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Photoemission from Cu valence bands using 50-125-eV synchrotron radiation*
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Photoemission spectra of the 3d valence band of polycrystalline Cu were studied using synchrotron radiation
of energy 50 & hv & 175 eV. The detailed shape of the spectrum was found to change distinctly with photon
energy. The observed energy dependence was compared to calculated photoemission energy distributions
{PED's) assuming a direct transition model. PHD's obtained with this model predicted the experimental
intensity distribution quite well for hv & 70 eV and hv & 120 eV but failed in the region hv = 90 eV, Fair
agreement between experiment and theory was obtained when momentum broadening in the final state was
included. The largest broadening was required around hv = 90 eV. A minimum in the photoelectron mean free
path at this energy is discussed as a possible source of broadening. The observed changes in spectral shape for
50 & hv & 70 eV are attributed to direct transitions; the changes are found to arise mainly from the angular

part of the transition matrix element.

I. INTRODUCTION

The photoemission energy distribution (PED)
mhich is obtained by exciting valence electrons in
solids depends mainly on three quantities: the
initial density of states, the photoexcitation matrix
element, and the final density of states. The lat-
ter tmo define the photoemission cross section. In
the past tmo basic types of cross-section effects
have been reported in photoemission spectroscopy
of solids. In x-ray photoemission spectroscopy
(XPS), frequency-dependent variations in photo-
emission intensity from s-, p-, d-, and f-de-
rived valence electrons have been observed. ' They
arise from different radial matrix elements for
the respective transitions. ' In ultraviolet photo-
emission spectroscopy (UPS) variations with pho-
ton energy in the PED's obtained by exciting val-
ence electrons are usuaQy discussed in terms of
final-state effects mhich are responsible for the
observed line positions and transition-matrix-
element modulations that determine the line in-
tensities. '

The photoemission studies on Cu (Sd) valence
electrons reported here are in a sense a simple
extension of the UPS studies mentioned above.
However, at the photon energies (50-i V5 eV) used
for our angle integrated experiments on polycrys-
talline samples, several nem phenomena arise. In
raising the photon energy the number of accessible
final states increases. ' While in the UPS regime
transitions occur only at special k points of the
Brillouin zone (BZ) at higher photon energies a
considerably larger part of the zone is sampled.
Therefore the positions of the peaks mhich con-
stitute the PED predominantly reflect the initial
density-of-states structure and are expected to
remain essentially unshifted. The peak intensities

on the other hand may change significantly mith
photon energy because of both the angular and ra-
dial parts of the transition matrix element. The
study of these intensity changes mith frequency is
the main purpose of the present paper.

In contrast to the situation that prevails in the
UPS regime, one other point is of considerable
interest at higher photon energies. The photoelec-
tron mean free path of most materials exhibits a
broad minimum around 100 eV.' As discussed by
Feibelman and Eastman, ' such inelastic damping
mhlch 1estrlcts the source legion of the photocur-
rent near the surface results in an uncertainty or
spread of the final-state momentum component
perpendicular to the surface.

In the folloming Secs. IIA and IIB me describe
the experimental arrangement and results, re-
spectively. In Sec. IIIA me present a simple modei
to calculate the Cu sd PED's under the assumption
of direct optical transitions. In Sec. IIIB me shorn

horn to include momentum broadening in the final
state in a simple stochastic fashion. We discuss
the results of such calculations in Secs. IVA and
IVB. In the concluding Sec. V me consider some
further problems which have been stimulated by
the present investigation.

II. EXPERIMENT

A. Experimental arrangement

Experiments mere performed using synchrotron
radiation from the storage ring SPEAR at the
Stanford Linear Accelerator (SLAC). The ultra-
high vacuum grazing incidence monochromator has
been described in detail elsemhere. ' Photoelec-
tx ons mere detected by a double pass, electrostatic
deflection cylindrical mirror analyzer operated in
the retarding mode (constant resolution 0.35 eV).'
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Samples were prepared byin situ evaporation of
Cu froni a tungsten filament onto a stainless-steel
substrate. The maximum pressure reached during
evaporation was 2~ 10 ' Torr. Experiments were
carried out at -1x 10 ' Torr.

