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The temperature T„,of the resistance maximum in spin-glass magnetic alloys is calculated as a function of the

Kondo temperature T„for the single impurities and the average Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction strength 5, between diA'erent impurities. In addition T is shown to be independent of several

other less relevant system parameters. The temperature dependence of the resistivity is obtained in the parquet

approximation in the "noise model, " where, besides the usual exchange scattering between conduction

electrons and impurity spins, there is a transition rate b,, for spin-flip processes due to the RKKY
interactions. The result is shown to be valid when b, , & TK, and applies to the low- TK spin-glass systems like

AuMn, AgMn, CuMn, AuCr, and AuFe. For example, it permits the recently observed pressure variations

of T„,to be understood in terms of simpler behaviors of the more fundamental system parameters 5, and T„.
Asymptotically for 6, & T„onehas T —6c In(b, ,/T~), which is bigger than the spin-glass freezing temperature

To —5, identified by the cusp in the magnetic susceptibility.

I. INTRODUCTION

The electrical resistance in dilute magnetic
alloys, like AuFe, in the spin-glass' range of
concentration of magnetic impurity, shows a maxi-
mum as a function of the temperature. This and

several related effects are thought to be due ulti-
mately to the s-d exchange interaction of the con-
duction electrons of the host metal with the local-
ized spin of the magnetic impurity.

In the first place, this interaction at each indivi-
dual impurity gives rise to the Kondo effect' with a
resistance contribution that rises as the tempera-
ture is decreased, eventually reaching the uni-
tarity limit in very dilute systems. Second, by the
Ruderman-Kittel-Kasuya- Yosida (RKKY} inter-
action mechanism, ' the conduction electrons medi-
ate a Heisenberg-type exchange interaction be-
tween different impurities in the alloy. This even-
tually quenehes the rising resistance as the tern-
perature decreases into the range of the average
RKKY interaction strength between neighboring
impurities. The two effects thus result in the
formation of a maximum at the temperature T .

It is reasonable to view this as the competition
between two physical mechanisms, each of which
can be characterized by a certain energy scale.
For the single-impurity Kondo effect the scale is
the Kondo temperature T~, which depends on the
s-d coupling constant in the usual way (defined in
Sec. VI}. The RKKY interaction depends on the
inverse cube of the distance between the impurities
and is second order in the same s-d coupling. The
interaction energy of. two impurities at the average
neighbor distance, which is proportional to the
inverse cube root of the concentration, will thus
be proportional to the concentration and to the

square of the s-d coupling constant. The scale of
this interaction energy, which is also held re-
sponsible for the spin-glass ordering at low tem-
peratures, will be denoted by 4, .

It is therefore reasonable to expect the tem-
perature of the resistance maximum to be a func-
tion of these two energies

T =T.(r „T,}
or ultimately of the s-d coupling and the concen-
tration. In principle other mechanisms can in-
fluence T as well.

A number of calculations4 ' have been done in the
second Born approximation, which is the lowest
order in which the Kondo effect is present. The
s-d coupling must be extremely small for this
approximation to be justified, i.e., T~ must be
extremely small compared to the temperatures
where the experiment is performed and hence com-
pared to T . Even though this may be true in sys-
tems like AuMn, where T~'s in the range 40 "—
10 ' K have been considered, "it is definitely
not true in AuFe," with T~-0.2 K, as was pointed
out by Matho and Heal-Monod. '

In order to provide a better calculation regarding
the Kondo effect, the problem will be considered
in the parquet approximation within the noise model
as introduced originally by Riess and Ron. ""
This seems to be the simplest nontrivial way to
represent the RKKY interactions, and in turn
allows a more sophisticated treatment of the Kondo
effect. The parquet approximation" is the simplest
nonperI~n bative approximation and valid for tem-
peratures much larger than T~, but lower by sev-
eral orders of magnitude than in the perturbation
treatment. From the analysis of very-low-con-
centration alloys it is known that this is essen-
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tially adequate for AuFe for temperatures in the
liquid-helium range, although deviations become
increasingly marked in the mK range as the tem-
perature becomes of the order of T~."

Experimentally the concentration dependence of
I' has been established in many systems. ''"" "
Recently a second dimension has been added by the
demonstration of a rich variety of pressure depen-
dences of T in different spin-glass systems at
different concentrations. '"" The importance of
this can be appreciated by noting that in (1) the
concentration only influences ~, , whereas pres-
sure mainly influences 7,...'"

