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The relativistic multiple-scattering method (Green's-function method) for crystals and rnolecules is developed
froH". the definition of the four-component wav"" functioI| lrf the:;wo A"gions. The secular equation ls obtained

by matching the wave functions at the two sides of the sphere surface separating the two regions. The secu!ar
equation is expanded in powers of 1/c so as to exhibit the mass and spin-orbit corrections. As an application
of the method we present the results for the band structure of lead.

INTRODUCTION K, ll 0 IC

In this paper we present a systematic derivation
of the relativistic multiple-scattering method for
solids and moiecules (Green's-function method,
Korringa Koh-n Ro-stoker method). This paper is
preceded by the works of Ref. 1-8 dealing with the
same subject. Thus we avoid repeating their re-
sults and put emphasis in those aspects of the
problem which have not yet received special at-
tention in the literature. Our derivation, instead
of starting by postulating a relativistic Green's-
function, follows the safer route of the definition
of the four-component wave function, both inside
and outside the spheres circumscribing the atoms.
Thus we attain to obtain the wave function in a
simple and precise way, a result yet unpublished
in the literature. To obtain a secular equation
we just match the wave functions inside and out-
side at the sphere surface. Then, this secular
equation is expanded in a power series of 1/c' so
as to make explicit the mass correction and the
spin-orbit interaction. The derivation is truly
made for solids but the final secular equation is
pu' in such a form that its modification for mole-
cules becomes a very simple matter.

As an application of the method, we made the
band-structure calculation for lead. I.ead being
a very heavy element, we could make the band
calculation non-self-consistent. We found that
the bands of lead have important contributions
from higher angular momenta such as 1=-2 and 3.

where a„„are constant coefficients and 'ft)„ is
such that

~Xy «I@

where 0 stands for the Dirac Hamiltonian. In the
standard representation

H =Pm c'+ c.n .p+ V(r),

where Q and P arethe usual 4 X4 matrices.
Since the potential in region I is spherically

symmetr1cal a ]udlclous choice fol (t)„„1s

f.(~)x.„(~;o)

, if „(r)X, „(r,o.)

where x„,(r, o) are the usual spherical spinors,
and f„and f „satisfy the radial equations'

(rf„)'+ (x/r)(rf„) —(1/hc)[e+ mc' —V(r)]rf „=0,

(rf „)' —(s /r)(rf ) + (1/hc) [& —vzc' —V(r)]rf„= 0.

The spherical spinors are superpositions of direct
products between angular and spin functions,
namely

X„„(r,o)= Q (~, p. ~f, ni, o' )F, (i )X'(o), .

II. THEORY

We subdivide the crystal unit cell into two re-
gions: region I is the space inside the sphere cir-
cumscribing the atom; region II is the space out-
side the sphere. In region I the potential is spher-
ically symmetrical, and in region II a constant.

A. Trial function for region I

'P, trial function for region I, will be constructed
as a linear superposition of basis functions

where 1, (r) stands for the usual spherical har-
monic function, and x '(o) specifies the spin func-
tion~

x'(o) = &. ...

The symbols

(x, p, ~f, &n, o) = 5, ,„,5 „C (l, —', j; p. —o, o), (8)

with

I.(~) = ~~ ~+ —,'(S„—1),
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y) (r)x'(a') = P (», u ll, m, a)x„,„(r,a'). (10)

(9c)

and the C(l, —,', j; p —o, a) denoting the Clebsch-
Qordan coefficients for the addition of angular
functions in the notation of Ref. 9, are very use-
ful tools for changing the representation I("., p, into
I, nv, o, and vice versa, and will be frequently used
in the following. Using these coefficients we can
also write

v.(«)X...(r, a')

(iv „(Kr)X „,(r, o')

In the case of & —V &mc', v„are spherical Bes-
sel functions of the second kind"

v (Er) =y'y( )(Kr) (18a)

v, (Kr)= $ „v „(Kr)= — ) " v „(Kr)
WAS „

&+ mc —V

Sg x+1xv„'(x ) ~ .((( )),6+ PPC y

(18b)