8. Experimental results

Experimental results for Cu are displayed in
Fig. 1. Common features of all spectra are the
three peaks at -2.5-, -3.6-, and -4.7-eV binding
energy relative to the Fermi level. The most dis-
t.inct changes in the shape of the VB spectra occur
between 50 and 70 eV. %bile the peak positions
remain essentially unshifted the intensity of the
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FIG. 2. (a) X-ray photoemission spectrum (AIK~
radiation) of the Cu valence band recorded on a He~vt. ett-
Packard spectrometer. The spectrum has been corrected
for its inelastic background. (b) The Cu 3d density of
states [Eq. (C1)], using Smith*s (Ref. 11) parameters.
The dashed curve represents the original density of
states. The solid curve is a convolution with a 0.5-eV
full-width-at-ha] f-maximum Gaussian.

60 eV

peak at 3.5-eV binding energy increases with pho-
ton energy. Above 70 eV this trend continues in a
less spectacular way. At the highest photon ener-
gies the spectra seem to approach the PED ob-
served with Al Kn radiation' [compare Fig. 2(a)].

III. THEORY

A. Direct transition model

C

90 eV

C
110 eV

120 eV

150 eV

For the calculation of the PED's we have em-
ployed the familiar three-step model of photo-
emission. ' %e assume independent excitation,
transport, and escape processes. The excitation
process from an initial-state j to a final-state f at
a general point k of the Brillouin zone is described
by a matrix element f»(k). The matrix element is
calculated in the dipole velocity approximation
under the assumption of crystal momentum con-
servation during the excitation process (cf. Ap-
pendix A). Transport of the excited photoelectron
to the surface is described by a term D&(K) which
is proportional to the group velocity of the elec-
tron (cf. Appendix 8). In our case of angle-inte-
grated photoemission with final-state ene rgies
much larger than the initial-state bandwidth a
surface transmission term may be neglected. The
PED is then given by'

175 eV
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FIG. 1. Photoemission spectra of the M valence band
of Cu for a series of photon energies. The data have
been corrected for the decay in photon flux from the syn-
chrotron but no background subtraction or deconvolution
has been carried out.

&& 5(E&(k) -Z, (k) —keg)

x 5(E-E)(k)) .

Details of the k integration are discussed in Ap-
pendix C. The term ~tf, (k)~'5+&(k) -Z&(k) —K&u) in

Eq. (I) corresponds to the photoemission cross
section. Let us discuss it first.

Evaluation of the cross-section term requires
the knowledge of initial- and final-state energies
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and wave functions. At excitation energies larger
than 50 eV the description of the final Bloch state
is a nontrivial problem, as band-structure calcu-
lations generally do not exist at such high ener-
gies. ' We shall therefore describe our final state
by a free-electron model, for which the eigen-
values in the reduced zone scheme are given by"

Z~(k) =(@'/2m)Ik+GI' (2)

Here k is the crystal momentum within the first
BZ and G is a reciprocal-lattice vector. The
"zero" of our free-electron energy bands was ad-
justed to the bottom of the 4s —type bands obtained
from a tight-binding calculation described below.
The final-state wave function is taken to be an
orthogonalized plane wave (OPW), also discussed
in more detail below and in Appendix A. Smith's"
parametrization of the linear-combination-of-
atomic-orbital (LCAO) interpolation scheme of
Hodges, Ehrenreich, and Lang" was adopted to
yield the initial-state energies Z, (k) and the coef-
ficients a' (k) for the corresponding wave functions"

( j) =N ' ' Q e' '
& a' (k)D (r —R, ). (3)

L, m

Here D (r) =R~(r)d (8„,Q, ) are atomic d wave func-
tions. The real angular functions d (8, P) are tab-
ulated in Table I of Ref. 13. The radial parts Z, (r)
in the form of Slater orbitals were taken from Ref.
14. Equation (3) is the d projection of the total
LCAO wave function. For our calculation the s
part of the initial-state wave function has been
neglected because its transition matrix element is
relatively small. The sum in Eq. (3) extends over
the five d functions and neighbor positions
R, in the fcc lattice. Assuming an QPW final state
the matrix element tz, (k) =(f (A ~

p~ j) may be evalu-
ated as (Appendix A)

'2

lt„lBl'-c* Z E '. lklX (ic.iv) g&(ilM. .
G m

(4) represents the direct transition requirement
of momentum conservation. For polycrystalline
samples effects of light polarization may be neg-
lected in evaluating Eq. (4)."