In order to provide a theoretical framework for
the analysis of these experiments, in the present
paper the mathematical details of the calculation
of the resistance in the noise model will be given. "
Second, relation (1) for T will be derived and ex-
pressed in a form convenient for numerical calcu-
lation. The actual analysis of the experiments
will be given elsewhere. " Here it shall just be
mentioned that given T~ for a spin-glass system
(1) allows the compound quantity T to be "decoded"
into the more basic 4, . In this way it is possible
to understand the complicated behavior of T quan-
titatively in terms of much simpler behaviors of
~, and T~, for example as the pressure is changed.
The determining factor for the behavior of T in

a particular alloy turns out to be the relative mag-
nitude of ~, and i~, i.e., the relative strengths of
the RKKY interaction and Kondo effects.

II. NOISE MODEL

The Hamiltonian of the local interaction between
the conduction electrons and a single impurity spin
at the origin R =5 is given by

Here o(|)) is the Pauli spin operator of the electron
spin density at the impurity site. ~ is the s-d ex-
change coupling constant and S is the spin of the
magnetic impurity. The electrons form a sym-
metrical Lorentzian conduction band of width D
and density of states po (per electron of each spin
projection), centered at the Fermi energy (zero
of energy).

The individual impurity spins of magnitude S
have 2S+1 projections ~S,) along the common axis
of quantization. In the present calculation there
is no external magnetic field. Hence, in the
pseudofermion formalism each of these states is
represented by a free pseudofermion of zero ener-
gy. ' This corresponds to the spectral function
of zero linewidth

8,((u) =&(~),

where ~ is the pseudofermion energy. In this pic-
ture the lifetime of the pseudofermion is infinite,
which means that left to itself the spin stays in a
definite state ~S, ) infinitely long.

ln the noise model a transition rate 6, (i.e.,
transition probability per unit time, ff =ks =I) is
introduced into the pseudofermjLon spectral func-
tion. Now when a pseudofermion is scattered out
of its state and into another, a flip of the spin
takes place ~S, ) —~S,'). The presence of the auerage
transition rate ~, for such processes means that
the pseudofermions now have only a lifetime ~, '.
Alternatively one may say that spin memory is
lost by the impurities on the average after a time
4, ' due to a source of noise located in the sur-
roundings. " The spectral function now becomes
a Lorentzian

The combination of (4) with (2) forms the mathe-
matical representation of the noise model. ' It
should be noted that in this model the impurities
scatter incoherently as individual scattering cen-
ters.

When the model is stated in this way one does
not have to commit oneself to any particular physi-
cal noise source in order to calculate the proper-
ties of the model. It is thus possible to test such
physical models of the noise &, against values of
6, obtained from experiments. In particular this
holds for the concentration and pressure depen-
dence of ~, ."

When introducing the noise model Riess and Ron
assumed that RKKY interactions were the source
of the noise and later calculated 4, in terms of
the concentration c and ~." In this calculation &,
is thus identified with the average RKKY interac-
tion energy.

Starting from a different point of view one ob-
tains essentially the same result. The impurities
are located at random sites in the host metal,
interacting through the long-range oscillatory
RKKY interaction. The individual spins will ex-
perience quite different surroundings and there
will be no possibility of long-range order in the
conventional sense. It has been shown"'" that for
Heisenberg-type interactions —and in the absence
of short-range order too —the distribution of in-
ternal magnetic fields H, experienced by the spins
is the Lorentzian

Averaging the free pseudofermion Green's function
(retarded &-0', cf. Sec. III)
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9(( ) = - ((o+ i~) '

in the presence of the field H, (z being the axis of
quantization) „onegets

98((u) = — dH, — —*P (Hg) I
(g2 —Hg + 'L ~ + + 54 &

which is exactly equivalent to the spectral function

(4) through the relation

8((u) = (I/ll) Im9~(~) .

