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Prediction of alkali-like Fermi surfaces is used as a test of the local and nonlocal density-functional

approximations to the electron self-energy proposed by Sham and Kahn. This test. is carried out in a Hartree-
Fock (HF) model system where a Yukawa interaction between the electrons is used in order to simulate

screening. The Fermi surfaces resulting from the density-functional approximations to the exchange term are
compared to the exact HF Fermi surface. It is found that the local and nonlocal approximations produce
Fermi surfaces which are too distorted and too spherical, respectively. This reconciles previous local and
nonlocal Fermi-surface calculations in the alkali metals with known experimental results. It is shown that the
Fermi surface is much more sensitive to the approximations made to the self-energy than other properties
such as the density and chemical potential, which we find are treated with suNcient accuracy by the local
approximation.

I. INTRODUCTION

First-principles Fermi-surface pr'ed1ct1oQS
seem to be very sensitive to the form with which
one approx1mates the self-energy' ' and such pre-
dictions generally do not agree with experiment.
For example, in the alkali metals, ' '6 "the dis-
tox'tlons fx'om sphex'1clty I'esultlng from R locRl
approximation to the self-energy, are usually
much too large.

The purpose of this paper is to examine this
sensitivity of Fermi-surface prediction and in

particular to study two approximations to the elec-
tron self-energy which are based on density-func-
tional theory" "Rnd homogeneous-electron-gas
results. The first approximation, which is local,
was introduced by Kohn and Sham" who showed
that it could be used to calculate the electron den-
sity Rnd ground-state energy. In R subsequent
papery ShRln Rnd Kohn Rx'gu6 that this local Rp-

pl oxlmatton [hereafter called the local density-
functional. (LDF) approximation —see (2.16)]can al-
so be used to predict the chemical potential Rnd

Fex'011 SUrfRce. ShRID RQd Kohn lntI'oduce another
approximation, given by (2.12), which is nonlocal
[we shall call this the nonlocal density-functional
(NLDF) approximation]. Unlike the LDF approxi-
mation, which should only be used to calculate
the above mentioned properties, the NLDF ap-
proximation can be used to approximate the Green's
function and therefore any property of the system
can be calculated.

Rasolt and Vosko"" have done a model calcu-
lation in a simple (alkalilike) system. They com-
pared the results of the LDF and NLDF approxi-
01Rt1ons Rnd foUQd the NLDF Fex'ml sux'fRce wRs
much more spherical than the LDF Fermi surface.

They have shown that I DF theory is not R good
approximation to NLDF theory if used to predict
the Fermi sux'fRce. A slmllal" calculation wRS
done fox* 11thlum. AgR1n the NLDF Rpprox1Inat1on
produced a much more spherical Fermi surface
than the equivalent LDF approximation. The above
results indicate that the Qonlocal aspect of the
self-energy is important in reducing the Ferrm
surface distortions from those predicted by LDF
theory and this trend is in qualitative agreement
with experiment for the alkali metals. ' "' How-
ever, the quantitative aspects of the NLDF ap-
proximation have yet to be determined since the
Fermi surface of lithium has not been measured
with sufficient accuracy. ""

Therefore, we wish to investigate in detail the
accuracy of the LDF and NLDF appr'oximations to
the self-energy in predicting the Fermi surface.
This 18 RccoIQpllshed by hRV1Qg cRlculRted the ex-
act results of a self-consistent Hartree-Fock (HF)
model with which to compare the results of LDF
and NLDF approximations to the exchange term.
These exact results are used to examine the sen-
sitivity of the predicted Fex'mi surface to the na-
ture of the approximations compared to the sen-
sitivity of the predicted chemical potentials Rnd

electron densities. ln order to simulate the ef-
fects of screening in a metal, we allow the elec-
trons to interact via a Yukawa interaction with
variable strength and range. Results are pre-
sented for three sets of Yukawa parameters, each
defining an exchange term which has some of the
scx'eenlng character lstlcs of R 16Rllstlc self-enel'-
gy.