B. Momentum broadening in the final state

The direct-transition model presented above may
easily be extended to include momentum broaden-
ing in the final state. While the physical reasons
for such an extension are discussed in more detail
below we will at this point present a simple sto-
chastic way to include momentum broadening in the
calculation. The idea of momentum broadening is
to smear only the direction of the final-state mo-
mentum vector q (i.e. , the angles P, and 8,). The
absolute value ~q~, which also defines the final-
state energy, is conserved. We employ the same
equations as for the direct-transition case, except
that we are less restrictive in the description of
the final state. For a given free-electron final
state k+ G we allow all final states with wave vec-
tors p and energy Z&(k) =(h'/2m)~p~' which satisfy
(k+G) ——,

' Z &p & (k+G) +-,' Z, and the energy con-
serving b function b@(k) -Z, (k) —Kr} in Eq. (1).
Since our calculations apply for a polycrystalline
sample we assume all directions (k+G); (f =x, y, z)
to be equally broadened where b, ; = ~k+ 6(B/100.
The broadening parameter 8 is chosen to minimize
the difference between experimental and calculated
PED's. The effect of the broadening factor B is to
create more possible final states at a given k point.
While all alloued final states are required to have
the same energy Z& (k) they are, however, charac-
terized by different momentum vectors p. Except
for substituting Z&(k) for Z&(k) in Eq. (1) and p for
for k+G in Eq. (4} the momentum-broadening and
direct-transition calculations are identical.

IV. RESULTS AND DISCUSSION

A. D&rect transit&ons

x b(k+G —q). (4)
Here C is a normalization constant for the OPW
[Eq. (A2)], G is a reciprocal-lattice vector, A is
the vector potential, and q = k+ G is the wave vec-
tor of the photoelectron. The sum over n involves
all wave functions of occupied atomic states P„(r)
for which the transition matrix element M „
= (D (r) ~V~P„(r)) (compare Appendix A) does not
vanish. In our case of photoemission from 3d
states only the atomic 2P and 3P functions need to
be considered. D„(q) =f~(q)d (8„$,) and P„(q)
=f~(q)p„(6„$,) are Fourier transforms of the atom-
ic d and P wave functions D (r) and P„(r), respec-
tively (Appendix A). The functions P„(6,P) are
listed in Table III of Ref. 13. The 5 function in Eq.

Results of the calculation assuming direct trans-
itions (compare Appendix C) are shown in Fig. 3(a).
The calculation predicts essentially constant peak
positions; i.e. , the three-peak structure mentioned
earlier, over the entire energy range, in complete
agreement with experiment. When compared to the
experimental PED's in Fig. 3{b) {which have been
corrected for inelastic background) reasonable
agreement in peak intensities exists for hv& 70 eV
and hv~ 120 eV. The observed peak intensities are
not reproduced well around hv =90 eV.

It is interesting to explore the origin of the cal-
culated changes in peak intensities. At a general
k point the final state of an allowed direct transi-
tion [i.e. , Zz(k) =Z, (k}+8+] is characterized by a
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FIG. 3. (a) PED calculated for Cu 3d assuming 0 con-
servation {direct transitions). (b) Experimental results
for Cu. The original data shown in Fig. 1 have been cor-
rected for their inelastic background. (c) PED calcula-
tion for Cu assuming k broadening in the final state. The
broadening factor 8 is discussed in the text.

reciprocal lattice vector G [compare Eq. (2)]. Be-
cause of the 6 function in Eq. (4) the direction of G
also fixes the direction of q=k+ G, i.e. , the direc-
tion along which the photoelectron is allowed to
leave. " The direction of q enters through the angu-
lar terms of the Fourier integrals D (q) and P„(q)
in Eq. (4) and it is this angular dependence which
largely determines it&&(k)i'. This is especially
true for Cu since the 3d wave function does not
have a radial node. " Figure 4 shows a plot of the
angle-averaged radial dipole matrix element
squared [compare Eq. (A16)] versus the kinetic
energy of the photoelectron. It is seen that the
energy dependence of the radial part of Eq. (4) is

10
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FIG. 4. Square of the radial dipole matrix element

([t~, ) ) for Cu 3d as a function of the kinetic energy of
the photoelectron f.Eq. (A16)]. PW means plane wave;
OPW means orthogonalized-plane-wave final state. We
have taken+ ia'(k)) =1 in Eq. (A16).