In fact, P(H, ) may be directly interpreted as the
spectral function, as can be seen from (7). In this
approach ~, is again essentially equal to the aver-
age RKKY interaction energy

The diffex'ent calculations do not agree entirely
about the spin and concentration dependence, so a
spin-dependent prefactor was left out and a linear
collcellil Rtion depefldellce cllosell ill (9). Tllls 18

only needed as a physical guideline as the follow-
ing calculations in the noise model do not require
the specification of &~. It turns out that using the
1'esUlts of tllls tlleol'y (9) ls col 1'ollol'Rted by tile

exper iment8.
Most of the recent theories of the spin-glass

freezing, not considering the Kondo effect, have
been able to produce the key experimental feature,
namely the cusp in the magnetic susceptibility at
the freezing temperature To." These theories
rely on mean-field-type calculations in models
both with and without short-range order below the
freezing point. " Generally, as T comes below To

a local ox'der parameter is induced, growing up in
the usual way for a mean-field theory as (T, —T) '.
Above To this order parameter vanishes. The exis-
tence of the nonvanishing order parameter below
To reflects the sudden freezing of the spin system
into a ~Asogde Fed 8tate, where each spin becomes
locked into a fixed but random direction. The
freezing is a macroscopic cooperative phenome-
non, which accounts for the sharpness of the sus-
ceptibility cusp.

A distribution of fields P(H, ) or a corresponding
noise spectrum of width ~, at temperatures above
To is in accordance with these spin glass theories,
even though they may disagree at temperatures
below To, where a simple noise model is hardly
applicable anyway. In general, when the Kondo
effect is included in the theory of the spin-glass
fl'Bezlllg olle would expec't R 1 BIRtloll Similar to (I)
for the freezing temperature

Although so far no such calculation has been per-
formed it is conceivable that for To the influence of

the Kondo effect will be restx icted to the transi-
tion region whexe A, -T~. Here one expects that
both T~ Rnd To vanish (Flg. 1), BUch Rs to 1'ef lect
the impossibility of forming the spin-glass con-
densate in the presence of a strong dominant Kondo
effect. Conceivably, when 4,»T„onehas to a
good approximation"

IQ contx'ast to this lt will be shown ln the following
that

in the same limit. It is thus a fortunate circum-
stance that around the maximum at T the noise
model. can be expected to be valid, undisturbed
by the freezing that happens in the real spin glass
at T,«T . Formally the model is valid at any
temperature.

odj/
I/
II
II
lt

ln h, ,/TK

FIG. 1. Schematic representation of T~ and To as
functions of Q and Tg based on experiments and the
result of the present calculation. Q is assumed rougMy
proportional to the concentration. Both T and To are
expected to vanish as Q becomes of the same magnitude
as TE. In the opposite limit of low Tz and high , To
is expected to be proportional to b, while in this wor k
it is shown that T» =To.

III.. FORMAI. ISM

The interaction (2) is a contact interaction and

is therefore only felt by the conduction electrons
when they occupy the Nannier state at the impurity
site. The problem of calculating the scattering
amplitude for electrons by the impurity at the
origin can therefore be formulated exclusively
in terms of local quantities. This is pex'haps
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easiest to see by including the electron momenta
and observing that since momentum is not con-
served by (2}each momentum becomes indepen-
dently summed over, leaving exclusively local
Green's functions for the free-electron inter-
mediate states in the scattering processes

1 g 1

~

"
p, x)

Here St, is the energy of a free electron of mo-
mentum k, N is the total number of conduction
electrons in the solid, po(x) is the density of
states, and ie„is the fermion Matsubara fre-
quency of finite-temperature field theory""

(13)

f&@„=ivT(2n+1), n =0, +1, a2, . . . .

9(n) = 8(x)
X —l (d~

(15)

The spectral functions p, (x) and 8(x) are normal-
ized to unity, and they are even functions of x, due
to particle-hole symmetry.

The spectral representations (13) and (15) ex-
emplify the analytic structure of the Green's func-
tions. They are defined at the points ice„along the
imaginary axis. %hen analytically continued into
the complex plane they define analytic functions
in the z plane

The last expression of (13) is the spectral rep-
resentation of the local free-electron Green's func-
tion, where po(x) is the spectral function analo-
gous to (4) for the similarly local pseudofermions.
In terms of the Matsubara frequencies one has for
the pseudofermions

FIG. 2. Double Riemann sheet to define analytic prop-
erties of Green s functions. The cut is along the real
axis and the upper sheet is the physical where the func-
tions are analytic. Singularities may appear when func-
tions defined on the upper sheet are analytically con-
tinued through the cut into the lower sheet. Symbols
are defined in the text, cf. (17).

dlskF (x)
tl' x —z

(20)

where F„is the value of F(z) at ~z~-~. For the
single-particle Green's functions G„=9„=0.

For the Lorentzian conduction band

[9'(-')) * =9"( ),
disk9(x) —= (1/2 f)[9s(x) —9"(x) j

= Im9s (x) = n8 (x), (19)
where disk9 is the discontinuity across the eut,
and the last relation of (19) is identical to (8).