Tong and Sham'8 have coxnpared HF electron
densities in atoms with those produced by the LDF
approximation and have found good agreement.
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We compare the electron densities and the chemi-
cal potentials of LI3F and NLDF calculations in a
metalliclike system with the exact HF results and
find similar agreement.

The density functional formalism'0 " leads to
approximations (such as the NLDF approximation}
of the self-energy which depend only on the elec-
tron density and not completely on the Green's
function. Such systems can be solved either self-
consistently or non-self-consistently using the
LBF charge densities to construct the self-energy.
Using the NLDF and LDF approximations to the
HF model, a comparison is made of the Fermi
surfaces corresponding to both of these alterna-
tives.

I-s'+s( Hp -(..)+ js '~.(, ')s.;( ')

=h.h4.-h(r), (2.4)

where k is the wave vector, and v is the band in-
dex of g,-, and &„„-, the wave functions and eigen-
values from which the Green's function is calcu-
lated. We are considering one atom per unit cell
and will often use e»„and 5-„which will be under-
stood to mean ezh and (t)z-„. M„(r, r') is the ex-
change term given by

M„(r, r') = —U(l r —r'l) Z e(u —~-„,)

x q„- ( r) 4 ( r'); (2 5)

II. APPROXIMATIONS TO THE SELF-ENERGY

The quasiparticle spectrum (and hence the Fer-
mi surface) and the electron density can be de-
termined from the Green's function G(r, r', E),
which is a solution to Dyson's equation'" (the spin
indices are included in r):

[—E —V'+ Q( r )]G( r, r', E)

n(r)=2/ e(i -~h}lych(r}l'. (2 8)

To simulate screening we use a Yukawa-type
potential, for the interparticle interaction, with
variable strength and range

p, is the chemical potential and 9 is the unit step
function. The sum over k' does not include a sum
over spin. The electron density is

+, dr" M(r, r";E)G(r",r', E) = —6(r- r'), U(lr r'l)=2U, e '(~'(/lr —r'l . (2 7)

(r)= V,„,(r)+ V„(r),

(2.1)

(2.2)

(2.3)

Atomic units are used with all energies in ryd-
bergs. M(r, r', E) is the seLf-energy. V,„,(r) is
the external (periodic) potential with bcc symme-
try. U(l r —r'l) is the interparticle interaction
and V„(r) is the Hartree term with n(r) the elec-
tron density.

The HF approximation of M(r, r; E) is suffi-
cient for a study of the LDF and NLDF approxi-
mations since the exchange term is nonlocal and

can be made to simulate a realistic self-energy by
allowing the electrons to interact by means of a
Yukawa interaction. It is a long and difficult com-
putation to find the Fermi surface of a HF metal-
liclike system. However, an exact solution is
possible because the exchange term is both E in-
dependent and Hermitian. In contrast the self-
energy in the self-consistent inhomogeneous ran-
dom-phase approximation" (RPA) is both E de-
pendent and non-Her mitian. This computation
appears to be out of reach at the present time.

The HF Green's function can be constructed
from the solutions to the following equation":

We choose different sets of Yukawa parameters,
U, and (, such that M„simulates different screen-
ing characteristics of a real metal. We are guided
by electron gas theory in making these choices.
Let M„(r —r', E;n(r, )) be the self-energy of a ho-
mogeneous Coulomb electron gas of density n(r, }
=(—', zzr', } '. A realistic approximation to this is

M„(r —r', E;n(r, ))

=Mhr"(r —r', y, h(n(r, ));n(r, )), (2.8)

where M"„"consists of the exchange term plus
the RPA term with E on the Fermi surface, i.e. ,
E= ((zh(n(r, )), the chemical potential. This choice
of E guarantees that M„" " is real. It is convenient
to use the Fourier transform of M„"defined by

M„"(r r', p, h(n(r, ));n(r, })

Ejp MR "(P, iz (n(r )); n(z )) e'
)3 h z h s s s

(2.9)

An analytic expression for Mhar"( P, p, h(n(r, ));n(r, ))
and figures with ~, = 2, 3, 4 can be found in Rasolt
and Vosko. "'" The self-energy of a Yukawa electron
gas is, in the HF approximation,
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with

u, (~,) = [3»'n(r, )]'",
X=P/u, (~,); X, = 5/u„(~, ).