FIG. 5. Calculated PED for Cu 3d at hv =50 and
90 eV according to Eq. (1). The solid lines were calcu-
lated with the matrix elements given by Eq. (4). The
dashed lines were calculated with an angle integrated
(or essentially constant) matrix element given by Eq.
(A16). (a) PED 's convoluted with a 0.5-eV full-width-at-
half-maximum Gaussian. {b) Unconvoluted PED's.

negligible over the width (-3 eV) of the 3d valence
band. Thus, only the angular part of the transition
matrix element can cause changes in relative peak
intensities within the Cu valence band. The differ-
ences in peak intensities with photon energy is then
easily understood in our model. At different photon
energies the final states at a given k point will be
characterized by different G vectors, leading to
different angular matrix elements.

The effect of the angular as compared to the
radial matrix element is demonstrated in Fig. 5.
Here a calculation with an angle integrated, or
because of the reasons given above essentially
constant matrix elements (it&, ~') (dashed curve),
is compared with a calculation including the total
matrix element it&, i' (solid curve) for hv = 50 eV
and Av =90 eV. The former calculation yields
similar results at both photon energies while the
latter shows strong modulation effects. The dif-
ference in the angle integrated curves at hv = 50 eV
and hv =90 eV is a consequence only of final-state
effects, which arise through the energy conserving
function 6(E&(k) E, (k) —I&a) in Eq. (1).-

It is interesting to note the spectral variations
implied by our model at higher photon energies.
As thephotonenergy is raised the number of avail-
able final states increases. In the limit of large
photon energy this causes the PED's to resemble
the initial-state band structure shown in Fig. 2(b).
In the high-photon-energy limit, modulation effects
due to the transition matrix element are also ex-
pected to be small, because the various allowed
final states result in an effective angular integra-
tion. At this point we note that Nemoshkalenko
et al. ' included angle-integrated matrix elements
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to account fox' the discrepancy between the mea-
sured Cu XPS valence-band spectrum and the cal-
culated density of states. They claimed that this
discrepancy arises because electrons with e sym-
metry have a higher transition probability than
those with t,~ symmetry. Our exyression for the
angle-integrated matrix element [compare Eq.
(A16)] is in disagreement with their result. Fur-
thermore, Eq (A. 16) reveals that for a pofycrys-
talBne sample the e~ and t,~ components of the

density of states cannot be distinguished froID one
another. However, such R sepa, ration is possible
in angle-resolved photoemission from single cFps-
Sgls, which has been reported for the cases of Ag
Rnd Au using Al E~ radiation. "

B. Momentum broadening in the final state

In Fig. 3(c) we present the results of a calcula-

tionn

in w hic h momentum broadening in the final
state has been included. %'6 have chosen the re-
spective broadening factors listed in Fig. 3(c) to
achieve optimum agreement between the calculated
and experimental [Fig. 3(b)] PED's. Except for he
= 120 6V all calculated curves were found to be
quite sensitive to the choice of B, a finding which
is demonstrated in more detail in Fig. 6. The
calculated PED's including k broadening in the final
state [Fig. 3(c)] are found to be in good agree-
ment with the experimental spectra shown in Fig.
3(b}, except for the slightly too pronounced peak
structure«However, this dlffex'ence Rrlses en-
tirely from the initial-state band structure rather
than from cross-section effects. This is confirmed
by Fig. 2(b) where the Cu 3d density of states [com-
pare Appendix C, Eq. (Cl}] is compared to the den-
sity of states measured with Al Ko. radiation [Fig.
2(a)]. Note that the peak structure is too pro-
nounced genex'Rlly RQd 1Q particular the middle
peak 18 too h1. gh.