The spectral representations are examples of
the dispersion relation for functions F(z) with this
analytic structure

9(.) =
x —r

(18)
p.(x) = „,,D, , p, = p. (0) = (~D} ',D/v

(21)

which have a branch cut along the real axis. Simi-
larly to this all the Green's functions used in the
present analysis are defined on the double Rie-
mann sheet structure shown in Fig. 2. The re-
tarded function 9z(z}, defined by analytical con-
tinuation from i &u„ in the upper half plane (UHP),
where it is analytic, may be continued through the
cut into the second sheet of the lower half plane
(LHP), where it may have singularities. Similar-
ly, the advanced function 9"(z), defined by analyti-
cal contlnuatlon from l (d„in the I HP, where lt ls
analytic, may be continued through the cut into the
second sheet of the UHP, where it may have singu-
larities similar to those of 9"(z) in the LHP. Thus

i 9"(z) in UHP,
9(z) = '

I 9"(z) in LHP.

The following useful relations hold on the real
axis:

one has similarly to (7)

Gs((o) =-(~+ fD)

and (18)-(20) apply.
To illustrate approximations the inventory of

Feynman diagrams shown in Fig. 3 is used. Em-
ploying the reduced graph expansion" of the dis-
continuities "disk" in conj unction with the dispersion
relation (20) is a most efficient way of summing
the relevant contributions from diagrams in the
various approximations. Here it will be used to
produce the parquet approximation.

IV. SCATTERING AMPLITUDE

The total scattering amplitude t(z) is isotropic
s wave and independent of the momenta of the con-
duction electrons in the initial and final states.
This follows from the reasoning in Sec. III. It is
obtained by summing up all the repeated scattering
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FIG. 4. Sum of irreducible parts making up the scat-
tering amplitude for conduction electrons on the im-
purity site.

defect scattering A. , the total "measurable" resis-
tivity can be written in the form

8 =A+BR
„

(27)

FIG. 3. Feynman diagrams symbolizing quantities
defined in the text. &, P, y, and 5 are indices for the

spin matrices and ~~, co2, and ~3 are single-particle
energies. I' is the renormalized exchange interaction.

processes due to (2) that take place while the elec-
tron is at the impurity site. Let M(z) denote the
irreducible part which does not include any single-
electron intermediate states. Summing the terms
of Fig. 4 gives

tR (&u) =M" (cu)/ [I + G,(~)Ms (&u) J . (23)

To obtain the resistivity only the value at ~ =0 is
needed. Owing to the particle-hole symmetry of
the model one can easily show that the real and

imaginary parts of all the Green's functions are
either even or odd functions of ~, respectively.
For example, ReMs(&u) is odd and thus Ms(0)
=i diskM(0). Using the auxiliary real function

h =- —vp, diskM(0),

one obtains for the imaginary part of (23)

-vpoimt" (0) =H(h) =It/(I +h) .
For a random distribution of impurities, at low
concentration the leading contribution to the resis-
tivity is proportional to the concentration times
the contribution from a single impurity. Intro-
ducing the correction factor C(S) for pseudofermi-
on statistics" the single-impurity contribution in
units of the unitarity limit for s-wave scattering is

H =-vp, C(S)lmP(0) =C(S)H(a). (26)

Including then a source of temperature-independent

It = f,h, (T/T„r,/T, ), . (2g)

where fs is a function of the impurity spin.
The equation for T is obtained by selecting the

appropriate solution to

=D. (29)
T=T

As H(h) is well behaved this ultimately reduces to

h, T; ' =h,'; ' =O. (20)
87 '

TE .=T./Tr
' TE

'
TE

It follows that among the ingredients of the model
giving the 6I given by (2'?), T only dejends on the
Ago "relevant" mode/ parameters &z and +c.
Apart from these T is independent of A, H, fs,
and the form of H(h), i.e., of: (i) Size of sample
(pressure dependent); (ii) effects of nonmagnetic
impurities and lattice defects (pressure induced)
other than those which influence C, ; (iii) magnitude
of the unitarity limit, metal host parameters (ex-
cept through the influence on &, and Tr); (iv) con-
centration of magnetic impurities (except through
b. ,); (v) inclusion of multiple scattering, other
effects on the form of H(h); (vi) magnitude of the
impurity spin (except through 4,). It must be em-

vrhere A. depends on the concentration of nonmag-
netic impurities, pressure, etc. , and B depends
on the magnitude of the unitarity limit and the
concentration of magnetic impurities (leading term
~ o). In writing this expression the Fermi func-
tions in the integrand of the transport coefficient
for the resistivity were approximated by the zero-
temperature & function in the usual way so that
only the v =0 scattering amplitude is needed. It
was a1.so assumed that contributions from coherent
scattering of electrons simultaneously at two or
more impurities is negligible (nonleading in the
concentration) compared to the incoherent part kept
in the noise model here. This was shown to be
justified in second Born approximation by Matho
and Baal-Monod, ' and is assumed to be also valid
in the present calculation.