From the relation above and the relation (6) we
obtain the properties

g (», p ll, m, a)(»', 1),'ll, m, a)=5„„,5, „, (ll)
l, m, c

E' = [ (z —V )' —m'c'] /h 'c'

In what follows we shall also use the following
set of symbols:

(19)

Q (») &If)m) a)(») & ll ) m ) a )=6) ) 6m m 6e s

(12)

Equations (1), (4), and (5) define completely the
trial function 'P inside region I, for a given value
of the energy e

f.(r)X...(r, a)
K) 0

if „(r)x „,(r, a)

u„(Er) =j ~(„)(Er) (Bessel of 1st kind)

u „(Kr)= $ „u „(Kr),
analogously to Eq. (18b).

C. Structure constants

(20a)

(20b)

In this section we show how to perform the sum

B. Trial function for region II

%e write "|Ij in the form

II' Qh ny (r a)

with

Ix~ ( ) g ik ~ ) Ki~ (r 1 a) (16)

"(l)„„-„(r,o)=pe'" ' "y„,(r —l, a) . (21)

The derivation will be done just for the case &

—V & mc2. %e begin from the well-known rela-
tions:

y, (Klr- 1 I) =4rg j,(Kr) y, (K Ill)F, (r)r, *(1)

where the sum is over all the lattice vectors.
t„(„)(r,a) is such that

(Pm c'+ ca( p+ V' ) "P.„„(r, a) = ):"(t)„„(r, o),
(16)

(22)

where V is the value for the potential in region II.
From (16) and repeating the steps of Sec. 1, we

obtMn

The two relations above will be written in a more
useful form.

I.et us consider the sum

K) P
fixed l

K) P
fixed t

m) Q

x„' „(r', a ')x„„"(r",o)= g &r, o'I» u&&» & Ir ', a'&= g &r, all, m, z&&l, m, z lr' a'&

=g 6, .6. ..Z;(r)F;(r')'=6. ..P y, (r)y, (r')+ .
(24)



Using (24), (22) changes into

y, (Kir-Ti)5. ..=4II+u„(KI")v„(KiTi)y+ „(l,o)x„„(r,e') .

Using the relation (6), we also write (23) as

X„,.(1,c)~.(K[1))= (- i)""'X...(V./~ c)y.(K 111}. (26)

Tile sulll (21) ls spli't lllto two pal'ts: 01ie part coIlsistlng ollly of the 1=0 tel'111. Usillg tile 1'elatioll (26) witll

v; 1= —v; and the property g„„(-l,8}=(-l)~'"'g„„(l,cr) we write

itg g
(if .~ .(Klr ll)-X ...(r &,o-)/

V, sK, o yoE r-l
(i~' "'"i „y „„(V;/iK, ll)y, (K~r-l~)/

The great component in Eq. (2V) can be written

Q e'" 1 i~'"'X„„(v;/iK, a')y, (K~r-T~)6„,

=4m elk its(")-L(~)x., g v™1 gc, e'Xt, , „, V1 gC, C' yoz l u„, zy X
1&0

(26}

Now

g )P, , (V;/iK, P')g„ „(Vf/iK, o') = g (»', ll'~l', m', Z')(», ilail, m, Z)F,",' (V;/iK)F,"(Vf/iK)6, 6,. .~ .
tyP , C

m'

The prodQct of spherical harmonics can be %'ritten

r, '(v;/u, )r, (v;/u) = Q &l', m'
j
r",*

~
l, m&l', (v;/iK),

L, kf

where (l', m' ~Fe~
~
l, m) are Gaunt integrals. Using (23) and defining

D, „(ll,z)=pe"'y, (K~I~)ze(i}

in a similar may as done by Kohn and Rostocker, "and also

G, , . ..(k, K)=4 g i"-'«, ~y",'~1, &f1, „, (32)