The success of our calculation, which includes

hv= 5O eV
—8= 25
"8= IO
—8- 5—8- 0

momentum broadening in the final state in de-
scribing the experimental PED's is apparent. Its
description of the experimental spectra is con-
siderably better than that obtained by the pure
direct-transition model. The fundamental differ-
ence between the two theoretical models lies in the
descriytion of the final state. To some extent the
momentum broadening calculation covers up in-
RdequRcles ln the descrlptloQ of the final stRte. It
may be argued that the direct-transition model
does not reproduce the experimental spectra very
well because of a poor description of the final
state. This is indeed a problem Since mixing of
the various free-electron final states by the crys-
tal potential has been ignored. The inclusion of
momentum broadening somewhat simulates these
effects. A direct-transition calculation of the kind
presented here is not a stringent test because we
are dealing with angle-integrated photoemission
from a polycrystalline sample. In this case the
whole BZ is sampled because all allowed transi-
tions are also detected.

Despite the simplicity of the final-state descrip-
tion employed in our direct-transition calculation
it is nevertheless very interesting to explore a
possible physical reason for momentum broadening
in the final state. As has been discussed in detail
by Feibelman and Eastman' and recently by Grob-
man, Eastman, and Freeouf" and Feuerbacher and
%11118~ momentum broRdenlng ln the flQal stRte
may arise from a minimum in the photoelectron
mean free path. Such R minimum is indeed known
to occur in the energy range studied in the present
investigation. Although no formal quantitative re-
lationship between our stochastic broadening fac-
tors B and the photoelectron mean free path has
been established one would qualitatively expect the
9 values to be largest at the photon energy where
the escape depth is shortest. The magnitude of the
broadening factors in Fig. 3(c) indicate that this
occurs around hv = 90eV (or a kinetic energy outside
the crystal of - 62 eV), which agrees remarkably well
with the minimum of the mean free path versus
energy curve in Ref. 3. It is interesting that in the
energy range which is most highly surface sensi-
tive the PED's resemble the one-electron density
of states of the bulk. Final-state momentum
broadening thus tends to weaken angular matrix-
element effects in photoemission. This is also
clearly revealed by the model calculation in Fig.
6.

FIG. 6. Calculated PED for Cu 3d at A&=50 eV as a
function of momentum broadening in the final state (B).
(a) PED's convoluted with a 0.5-eV full-vridth-at-half-
maximum Gaussian. (b) Unconvoluted PED's.

V. CONCLUSION

The experiments and calculations presented here
mRy be x'egRrded Rs R step towRx'd undex'stRndlng
the influence of cross-section Rnd sux'fRce effects
which arise in the transition region between UPS
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and XPS. An extension of such studies to other
systems, in particular to 4d and 5d metals, "
seems to be very promising. Angle-resolved
photoemission from single crystals in the soft x-
ray range is another interesting problem which
might help to clarify the role of cross-section andj
versus surface effects. Finally, we hope that cal-
culations which treat photoemission as a scattering
problem" may be stimulated by the present inves-
tigation. Experimental and theoretical investiga-
tions of this kind seem to be most important in
contributing to a quantitative understanding of the
photoemission process Per se in solids.

If) =c(l ~w& -P (~„) &)law&)l)'„) &&),
n

where

-Z/2
C= PW PW — P„r PW

n

(A1)

(A2)

As has been discussed in Sec. IIIA, the sum over
n involves the a,tomic P functions only. Following
Gadzuk, " the matrix element tp, (k) may now be
readily evaluated in the dipole velocity approxima-
tion (p= NV) to y-ield Eq. (4).

The evaluation of the Fourier transforms D (q}
and P„(q) and the matrix element M „which occur
in Eq. (4) should be discussed in more detail. The
atomic 4 function has the general form

D„(r) =R,(r)d (8„,4)„) . (A3)

For Cu (3d) the radial part has the general Slater
form

Rp(r) =ar e

The atomic P functions are

P (r) =R (r)P (6„,4)„) .