All the temperature dependence of @ comes
from h, which is to be calculated in Sec. V. The
result of this is that h can be expressed in the
form
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x =x (d),

where

(31)

phasized that it is only T that is not dependent on

(i)-(vi). The resistivity (R depends on all of them.
It also follows from (30) that the expression for

T as a function of T» and n,
„

i.e., (1), is reduced
from a function of two variables to a function of
one variable, that may be written in the form

cIISC
0

,X)

g,X2 ~
x,x, ~

FIG. 5. Reduced graph expressing the discontinuity
of the irreducible part. Only the contributions from
intermediate states with the smallest number of par-
ticles are included. q, f, y are indices for spin matrices;
x f x2 and x3 are single -particle energies in the inter-
mediate state.

xo=ln(T /T»} and d—= ln(n, /T»). (32}

This is due to the fact that for each value of n. , /T»
&1 there is one resistivity curve with a maximum,
hence one T /T».

The establishment of the relation (31) constitutes
the principal result of this paper. In the Secs. V-
VIII its actual form will be derived in the region
of parameters where 4,&T~, together with condi-
tions for the validity of the result.

V. CALCULATION OF A

The calculation of h according to (24) is done
with the first term in the expansion of diskM,
shown in Fig. 5. This includes the three-particle
intermediate state, which is the smallest number
in the irreducible part, together with the renor-
malized exchange interaction I to be calculated
below. From the diagram in Fig. 5 one gets

))= «d (—1) xd f d td( )f( )f d, P(*)f(*,), , dx, 8(x,)f(-x,)
x 6(x, +x, —x,)r'(x„x„x,)r"(x„x„x,),

(33)
where f (x) = (1 +e")r) ' is the Fermi function and the spin matrix for the diagram is (summing over re-
peated indices)

=(at~ 5„„)(o„t5„„)=(2S+1)S(S+1)6„~. (34)

In the present calculation, which is standard parquet theory except for the inclusion of the noise width

n, in 8, summing the leading logarithmic terms one takes I' outside the integrals in (33}with all argu-
ments equalto zero. When solving the equation for I' below, it is sufficient to consider

r(z) -=r(z, z;z). (35)

The p, (x) is also slowly varying and can be taken outside as po, and using that 8(x) is even in x one gets

2p.r'(-0)I'& (T/n. ),
where

(36)

P T—=-n24 'tdItX$ QX3 ] 3 ] 3 $ 3 (37)

which may be written in the form suitable for numerical integration
c««,

z -l
P(x)=& dy dz (1+y')(1+z') cosh —+coshx x (38)

To calculate the renormalized interaction I' consider the expansion shown in Fig. 6. The spin matrices
of the two terms are

», = (o,
„

ltf, )(e, 5() t) = S(S +1)6„„68,—o„S()f, ,

»z =(o„q 5(z)(o~ S()t) =S(S+1)6„y68~+(y~y~ S8f, .

The full right-hand side then becomes

, (-()'( "-()f d«, «. («, )f(*,) dx28(x, )f (x,}6(x,+x2 —(e)rs((e, x„(e)rz(x„(u;(e)

+»,»(-I)'(e ~r —1) d* P (*,)f(-*,)f d*.td(*.)f(*.) (-*,+*.— )d'(, ,;*,)d'"(*„;*,).
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Using (35), the I'"I'" goes outside, and since p, (x) is even, the two terms are equal except for the opposite
signs. Thus the 5& terms in the», and», cancel (and one easily shows that if a &5 term was included in
I' when calculating»2 and »2 these extra terms also cancel) and I' multiplies the o S spin matrix. Then

e)xxl'(x)=-2e(e"e —l)l'"(e)l'"( ) J px, p, (x}lx(x—x)f(x }f(e —x)