U, and g are adjusted so that M-„"r(P,n(r, )) behaves
as closely as possible to M"„r"(P, p„(n(r, ));n(r, )).
In this way M»r(p, n(r, )) is able to simulate real-
istic screening properties of a homogeneous sys-
tem. This similarity is expected to carry over to
an inhomogeneous system.

In Figs. 1-3, M„"~"and M„~ are compared at
x, = 2, 3, 4 for three different sets of Yukawa pa-
rameters (Table I). Set A (Fig. 1) is chosen so
that Mx„~ and M"„"are equal at P=O and very
similar at x, =3 for all P. However, the func-
tional behavior of Mx„~, with respect to ~„ is dif-
ferent from that of M„" "for P&1.5k (ohio is the
free-electron Fermi radius). With P above this
point the Mx„~ curves for different x, have crossed
over and the functional behavior of Mx„and MR "
is the same although the values of each at a given

x, are somewhat different. If U, and $ are adjusted
so that Mq

~ and MqP have the same value and
slope at P= k„with r, = 3, then set 8 (Fig. 2) is
btained Mx„r falls off more steeply with P tha

M"„", has approximately the correct shape at
x, = 3 but has a different functional behavior with
respect to x, for P &A,. With P& k„Mx„again
has the same functional behavior as M„" ", The
Yukawa parameters for set C are chosen so that
M»" and M~a~" are equal (but do not have equal
slopes) at P=k, and r, = 3 (Fig. 3). We also require
that M, have the same functional behavior with re-

M„( r, r') =M"„"(r —r', n( r,)),
where

(2.13)

M"„"(P, n( r, )) = M"„'(Z, n( r,));
i.e. , M„"~(p, n(r, )) is given by (2.10) and (2.11)
with k~(~, ) replaced by

(2.14)

spect to r, as does M„"~", throughout the entire
range of P. But Mx„~ falls off more steeply with
P than M~p" and in general Mx„~ does not agree in
value with M~R~".

As mentioned earlier, each set of parameters
leads to a M»r(P, n(r, )) with some, but not all, of
the features of a realistic self-energy. Note that
if the Thomas-Fermi values (U, = 1 and $'=0.815
at r, = 3) are used, the resulting M»» is very dif-
ferent from M"„". Each set of Yukawa parameters
has been chosen so that M„has closest agree-
ment with M„"at x, =3 because all our results
(Fermi surfaces, etc.) for the inhomogeneous
system are obtained with ~, =3. This will be seen
to be significant in connection with the NLDF ap-
proximation.

For electrons with slowly varying density, M
can be approximated as follows (Sham and Kohn").

M(r, r', F) =M„(r r', E p+ p„(n(r, ));n(r,)).
(2.12)

The approximation (2.12) is the NI.DF approxima-
tion where r, =-'. (r —r'). M„ is the self-energy
and p, „ is the chemical potential of a uniform elec-
tron gas with density n(r, ). Recalling that M„ is
independent of E, the corresponding NLDF approx-
imation to M„ is given by

A~( r,) = [3v'n( r,)]'~'. (2.15)

o'-

P
ko

FIG. 1. Solid line is M& (p, pI, (n(v });n(& )) of
(2.9) and the dashed line is MI, (p n(~s)) of (2.10)
with Yukawa parameters of set A in Table ~. The x
values are beside each curve. kp ——kF(r, ) of (2.11) and

2
pp =kp.