(A4)

(A5)

The radial part of the 2P and 3P functions can be
written

Rp(r) =ere &" +dr'e '" . (A6)

For our calculations the coefficients for the radial
parts of the P and d wave functions were taken
from Ref. 14. The Fourier transform of the
atomic d function (A3) is

APPENDIX A: DIPOLE MATRIX ELEMENTS

In evaluating the dipole matrix element tpp(k)
= (f IA ~ pl j), we follow Gadzuk" except that we as-
sume an OPW instead of a plane-wave (PW) final
state. The initial state

I j) is given by Eq. (3). The
OPW final state is

where

f,(q) = -4v r'j, (qr)R, (r) dr . (A9)

For the atomic P functions the Fourier transform
is

P (q) = d're ')'P (r) (A10)

where

= f, (q)u. (6„y,), (Al 1)

fp(q) = 4vi-r'j, (qr)Rp(r)dr . (A12}

The functions j,(qr) in Eq. (A9) and (A12} are
spherical Bessel functions. '4

The matrix element

M.„=&D.(.) l~ IP„(-.)) (A13)

may be separated into an angular and radial part
according to

(A14)M~n = L~n&~

All nonvanishing components of L „are listed in
Table I. The radial integral h„p is given by

h. = &R.( )I———IR ( )} (A15)

+4fp(q)fp(q) qt) pp'tg Ia'. (k) I'.

(A16)

From Eq. (A16) it is seen that for the angle inte-
grated case the matrix element separates into an
atomic part given by the wavy brackets and a. wave-
vector-dependent "band-structure" part given by
the sum. This latter part is exactly the total d
projection of the density of states.

APPENDIX B: TRANSPORT TERM

In evaluating the transport term we have a.s-
sumed that the inelastic mean free path is much
less than the photon absorption depth. The trans-
port factor for excited electrons is then given by'

Df(k)- [s q, Ep(k)]7(Ei), (»)

and its evaluation is straightforward.
Finally, the result for the angle integrated quan-

tity (Itf, (k) I') should be given. A lengthy but rela-
tively easy calculation neglecting effects of light
polarization" yields

& lt„(k}I'& - c'&5[f,(q)]'q'+2 [fp(q)]' I ',p

)& )c fd ".D ))-''.
=fp(q)d (6„4,),

(A7)

(A8)

where s is a unit vector normal to the surface and
7(Ep) is the inelastic scattering lifetime in the
"random-k" or "phase-space" approximation. "
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TABLE I. Momentum matrix elements between d and p orbitals.

(,d, IL„jp,& =1/v 5

«, I .Ip,l =I/~5

(dq)& )p|) =-1/v15

(d)j~y jp(/ =1/W5

&d, j~, jpy =1/W5

«, l~, Ip,l =-I/~5

(d, ic., ~p,l =-i/Wi5

~d, j~. jP,) =1/W5

(d, jL, jp,) =1/W5

&d, g,.ipse =2/vi5

Here we have defined d& =d», d2=dy~, ds=d„»,
P3 =

P/f: ~

d4=dx2 y2~ d5=d382 „2, and pg=pp, p2=py,

Assuming the lifetime v(E&) to be a slowly varying
function of the electron energy and taking the free-
electron value for the group velocity we can ap-
proximate D&(k) for a polycrystalline sample by

(a2)

Since the photon energies used in our study are
much larger than the width of the d band the effect
of the transport term (B2) on the calculated PED's
[Eq. (1)] is very small.

APPENDIX C: CALCULATION OF THE PED'S

The PED's were calculated on a mesh of 308
points in the ~ of the BZ defined by k, ~ k ~k, ~ 0.
Calculations carried out at a larger number of
points ((I'729) indicated that a 308 point mesh was
sufficient. In evaluating Eq. (1) the following steps
were taken. At a given k point all initial [E,(k)]
and final [Ez(k)] energies were calculated The e. n-
ergy conserving 8 function in Eq. (1) was treated
by demanding that Ez(k) -E&(k) —ha& W. We chose
W=O. QI E&(k) but it was found that the calculated
PHD's were insensitive to the actual value of W.
A. similar observation was made by Janak et al."
who found their calculations to be insensitive to

broadening of the electron states. For each
pair of initial and final states that satisfied
the energy conserving 8 function in Eq. (1), a
transition-matrix element ~tz, ~' was calculated.
The product (tf, ~'D&(k) was taken as a weight factor
for the density of states calculation. k integration
was performed using the Qilat-Raubenheimer
method. " The PED's were then convoluted with a
0.5-eV full-width-at-half-maximum Qaussian to
account for experimental resolution and lifetime
broadening of the hole states. The density of
(initial) states was calculated according to

D(E)-
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