Using (19) and

( ~'-I)f(, )f( — )=f(- ) —f( —,),

(39)

(40)

disk =2» dx p, (x)8((2) —x)[f(-x) —f ((d-x)]1
I'(~)

=2m dx p x x g u+x -2n dx g x x po +-x . (41)

Then the dispersion relation (20) with I'„=J gives

2 p(*)f(*)f ex . ..-2J 2 (2(*&f(*)f ex

=2 dx p, (x)f(x)9"(x+(u) —2 dx8(x)f (x)G" ((u —x).
~ 2O ~a OO

(42)

To obtain I2 by (36) I" is only required at &u =0. Then using (4), (V), (21), and (22) the integrals are easily
written

1 1 2 1 1
T22( )

Im dx f(x) (43)

2mT ~ 1 1
v'T(D -n, ,) ~ 22--,'+n, , /2»T n- ,'+D/2»r-1 1 1 i ~ 1 1

rs(0) Z »2 ™T ~n--,'+D/2m n- ,'+n, ,/2»T-

Adding a vanishing integral along an infinite semicircle in the upper half-plane this becomes by the residue
theorem

=2p,[y(-,'+D/2»T) y(-.'+~,—/2»T)] =2p, [ln(V/2»T) (I(,'+r ./2—»T)-], (44}

where terms O(L, /D, T/D) have been neglected.
Defining the dimensionless exchange coupling con-
stant

(45)

and the Kondo temperature

(46)

then for 4 & 0 one gets

-2p, l'"(0) =[in(2»T/T»)+(}}(-', +r, /2»T}] '. (4V)

The vanishing of the [ ] as T is lowered signals
the familiar divergence in I' indicating the break-
down of the parquet approximation, when a pole
of I'"(z) from the second sheet of the LHI2 crosses
the real axis and enters the first sheet in the UHP.
This spurious pole in the UHP violates the analyti-
cal properties of I'"(z}once T s T».

The key feature of the noise model is the pres-
ence of 4„depressing for 0&4,&T~ the tempera-

ture where the pole crosses the real axis. When

4, =T~ this happens only just at T =0. If 6,& T~
the function has the correct analytic structure at
any T. Inserting (4V) in (36)

12 = 2(2S+1)S(S +1)P(T/n. ,)
&[ In( 72 }(T/T)+y(-,'+rp, /2»T)] ', (48)

which is the desired result having the form (28},
with

f» = 2(2S+1)S(S+1),

h, (T/T»; n. , /T») =P (T/n, ,)[ln(2nT/T»)'
+(})(-,

' +n, /2)}T)]

(49)

VI. RESISTIVHY

The resistivity is given by (2V) in terms of (26),
(25), and (48)



RESISTANCE MAXIMUM IN SPIN GLASSES 4363

y, 0

dlSC

u.0 (: )

C (S)f,f'(Tln, )
[ln(2nT/T„)+g(~+n, ,/2IIT)]'+ fg~(T/g, )

'y, Q a,0
In order to infer C(s) expand this in leading order
as T-~, where P(x)- ~II'

R-3 IIC(s)f~/32ln'(T/Tx}.

a,Q &.0
Noting that this must agree with Abrikosov's" and
Hamann's~ result in the same limit where the
noise plays no role

ft-11'S(S+I)/4 In'(T/Tx) + O(ln '(T/Tr)), (52)

it follows that

HG. 6. Reduced graphs expressing the discontinuity
of the renormalized exchange interaction. Only the con-
tributions from intermediate states with the smallest
number of particles are included in the parquet ap-
proximation. q and g are indices for the spin matrices;
x

&
and x2 are single-particle energies in the intermediate

s tates.

c(s}=4/(2s+I) = [2 for S=-.',
3

in agreement with the result of the exact ealeula-
tion of C(S) in the high-temperature limit. " Thus
one gets the result

'E —,'s(s + I)p(T/~, )
T, ' T, [In(2IIT/T, )+4(-,'+n, , /2IIT)]'+-', (2S+I)s(s+I)t'(T/8, )

'

Letting 4,-0 one recovers the noise-free parquet result valid for T» T~

T 4II2S(S +I)
T, ' [In(2IIT/T, )+y(-.')]'+ —,', x2(2S+ I)S(S+I)

(54)

P(x) = —,', w'x' for x-0,
one gets

(56)

A(T/Tx; n, /Tx) =-,'II'S(s + I)
x [T/&. In(&, /Tx)]'+ o(T') (5'I)

As T is increased ft goes thI'ougll a maximum (a't
T calculated in Sec. VI) and then decreases, even-
tually making contact with the slow1y decreasing
loagrithmic parquet resistivity (52) at very high
temperatures T»4, ." The validity of the expres-
sion (54) is discussed below and in Sec. VIII.