FIG. 2. Dashed line for Yukawa parameters of setB.
See Fig. 1.



S. B. NICKERSON AND S. H. VOSKQ l4

OO

P
ko

TABLE I. Yukmva parameters. &„„is the nearest-
neighbor distance.

Set No.

A
B
C

5.05

2.ll

0.561
0.261
0.05

0.253
0.371
0.848

III. DESCRIPTION OF THE MODEL

The external potential is chosen to be a pseudo-
potential

FIG. 3. Dashed line for Yukmva parameters of set C.
See Fig. 1. V„,( r }= g e""V„,(6) . (3.1)

M( r, r', p) = p„(s(r)}5(r —r') . (2.18)

The above approximation is the LDF approxima-
tion with

p, „(n( r )}= —[n( r )e„(n( r ))], (2.17)

and c„(n(r)) is the exchange and correlation en-
ergy per electron of a uniform electron gas of
density n(r). The results of approximation (2.18)
can be used to obtain the Fermi sux face,"chemi-
cal potential, "electron density, "and ground-
state energy. " The LDF approximation to M„ is

M„(r, r') =M„(n(r))5(r —r'), (2.18)

The significance of choosing the Yukawa param-
eters such that M„has closest agreement with
M"„~"at r, =3 (the r, of the inhomogeneous sys-
tem) is now clear. The NLDF Yukawa exchange
term for the inhomogeneous system most closely
resembles M"„"at the average density.

For electrons having energies equal to the chem-
ical potentia, l, Sham and Kohn" give a local approxi-
mation to M,

For the results given in Sec. V, the parameters
are

y, =3, V,(G„o}=—0.12, V,„,(G&6»,)=0. (3.2)

We have found that our conclusions (Sec. V) do not
depend on the sign of V,„,(G»,}or on the details of
Vext(6 6&io}'

Since a pseudopotential is being used, it is nat-
ural to expand the wave function in terms of plane
waves

ei (7l+ 0)'r
g„-„(r)= C-(vk)

Tn
(3.3)

where 0 is the crystal volume. With this expan-
sion, the LDF, NLDF, and HF operator equa-
tions can be replaced by equivalent matrix equa-
tions with all equations having the same form, the
matrix elements being

I'-, -,.{i )=-~k+C~ a-, -,, +V.„,{6 6')

+ n( 6 —6')V(G —G') + M( 6, 6', k }, (3.4)

with (-, the eigenvalues and Co(k) -=C5(lk) the
eigenvectors. M is either the LDF, NLDF, or HF
self-energy given below. n(G) is the Fourier
transform of n(r):

M,'(n(r))=-2
7T

n( r ) = Z ' eno( G ),

and U(q) is the Fourier transform of U(x):

(3.5)

1 —Z~tan' —+ ~ ln

(2.19)

where n~(r)=[3v'n(r)]"' and Z, = &/k~(r).
In summary, {2.4) and (2.5) lead to the exa.ct

Fermi surface, while the approximations to (2.5),
defined by (2.13) and (2.18), lead to the NLDF and
LDF approximate Fermi surfaces.

(3.8)

In terms of the self-consistent a~ and Co(k), it is
easily seen that

n(6) = —Qe(p, —e»„,) Z Co(k')Co. .o(k'). (3.7)0 ) t

To solve the HF problem according to (2.5) and
(3.3},M(G, G', k) in (3.4) is replaced by
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Co„(k') Co„,o o.(k')

x I/(k —k'+ G' —G"). (3.8)

depends on the same two variables as
M"„"(k+—,'(G+6'), 6- G'), i.e. , k+-,'(6+ G') and
G-G'. In contrast ML(G —G') is independent of
k.

