5.20)

Without strain, Eq. (5.17}leads to three doubly
degenerate energies. Each pair includes an x-
and a Y-polarized state. For finite value of W,
they all split linearly, since the sign of the W

terms is different for the x- and p-polarized
states.

Thus the observation of the stress splitting of
the exciton states clearly indicates the importance
of the electron-hole exchange interaction in semi-

conductorss.

2. Wa»e-vector-dependent selection rules (Refs. 2 and 3)
The basis functions !5.9) have vanishing wave

vector. Optically excited states, however, have
finite values of the translational wave vector K.
This small but finite K can act as a perturbation
which mixes the basis states defined for K=0, and
consequently gives rise to additional selection
rules. Some mechanisms of such mixings were
discussed in earlier works. "" Here we derive a
generalized version of such interaction schemes
among the A and B exciton states.

(a) K-linear contribution. Since K, belongs to I;,
interesting effects occur only in the case K&c.
Thus we here choose (K„,K„K,) =(K, 0, 0) in Table
XVII. The mixing matrix for

(Ix) ~ ly) . It') ., It) Ix), ly) ~ Iz) ~ It) }
is given by

0 ipK

J 0 —ipK

0 0 ic, K

y Js +&Aa

—iCK

&~+&~a

if,K
-ie K1

-ieP'

(5.21)

(H.c.) 26 J+h„~ 0

AB
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TABLE XVII. Matrix representation of H~ +H~ on the exciton basis. The contribution of H~ is written in the lower
left corner to avoid the congestion of symbols. The complete matrix is obtained by adding the complex conjugates of all
the elements to their opposite corners.

l~)~ ly)~ lt')~ lt)A Ix)B Iy)B Iz), It), l~)c lv) c I ~)c I t) c

—X
Y)

—id) V

2Cg U

X —Y

—X
2E)

-Y
—Y

ip
Y

—ip2T —X Yif'
0 —Y —X

Y 0 2P2T

—X iXT 0

2agS

iP4T

—iP4T X
i&5

—iagS

0

0 ip3T

iAT 0

where

J~ =3(j,+2j,). (5.22)

From this scheme we can easily see the possi-
bility of the following mixings: (i) &,~(A) and &„(B),
(L:longitudinal); (ii) I;(A) and I;(B); (iii) I;(A}
and I;(A); (iv) 1;r(B) and I;(B), I;~(B) and I;(B),
(T:transverse).

Case (i) was suggested by Hopfield and Thomas, '
and case (iv) was treated by Mahan and Hopfield. '
Cases (ii} and (iii) may be relevant to the newly
found I;(A) magnetoluminescence line in the con-
figuration E Lc and H Ilc." It should be noted that
the mixings (i) and (ii) occur with the same mag-
nitude. The exchange mixing also can help the
appearance of &,(A) in the E &c configuration.

The A-C mixing has just the same form as
(5.21) except for the different numerical coeffi-
cients.

(b) K -contribution. We omit here the terms
proportional to K, and K'„+K'„because they simply
shift the energies of the whole A (B) states by an
equal amount. Then, the only nonvanishing part
of the matrix is the nondiagonal block between the
A and B states. In terms of the basis functions
ordered in the same way as in Eq. (5.21) this non-
diagonal block matrix (in the upper right corner)
is given by

f -K„K,
e(

/

), K,K, 2K' Ky Ky K&

(5.23)

For K J.c, mixing between I;(A) and I;(B) can be
expected. This leads to the appearance of I;(A)
in the E Ilc configuration. '

Since the transformation properties of the strain
tensor e, , are the same as those of K, K&, one can
use Eq. (5.23) as the general mixing scheme due
to strain by replacing K, K,. with e„..

Finally we summarize the selection rules for
the I;(A) exciton.

(i) E Ilc. In this case, F, (A) must be mixed with
some I; states in order to be observable. Since
I;&& I; =I„ the perturbation must have I; sym-
metry, which is the case for (A~ —K'„2K,K„) and

(exx —exxI 2&xX).

(ii) E &c. Here we need the mixing of the I;(A)
with some I, states. The relation I;&&I; = I, +I;+I;
requires mechanisms which have the symmetry
I„ I4, or I",. Examples of such perturbations are
(K„,K,), (K,K„K,K,), and (e„,e„)for I;, stress-
induced K-linear terms

[2K„e„,+K, (e„„—e„), 2K,e„,—K,(e„—e,„)J (5.24}

for I; and I;.