'"'e(I~rK-1()g„„(r I, )=oQ -(»', ll'(1', m', Z')G„, , 6c c,(», ll (l, m, Z)u„, (K1)g„, „,(i, rr)
lit 0 l~tn, C,

tft' C

= P ~„....,„,.(k, K)~„,(«)X„, „,(f, o),
X+I l4 +

8„,„,.„„= g ( H,, ll'~l', m', Z')6, , , 5c. z(», p, ~l, m, 2).
l, m, g

S', ttt', C '
(34)
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For the small component in Eq. (27) it is sufficient to change v into -v, or

i e'klv „K r-l X„~r-, ( =i -"B„,„... „,„u„,Kr X,, ~, f;g,
ltd 0 K tP ~K

where

~ „/~ „,=S„S„.
On the other hand, '

x ...(r, o)= o-rX.,.(r, o).

Thus

(35a}

(35b)

(38)

(-z, p ll, m, o)= — g (z, p ll", m", o")(f,m, o o f'll", m", o"}
l» mtt gt t

l», m»te"
«, m olo rl&", m", o")«",m", &'l~, i ). (37)

Defining the Hermitian operator G such that

bg g.G., . . =i' t(l', m', Z'lGll, m, Z) (38)

G=4tt Qt' D~ „Y~ (r), (39)

or we have

"B « „,. „,= g SS«i~' "' ' «'(-g', p, 'll', m', Z')(l', m', Z'lGll, m, z)(-a', p, ll, m, Z),
l, m, E

but from (9a)
0 c 'L( K)»L(-K' ) L(K)-L(K' )

K K 7

(40) becomes

(40)

(41)

lt tmt t E'
l, m, E

ltl mtt Ettt
l », m"', C'"

i '"' ' '(~' p, 'll", m", Z')(f" m" Z" lo rll', m', Z')

x (f', m 't Z'
I
G

I l, m, Z)(l, m, Z lo r
I
l, m', Z'"& ( f "',m'", Z"'I & u)

l', m', E'
l, m, E

(&, p ll', m', Z')G. . . bo. o(z, p ll, m, o)=B«, , t, . (42)

Finally, for the small component we have the form

ice' 'v „(Klr —Il)x „(r—f, o) =i p B„.„,.„,u „.(Kr)x „,(r, o). (43)
110 Kt

~
4'

In this way we have the following form for the trial

f v.Ãr)X., „(r,o)
"g(r, o)=gb„, l .

( ) („) +Q B„,
t t

function in the region II, for the case g —V&mc'
u „(Kr)X„,.(.r, o))

iu „,(r", o) ,j (44)

III. SECULAR EQUATION

A. Standard forms for crystals

In order to obtain a secular equation we have
just to equate the great and small components of
(13) and (44) at the sphere surface. Letting R be
the radius of the sphere, we obtain

a„~f„(R)= b„„v„(KR)+ u„(KR) g B„~,„, ~.b„, ~„

(45}

a„„f„(R)= b„„v „(KR)+u „(JfR) g B„~,„, ~, b„, „'
(48)
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vrhich is equal to vrhat has been published else-
%'here~ ' and

5 „(KR)v„(KR)—u„{KR)v „{KR)
u „(KR)f.„{R) u„(KR-)f (R)

vrhich relates the coefficients of the expansion in
region I to those of region II. This relation per-
mits us to normalize the wave function, as shoran
in Ref. 12.

The secular equation (47) can be cast in a more
useful form by defining the symbols

b; =g (», y,
~
l, m, o)b„„

b„„= Q (~, p, ~l, m, o)b;
l, m, ft

Recalling Eq. (24) and using the orthogonality
given by Eq. (12), we arrive at

{49b)

(~, p ~i, m, o)t„'(~, p, ~l', m', o')b.