IV. COMPUTATIONAL TECHNIQUES

The LDF approximation to the exchange term,
M„(G, G';k), is M~(G —G') [see (2.19)], where

ML(yg( r )) —g eiG'rML( 6 ) (3.9)

M" (P n( r, ))= 2 e'o "oM" (P G ) .
G

Although it is not obvious from (3.8), M„(G, G', k)

(3.10)

Because of the r, dependence, the transform of
M"„~ of (2.13) is slightly more complicated. " In
solving the NLDF problem, M(G, G', k) in (3.4) is
replaced by M"„(k+-,(G+ G'), 6 —G'), where

The HF computer program is very long running
unless precautions are taken against inefficiency.
Two separate techniques have been developed
which reduce the running time by more than an
order of magnitude over traditional methods. The
first technique involves efficient evaluation of sums
which occur in the exchange term. The second
technique is a. numerical method of evaluating two-
dimensional integrals with integrands having cubic
symmetr y."

The exchange term (3.8) [the analysis given be-
low also applies to the charge density, (3.7)] can
be rewritten

M, (G, G', k)= —
(2 ), dk'9(p —e„-,) Z C-„(k')QC-„,-- (k') U(RR, (k+G') —(k'+G")).

v I/48 GII
(4.1)

To arrive at (4.1),

1
e(p —e )Q k'

k

is replaced by

1

(2n )' dk'6(p, —e-„,) g ~

/ns
dk'e(p —e-„,) ~ ~ ~

is an integral over the irreducible 4', under the
self-consistent Fermi surface. R, and G„are re-
lated by

R,(G —G') = G„. (4.2)

G„ is a (consta. nt) member of the shell to which G
—G' belongs, chosen arbitrarily. For example,
6, = (0, 0, 0)(2w/a~), G, = (1, 1, 0)(2v/az), etc. , @here

a~ is the lattice spacing. The basis set IG") is k
independent consisting of shells around a repre-
sentative k value. The introduction of G„makes
feasible the preca. lculation and storage of the
values of G" +RG, which belong to (G"). As an
example, consider a calculation using 28 basis
functions. Of the original- 5 & 10' values of 6"+R (G
—G'), there are 10752 possible values of G" +RG„
with only 3742 of these belonging to (G"]. The
amount of storage needed has, therefore, been re-

where Z~ ~ is a. sum of symmetry operations and

duced by a factor of 50. This precalculation has
the effect of reducing the overall running time of
the program by a factor of 6. Further efficiency
is gained after noting that many values of C~„C~...~-
are likely to be small. Such terms can be
predetermined and I](eed not be considered in the
evaluation of iaaf, (G, 6', k). For this work 20 basis
functions gave convergence.

Efficiency in evaluation of the integral in (4.1) is
vital because the running time of the program is
almost proportional to the number of k points sam-
pled. The integrand of (4.1) has full cubic symme-
try and so the most efficient method of evaluation
of the angular integral is the use of the two-dimen-
sional Gaussian formulas for integrands of cubic
symmetry. " It is found, for the parameters used,
that a four direction formula is sufficient. If we
consider a cubic harmonic" expansion of the inte-
grand of (4.1), having done the k' integration, with
expansion coefficients a, „, where l is the angular
momentum quantum number and x distinguishes be-
tween linearly independent cubic harmonics of the
same l, the first term in the error expansion is
proportional to a», for this four-point formula. "
Using (k')' as the variable, the A." integration re-
quired three sample points for a total of 12 sample
points to do the k' integration. This was carefully
checked to be certain that M„(G, 6', k) was eva. lua-
ted accurately.

Another use of the two-dimensional Gaussian
formulas is in finding the volume under a constant
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TABLE II. Electron densities, bandwidths, and chemical potentials for the Yukawa parame-
ters in Table I.