In the Kondo model even terms of lower order
than those included in the parquet approximation
continue to have some potential influence. Thus
the Kondo contribution to the width of the spectral
function is'0

According to Sec. V (47) only has the correct ana-
lytical structure at all T when 4,& T~. Considering
(54) in this case for T «&, and using that

n,
„

-T/in'(T/T, )

and in fact increases with E, though slower than
linearly, which is the reason why at high tem-
peratures it does not contribute significantly com-
pared to the thermal Quetuation rate -T. Hut as
T-~ it will eventually exert a stronger influence
on the zero linewidth parquet resistivity (55) than
does the noise rate n, . In (54) the deviation from
(55) as T comes down from ~ is of the order

in agreement with the virial expansion, "while at
the same temperature the leading Kondo deviation
would be of the order

hx/T - I/In'(T/Tx)

and is clearly the bigger part when T is large
enough, though a small correction. Fortunately
this happens only at T +& T where such corrections
are insignificant anyway, while at T —T it turns
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out that the noise dominates the Kondo fluctuations
as long as ~,» T~. The features of the maximum
that will be derived in Sec. VII are thus genuine
effects of the noise, not strongly influenced by the
use of the parquet approximation.

10—

VII. MAXIMUM

The temperature of the maximum is readily ex-
tracted from measurements of the resistance. The
analysis of T is a source of information about the
"essential" parameters 6, and T~, that does not
rely on detailed fits of the temperature dependence
of @. to the experimental resistance that would
involve the consideration of a great many addi-
tional parameters, cf. Sec. IV.

According to (30) T is determined by the zero
of the temperature derivative of (49). In order to
facilitate the mathematics of the derivation of the
relation x, (d), introduce the set of dimensionless
quantities

r =—T/T», x = ln 7,

Xp

=—T /'T~, xp=—in''

a =r, /T», i d—=- lna,

and the auxiliary functions

E(7; a)= In(2»~)-+g(-,'+a/2»7)1
—= 1na+N(7/a),
—= d + II(x —d),

P (7/a) = t(x —d),-

(59)

(60)

(61)

(62)

(63)

FIG. 7. Relation xp =&p(d) expressing T as a function
of 4, and 7.'~ t cf. (31) and (32)] . The slope x 0(d) is a
monotonically decreasing function of d. In the limit
d —~ the relation is xo- d + lnd + cons t. Although qual-
itatively reasonable for all positive d this relation is
only strictly valid for large d.

where script symbols denote the functions of the
logarithmic arguments. Equations (30) and (49)
then determine & through the implicit equation

E(7' i a)P (rm/a) =2P(7m/a)E (rm' a) (64)

generated as follows. One has for use in (64)

E =xo+In(2»)+((-,' + a/2»v ),
vmE' =1 —(a/2»vm)g'(-, ' + a/2w m),

(67)

(68)

Letting prime denote the derivative with respect
to the argument of the logarithmic functions the
equivalent equation for xp is

[d +51(xo —d)] 4"(xo —d) = 26'(x —d) 2'(x —d) .
(65)

Given 2, X', +, and 6" as functions of their argu-
ment p this equation allows a direct parametric
evaluation of x, (d)

P = —,', »'[I —i,a/~ i,j (a/7 )'+ —O((a/r „)')],
(69)

~~' = —,', »'(i, a/~ +2i,j(a/7 )'+O((a/r )')].
(70)

The asymptotic expansions of P and P' (69) and

(70) are nontrivial, as is the integral (38) itself.
The coefficient io has been calculated exactly

x, = y +2(P (y) 5I'(y)/6" (y) —51(y),

d = 26'(y) 51'(y)/6" (y) —5I(y) . (66)

i o
= 28$(3)/» ' = 1.085 509 028,

whereas a numerical estimate of j gives

(71)

The relation is shown in Fig. 7.
The asymptotic series for x, (d) as d-~ can be

j =-0.773.