From the equation above vre can obtain by a very
simple algebra, the secular equation in the form

v„(KR)f „(R) v„—(KR)f„(R)
u„(KR)f „(R)-u „(KR)f„(R)

+ Q B„~.„, ,b„, „,=0, (47)
1.2169x 10 4

1.4863x10 4

1.8154x 1O '
2.2173x 1O '
2.7082x 10 ~

3.3078 X 10
4.0402x 10 4

4.9347x 10 4

6.O273x 1O '
7.3617x10 4

8.9916x 10 '
1.0982 x 10"~

1.3414x 10 '
1.6384x10 '
2.00llx 10 '
2.4442 x 10"~

2.9853 x 10
3.6463x 10 ~

4.4536x lo '

5.4396x 10
6.6439x 10"'
8.1149x 10"~

9.9116x10 3

1.2106x 10 '
1.4786x 10 '
1.8060x10 ~

-1.6388 x 10~
-1.6385 x 102
-1.6382 x 102
-1.6377x 10~
-1.6372 x 102
-1.6365x 102
-1.6357 x 102
-1.6347x 102
-1.6335x 10~
-1,6321x 10~
-1.6303x 10~
-1.6280 x 10~
-1.6253x 10'
-1.6220 x 102
-1.6180x 10'
-1.6130x 10~
-1.6070x 10~
-1.5998x 10~
-1.5910x 10'
-1.5806 x 10'
-1.5681x 102
-1.5532 x 10'
-1.5357 x 102
-]..515].x 10'
-1.4910x 10~
-1.4628 x 10~

2.2058
2.6943
3.2908
4.0194
4.9093
5.9962
7.3237
8.9452
1.0926
1.3345
1.6299
1.9908
2.431 5
2.9699
3.6274
4.4306
5.4116
6.6097
8.0731
9.8605
1.2044
1.4710
1.7967
2.1945
2, 6806
3.2738

xlo 2

x10 ~

x]o 2

x10 ~

xlo 2

xlo 2

xlo 2

xlo ~

xlo ~

x10
x]0 '
x]0 '

6x 10
x 10 ~

x10 '
x 10 '
x]0 ~

x10 ~

x 10 '
x 10 '

—1.4303x 10~
-1.3929x 10~
-1.3500x 10-
—1.3013x 10~
-1.2465 x 10~
-1.1852 x 10~
—1.1176x 10~
—1.0437 x 10~
-9.6412 x 10
—8.7956x 10
—7.9153x 10
-7.0129x 10
-6.097 6x 10
-5.1864x 10
-4.3065x 10
-3.5065x 10
—2.8140x 10
-2.2220x 10
-1.7179x 10
-1.2935x 10
-9.5113
-6.9205
—5.0587
-3.7923
-3.0295
-2.8231

TABLE I. Potential for lead in atomic units I'rydberg).

+ Q G, , „b..b, , „,=.0, (50) v „=(ff/2me){Kv„'+ [(~+ I)/r]v„},

6 „=(g/2mc)fKu„'+ [(~+ I)/x]u„}.

(52b)

(52c)

v „(KR)f „(R)—v „(KRjf„(R)
u„{KR)j„(R)—u „(KR)f„(R)

'

8. Limit of c = ~
In this limit, from Eq. (5a) we obtain

f, = «/2 "Kr; [("I)/.]f.}, (52a)

v „(KR)f'„(R) Kv„'(KR)f„(R)—
u„(KR)f„'(R) Ku„'(KR)f„(R)—

y, (KR)f', (R) Ky', (KR)f, (R)—

j,PCR)f,'(R) —Kj ', (KR)f, (R) ' (54)

TABLE II. Eigenvalues (rydbergs) at point X as function of the secular matrix size.

Illenslon of
secular
matrix

-0.800 -0.800
-0.590

4 ~ 0

-0.800
-0.610
-0.483
-0.268

-0.818
-0.638
-0.427
-0.246

-0.810
-0.629
-0.488
-0.224

-0.822
-0.629
-0.540
-0.250

-0.820
-0.630
-0.540
-0.217
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TABLE III. Eigenvalues (rydbergs) at point ~ as function of the secular matrix size.

mension of
secular
matrix

12 32

-0.7 63 -0.763
-0.580

-0.763
-0.565

-0.220 -0.220

-0.724 -0.724
-0.610 -0.613

-0.802
-0.570
-0.310
-0.290

-0.806
-0.589
-0.267
-0.244

because of Eqs. (18a) and (20a), and because the
solution of Eq. (5) reduces to the solution of the
Schrodinger equation, f, (r). Then, the first term
in Eq. (50) becomes