UNIFIED THEORY OF SYMMETRY-BREAKING EFFECTS ON. . 4479

E. Discussion

x =(x-y)/v2,

y =(x+ y —2z}/W6,

z =(x+y+Z)/v3 .
(5.26}

1. Comparison between wurtzite and &111&-stressed

zine-blende structures

According to the well-known quasicubic model, "
it might seem that a wurtzite structure could be
approximated by a (111)-stressed zinc-biende
structure with respect to not only the valence-band
energies at k =0 but also other quantities such as
mass parameters„k-linear terms, the effects of
external perturbations, etc. Since the symmetries
of these two systems are different from each other,
this kind of generalization is not always allowed
group theoretically. Therefore it would be inter-
esting to give a criterion about what is allowed and
what is forbidden. Of course, there still remains
a problem of quantitative accuracy even in the
allowed case of such generalization just as in the
original model. This is related to the size of
the subspace of wave functions, but we do not dis-
cuss it any further. Instead, we concentrate on
the above-mentioned criterion.

When a zinc-blende structure is uniaxially dis-
torted along a (111)axis, the crystal point group
at k =0 is C,„which is a subgroup of C,„(wurtzite).
The compatibility relation between C,„—C,„—T„ is
given in Table XVIII. Because of the lower sym-
metry, the effective Hamiltonian in the case of C,„
symmetry for a given " ean contain more in-
variant terms than that of C,„case. This will be
explicitly shown in the following example.

The original quasicubic Hamiltonian" which
leads to the valence-band energies at & =0 can be
written

H„=A„1 o+P, ((l-, l-, )+(l , l„)+(l-„-l-y)), (5.25}

where ~~ and P, are the parameters representing
spin-orbit and noncubic crystal-field effects, re-
spectiveiy, and the coordinates (x, y, Z) are de-
fined along the three principal axes of cubic struc-
ture and related with (x, y, z) as

In terms of (x, y, z), Eq. (5.25) can be rewritten

H„=X„I o+~I, (2P, —l,' —P, ) (5.27)

Both terms are clearly invariant not only in C,„
but also in C,„. Now we try to extend the above
procedure to the k dependence of the valence-band
energies. I.et us consider the kinetic energy

H~, Lk'——+ (M —L)(k„—' ll +k', 12—+kr21—', )

—2N(k k, (l,—lr—)+ c—.p. ) (5.28)

in the cubic structure, where I, M, and N are
well-known inverse mass parameters. " Here we
neglect the spin-dependent kinetic-energy terms
which can in principle be expected from the gen-
eral expression (4.4). On the other hand, the cor-
responding energy in C,„ is given by

H ~ „=A, k2 + A, (k2 + k'„) + B,k2~P, + B,(k„' + k', ) l',

+ C,[(k,' —k', ) (P„—P ) + 4k„k, (l„l„)]

+D, (k„k,(l, 1,) +k~ k, (l, l, }). (5.29)

Using the transformation (5.26) we can put most
of Eq. (5.28) into the form of Eq. (5.29) where

A& = g (4L —M+ 2N), A2 =
~ (4L —M —N),

B, =-N, B2 =2N, (5.30)

C, =-e (M —L —2N), D, =3(2M —2L —N),

but there remain the following terms which are
invariant in C,„but not in C,„."

(
—', &2N)[2k„k, (l„l, ) + (k'„—k', )(l, I,)

+2k„k,(l„ l,}+k, k, (l„' —P,)] . (5.31)

g+zH ' I+g P.zH' &

and the Stark energy

q (Z„(l 1,) + E,(1, l,) +E,( l, l „})

Although the above procedure leads to partially
erroneous results, the relation (5.30) may be used
to guess the approximate values of the valence-
band parameters in C,„from those in T~.

There are, however, examples which do not
lead to noninvariant terms. The Zeeman energy
of the form

r, , r4

r„r,
r, , r4

r„r4, r,

TABLE XVIII. Compatibility relation.
are such examples. If we take the uniaxial stress
along (111), one of the stress-induced k-linear
terms [Eq. (4.29}]also belongs to this category.

Thus we are lead to the following conclusion:
The generalization of the quasicubic model pro-
duces both invariant and noninvariant terms in
wurtzite structure„The noninvariant terms can
be checked by comparing them with the general
expression of invariants in C,„, i.e., Eqs. (5.2)-
(5.5). The merit of this generalization is that it
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provides the relationships between some of the
(independent) parameters in Kqs. (5.2)-(5.5).

e.g. , 2s„2P, . . . , happen to couple very strongly
to the 12-fold 1s exciton states considered here.

2. Composite effects 8. Line-shape analysis

Higher-order effects of the symmetry-breaking
entities listed in Table XII can be easily discussed
in terms of Tables XII and XIII. Here we take two
examples: (i) H-induced k-linear term and (ii)
stress-induced k-linear term.

According to Table XIII, the products of K and

H can be decomposed as

S =K„H,, -K 0„, T, =K„H„+K 0,
T =K, H„(X„Y,) = (K,H, -K,H„),

(X2, Y2) =(K H„-K„H,),

(W, Z) =(K„H, +K, H„,K„H, K„H„—).