A(LDF) A(NLDF) A(HF) B(LDF) B(NLDF) B(HF) C(LDF) C(NLDF) C(HF)

103m( G
& &p)

10 (G2pp)
10 n(G, «)

~=p
pHF

1.488
0.301
0.107
0.3557
0.0078

1.342
0.247
0.085
0.5366

-0.0055

l.348 l.610
0.248 0.347
0.087 0.124
0.5417 0.3472

0 0 0115

1.416
0.275
0.094
0.6169

—0.0117

1.441
0.281
0.098
0.6251

1.741
0.399
0.143
0.3372
0.0116

1.488
0.306
0.105
0.7584

-0.0071

l.557
0.324
0.115
0.7634

cal than the indicated Fermi surface" "'
~ But

because the Fermi surface of Li has not been
measured with sufficient accuracy the quantitative
aspects of the NLDF approximation were unre-
solved. The present results indicate that the NLDF
approximation should not be expected to lead to
precise predictions of the Fermi surface and
therefore, these results are consistent with the
Fermi surface of Li being considerably more dis-
torted than the NLDF prediction. ' However, it is
unlikely that NLDF and LDF predicted Fermi sur-
faces would bear precisely the same relationship
to the Fermi surface as they do to the HF Fermi
surface shown in Figs. 4—6 since no set of Yukawa
parameters leads to a self-energy which has all of
the characteristics of a realistic self-energy.

Referring to Table II we see that, in contrast to
the Fermi surface, the NLDF electron density is
much closer to the HF electron density than is the
LDF electron density. This is true even in set A
in which all three Fermi surfaces are almost the
same. Although the LDF electron density is not
as accurate as the NLDF electron density, it is
adequate for many purposes. The density func-
tional theory" "results in approximations to the
self-energy that depend only on the electron den-
sity. Instead of solving the problem self-consist-
ently the LDF charge density could be used to con-
struct the self-energy and solve the problem non-
self-consistently as has been done in several pre-
vious calculations. "'"" We examine this ap-
proximation by comparing the NLDF self-consist-
ent Fermi surfaces of Figs. 4-6 with non-self-
consistent NLDF Fermi surfaces where M" is a
function of the LDF charge density. The latter
are less than 5% of 5-„- 5»oo larger than the former
indicating that the LDF electron density is useful
if used in this way. Over most of the unit cell
volume, the HF, NLDF, and LDF densities are
almost the same; they differ only near r=0. This
is why the LDF charge density can be used.

As expected both the LDF and NLDF chemical
potentials are very close to the HF value with the
NLDF values being slightly better. This gives us
confidence that the LDF approximation can be used

to obtain chemical potentials in real systems.
If the NLDF bandwidths, p. -&~» are examined,

it is noted that the value is very close to the HF
result. This shows that for k below the Fermi
surface the NLDF approximation to the self-energy
is accurate. This may not be true however, if the
approximation to M„ is energy dependent and this
fact is not taken into account.

Use of the NLDF approximation compared to use
of the LDF approximation results in improved
electron densities, chemical potentials, and band-
widths but not in improved Fermi surfaces. This
result illustrates the statement made in the Intro-
duction that the Fermi surface is very sensitive
to the self-energy approximations and is shown to
be more sensitive than other properties. Such
sensitivity can be understood by noting that the
electron density and chemical potential are average
properties since they involve integrals over oc-
cupied k space of energies and wave functions; on
the other hand, the Fermi-surface distortions are
intimately related to the changes in the self-energy
when the direction of k is changed, with

~

k
~

near
the Fermi surface. Thus a Fermi-surface calcu-
lation sets a standard of accuracy against which
an approximation to the self-energy can be judged.

In summary we have shown that the nonlocal as-
pect of the self-energy operator is essential to
obtain precise theoretical values of the Fermi
surface. But on the basis of our model calcula-
tion it has not been shown that the NLDF approxi-
mation is more accurate than the LDF approxima-
tion for the calculation of Fermi surfaces. We
have reconciled previous Fermi surface calcula-
tions with experiment in that our exact model Fermi
surface is bracketed by the NLDF and LDF ap-
proximate Fermi surfaces as has been indicated
in the alkali metals.
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