,'(», p, )l, m, o)(», p, )l', m', o')bf, , ='t, 'b;
l', ttt', af

C. Case of molecules

The multiple- scattering method for molecules
differs from the version for crystals (Korringa-
Kohn-Rostoker method) in just one respect: it is
simpler because one does not become involved
with the complicate lattice sums. In the present,
case, though, the derivation was made for a crys-
tal with just one atom per cell. In modifying Eq.
(50) to situations with many atomic species, one
must add extra subscripts to account for the many
atoms. This is a simple generalization and it is
of no use repeating all the steps leading to the
secular equation. As written in the form of Eq.
(50), the secular equation can be readily gener-
alized to

l', m', ty'

(», p f
l, n~, o)t '„(», p

/

l', m', o')b;, ,

+ g ~p, !,m, p', r .m bo, ' 0', l , 'm'
p', l', m', ty'

where the symbols have their usual meaning.

(55}

because of the orthogonality relation (12). Thus
Eq. (50) becomes the standard Korringa-Kohn-Ros-
toker secular equation for a nonrelativistic elec-
tron.

we shall omit the subscript ~ unless it is strictly
necessary. Def ining

q = kerf „=—kerf,

we write Eqs. (5) as

1 w —V(r)p'+ —p ——2m+ q = 0
y h2 2

(57)

(58)

(5~)

(60a)

q' —(»/r)q+ [w —V(r)]p =0. (60b)

In the limit c= ~, corresponding to Eqs. (60) we
have the following equations for p, and qp.

.

po'+ (»/r)Po —(2m/b')qo = 0, (61a,)

(61b)q,
' —(»lr)qo+ [w —V(r)]po=0.

In the following, the subscript 0 implies the limit
c = m'. Multiplying Eq. (60a) by q„Eq. (60b) by
-po, Eq. (61a) by -q, and Eq. (61b}by p, and
summing

d w —V(r)
(qoP q&o) =

g o qoq.

Integrating

q(R) qo(R) 1 w —V(r)
p(R) p (R) p (R)P(R) 5 c

(62)

TABLE IU. Eigenvalues (rydbergs) at the symmetry
points.

Up to the order 1/c', the equation above is equiv-
alent to

D. Relativistic corrections up to the order 1/e 2

In many instances one does not want full rela-
tivistic treatment of Eq. (50), but just an expan-
sion up to terms of order 1/c'. Thus we consider
this expansion of t„' in Eq. (50). In what follows,

r
W

X
K
L

-1.2225
-0.8061
-0.8200
-0.8200
-0.9300

-0.5890
-0.5257
-0.6300
-0.7800

-0.2 667 -0.2440
-0.3243
—0.5400 -0.2167



FIG. 1, Band structure of lead calculated by the
present method.

FIG. 3. Band stxucture of lead calculated by the
present method.

but that is not the case of v, u, f, and f. From
(63) one has

(63) E= E, —~, „[sv—V(x)jr'fo(r)' dr„

(64a)

V=8/e,

U= u/u,

(64b)

and the symbols E, V, U, these ratios vrhen E
18 heM flXed R11d C = oo. 81DCe 1G this 11IQlt, E 18
fixed~

while from (181) and (20b) we obtain

V= [2mc'/(2mc'+ nr —V) j Vo

= V, —[(m —V)/2mc'j V„

V = V, [(~ V}/2m—c'j V,—.

(65)

(66)

FIG. 2, Band structux'e of lead according to Loucks
(Relativistic augmented plane m'ave) .