(5.32}

The above S component was used as an effective
electric field along the c axis by Thomas and
Hopfield" in the consideration of the magneto-
Stark effect of excitons with finite K. The (X, Y')

components can be also regarded as such type of
"Stark" field.

Among the 18 stress-1nduced k-llnea1 terms, we
list here only the products which fill the empty
columns in Table XII:

U =2K„~„+K,(e„,—e,„),
V =2K,e„,—K„(e„„—c„),
(W, Z) =(K„e„, K,e„„K-„e„+Kp„,).

(5.33)

In a similar way, we can construct the correct
forms of the higher-order products which can be
used directly in Tables XVI and XVII.

VI. CONCLUDING REMARKS

A. Validity of the theory

Although we have assumed the pure atomic P
character of the orbital parts of the valence elec-
t on states at the beginning of the formulation, it
is possible to have orbital admixture of d-charac-
ter such as

IP.)+~Id,.), «c.,

since it only changes the values of matrix elements
without any alteration of the symmetry properties.
Therefore the theory can also be applied to the
cases where one should expect a considerable
amount of P-d mixing.

As long as we treat the coefficients of the effec-
tive Hamiltonian as renormalized constants, the
matrix itself is always correct. One should, how-
ever, expect the limit of the applicability of this
formalism, when some of the other exciton states,

An important development to be expected in the
future is to establish a practical way of line-shape
analysis of reflectance spectra. ~&Except for spe-
cial cases as in Ref. 2, absorption spectroscopy
is not possible with high accuracy. ) Since we have
to deal with many oscil. lators lying very closely
to each other and interacting through various mech-
anisms, we cannot easily estimate the resonance
energies and oscillator strengths of the oscillators
simply from the appearance of reflectance spectra.
Thus we cannot avoid line-shape analysis in order
to obtain correct informations from experiments.
This is a very important step in carrying out the
analysis of measurements in terms of the general
theory developed here.

C. Meaning of the parameters

When we analyze measurements in terms of this
theory, we obtain, the values of the effective pa-
rameters (as defined as the coefficients of in-
variants in the effective Hamiltonian} of a given
exciton problem, for example, exciton masses,
g-values, deformation potential constants, and so
on. These parameters are related with more
fundamental material constants which are defined
with respect to Bloch bands. As mentioned in Sec.
IVE 4, this relation wm calculated in the case of
the magneto-optical problem of the ISXI; excit, ons

by means of second-order perturbation theory. '
Since the contribution of the exciton excited states
proved to be important in this case," it is expected
to be appreciable also in some of the other cases.
But there is no other example of such a detailed
calculation in wurtzite structure and for other sym-
metry-breaking effects. It is desirable to have
such relationships in various cases. It is one of
the most important future problems of this theory.
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APPENDIX: MIXING SCHEME DUE TO E-LINEAR TERM

In Ref. 4 this effect is considered in connection
with magneto-optical studies. Therefore the rep-
resentation of the mixing scheme for various quan-
tization. axes is desirable. Here we reproduce the
cases of the other two principal crystal axes,
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TABLE XIX. The k-linear matrix for the [111]quantization axis.

~1, 0) ~l, —1)

ivy( 0 i@6(

~2, 2) )2, 1) 12,0) )2, -1) 12, -2) li, 1)

0 -i&3(
0 i&2~ 0 -&6 & 0

0 i~) 2(

(H.c.)

TABLE XX. The A-linear matrix for the [110]quantization axis.

l2, 2) l2, 1) 12, 0) 12, —1) 12, —2) Il, 1) I1,0) Il, —1)

(H.c.)

&MSGR

&2~ i.~27 &

0

0

i~27 g

-i&3&

i&6) 6&3( iy 6 g

[111]and [110]. We omit the diagonal block for
{~111),~1, 0)1~1,-I)j, since it is always zero.

For the [111]axis, Eq. (4.24) leads to the matrix
in Table XIX, where Kr and K$ are the [111]and
[110] components of K. respectively, and the third
component is assumed to be zero.

For the [110] axis, Hr can be expressed as in
Table XX, where K& and K( are defined as the
[110]and [110] components of K, respectively,
and the third component is assumed to be zero.

From these matrices, we see the following

peculiar aspects: (i) There is a mixing between
the J=1 and 2 states. (ii) This mixing is very
selective between the components of the ~&, M~)
states, depending on the quantization axis and the
direction of K. (iii) There is a further splitting of
the exciton states. "

Consequently, (a) there occurs a relaxation of
the optical selection rules, namely, the 4 =2 states
become allowed without any external perturbation,
and (b) the allowed components can be selectively
observed by splitting the states in a magnetic field.
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