FIG. 4. Band structure of lead accoxding to Loucks
(Relativistic aug', ented plane wave) .
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vE —V ~eE —V ~v V -U av —V 1
c «—U «—,U c (« U-) C'ccc IfcR'f (R), f ')'

Using Eqs. (52) for the definition of fo, vo, and g„restoring the definition of vo and u, in terms of lf,
and j, [see Eqs. (18a) and (20a)], using the relations

we arrive at

(68)

(69)

(70)

4&R)++t(«)+(~c i Io ll~c i )Pr(R&) (71)

where f,' is given by (54) and

1 Ky)(KR)j )(KR) Ky)(K-R)j'g(KR)

(
',
(R). («R) «f (R').,(~)f (c «)R'f (R)fl(R-) — («- «(c)I«'fl(c)'+ I(I ~ »f ( )') «),

Ky g
~(KR)j,(KR) Ky, (—KR)j', (KR)

II =I c R (f'(R) («R) «f („') '(«R') f J ( —«(c)IU«A(c)fi(c) +A(«)'I«- (« - «)RA(R)') .

Finally, inserting (71) into Eq. (50) we obtain the following secular equation

(f,' +)ob; +P, g (f, m, olT (rll, m', o')1), „,+ g 6, ,„,5, ~b, , =0.
m', a'

(V4)

The form of Eq. (V4) is very suggestive. One
sees clearly the effects of mass correction and
spin-orbit interaction. When using this equation
one must x'ecall that in this order, E is still given
by Eq. (19), which now reads

IV. APPI.KATION TO I.EAD

As an application of the method we calculated
the band structure of lead. This element has a
fcc lattice with a parameter of S.25970 a.u. The
neutral atom has 82 electrons and has the follow-
ing electronic configuration: 1s'2s'2p'3s'3p63cf '
4s'4p'4d"4f "5s'5p'5d" 6s'6p' The potential was
calculated by summing the atomic Coulomb poten-
tials and charge densities in the lead lattice. Then
we made spherical averages inside the spheres and

space averages outside to obtain the muffin-tin
Coulomb potential and charge density. The ex-
changed interaction was included by means of the
Gaspar, Kohn, and Sham formula

v'*= —4(4vp/105. 275 V8)'f« .
The starting atomic Coulomb potential and charge
density was obtained by means of the relativistic
self-consistent method of Desclaux, Mayers, and
O' Brien. '3 For the reader's convenience, we

present in Table I the product of the distance to
the nucleus by the potential as a function of the
distance to the nucleus. The radius of the sphere
is 3.27380 a.u. and the mean value for the poten-
tial outside the spheres is —0.78619 Ry.

In Tables II and IG we present a study of con-
vex gence. The entries in Table II refer to the
point E of the Brillouin zone, and those of Table
III to point TV. The entries in the upper line
represent the secular matrix dimension. Since
the secular equation was not symmetrized, di-
mension 2 corresponds to quantum numbers ~
= —1, p. = &, p, = ——,', dimension 4 includes also the
numbers x=1, p. = ~-,'; for dimension 8, aside the
I(=+1, and the corresponding p, , we have also
~= —2 with p, varying from --, to -„and so on.
The results from these tables suggest that the
lower the level, the faster the convergence. This
should be expected since for higher levels there
are important contributions of spherical har-
monies of superior E numbers. In Table IV we
list the eigenvalues for some symmetry points.
To obtain these values we used functions with
quantum numbers x up to K= —4.

In Figs. 1 and 3 we show the band structure ob-
tained by our method, and, for comparison, the
band structure obtained by Loucks'4 is repro-
duced in Figs. 2 and 4. A better agreement is
obtained for the lower bands, the third band is
very distinct from that obtained by Loucks. At



least part of such discrepancies may be explained
by differences in the potential. Indeed, lower
bands correspond to more localized states and
the potential for these electrons cannot be much
different from the atomic potential. The higher
levels are more sensitive to crystalline potential.
Aside this fact, we do not know if Loucks made
any study of convergence of his values.

The method here developed coincides with the
relativistic multiple- scattering method presented

in the Refs. 1-8. Our derivation begins from the
form of the four-component wave function, while
in the standard derivation the wave function is
always omitted. Another advantage of the present
method is avoiding the guess work behind the
writing of the Green's function, a task far from
trivial.

Our experience with lead shows clearly that the
method is very usable. As a matter of fact, in
the form of Eq. (50), the secular equation differs
little from that of the nonrelativistic multiple-
scattering method.
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