It follows that

(72)

[x, +»(2»)+4(2+a/2»7 )][i,a/r +2i,j(a/7 )'+O((a/7 )'}]
=2[1 —i,a/7 —i,j (a/r„)'i O((a/r )')] [1 —(a/2»7 )q'(-, +a/2»r )].
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Now for 7 -~ and therefore xo-~ the leading terms are

x,i,a/7„=2,
and it is possible to express a/i as the series

n/7 =2/i, x, +u/x', +O(x, '). (V3)

Using this and expanding the digamma function one gets

]I+[In(2v)+g(—,')]/x +O(x '))[I +(i u+Bj /i )/2« +O(x ')]=[1—2/x +O(x ')][I -2$'(-, )/2 ivx +O(x 2)],

which is an equation for the constant u giving

i,g =-2[2 + g'(z)/wi, + In(2n) +g(a) +4j /i, ]

= -0.946 . (74)

r, = T„Q(In(T„/T„)&, (79)

from which 4, ean be calculated given E and Z„.
Conversely, from xo(d) T can be calculated given
6, and T~

Using this result and (59) one may write (V3) in the
form

d=x +I n(( 2/i )[1/xo+i,u/2xo+O(xo')][, (75)

valid when xo- ~ and d —~. The inverse relation
d =d(xo) is useful, and (V5) is a rather good ap-
proximation numerically when d is not too small.

In order to deal with alloys like Aupe a better
numerical approximation is required, though.
Rather than working directly with a numerical
solution like (66), in the practical analysis of data
the following Pade approximation is convenient.
The argument of the logarithm in (75) is replaced
by the ratio of two polynomials having the same
x, -~ expansion as (75). The degrees of the two
polynomials are constrained by the necessity of
avoiding the spurious divergence of (75) when

x,-0. The actual choice is made by considera-
tions of numerical accuracy compared to (66). The
approximation is given by

d =x, +In@(«,),
with

R, =9.527, R2 =20.792, A3 =10.000,

~, =25.375, &, =24.610,

and is aeeurate to three decimal places in d &0.75
or x, &0,65. The expression (76) is easy to invert
numerically by iteration to produce the corre-
sponding approximation for xo =xo(d). Also, anoth-
er quantity of interest is easily obtained from (76)
and (77)

d" -=«,'=[1 +0'(x, )/Q(x, )] ', (78)

where Q'(x, ) =BQ/sx, . A useful expression equiva-
lent to (V3) is

Tz T„exp[-q——(b, , /T )]. (81)

Thus given any tzvo of the three quantities 4, ,
T~, and T the third may be calculated. It is note-
worthy that these relations, being in general func-
tions of two variables, like (1), may in fact be
expressed by functions of one variable connecting
ratios like for example T /Tz and n, , /Tz. This is
as close as one gets to universal sealing behavior
in a system with two characteristic energies.

VIII. DISCUSSION

It is of interest to consider the behavior of the
leading terms in the asymptotic limit when d-~,
i.e. , when 4,» T~. The leading term in Q is for

~ OO

Q -2/i, x„
so it follows that

d -x, + ln(2/i, x,),
x, -d +in(i, d/2),
x' -1 + 1/xo-1 + 1/d .

(82)

(83)

(84)

Note that these reflect the general monotonieal in-
crease of x, with d and decrease of x,'with d. One
further obtains

~,-[v'/14'(3)] T /in(T„/T, ),
T.—[14' (3)/~ ']n. , in(n, /T, ),
T„-Texp] [v'/14&(3)]T-/b. ,)f.

(85)

(86)

(87)

Here note that 4, and T depend weakly on T~,
while in turn I~ depends strongly on their ratio.

T =Txexp[«, (ln(a, /Tx))].

Finally, from the inverse function of (77), x, =q(Q),
and (79) Tr can be obtained from n, and T
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The principal result is (86) for T which shows
that indeed T»b, , when &,» T~ as was remarked
in Sec. II. The logarithm involves T~ in an essen, -
tia/ way. It seems appropriate that 7'„thus appears
explicitly in the expression for the temperature
of the maximum, which is after all mainly due to
the Kondo effect. This has not always been the
case in previous theories, "' and it is essential
to account for the pressure variation of T ."

One sees that as J'~ is decreased, with fixed 4
increases. That is, the weaker the Kondo effect

is the sooner it will be effectively quenched by
RKKY interactions as the temperature is de-
creased. Simultaneously the absolute value of the
resistivity at T decreases, also indicating the
weaker Kondo effect.

Another point worthy of comment is the follow-
ing. As was mentioned before, with two charac-
teristic energies there is no possibility of strict
universality of the temperature-dependent resis-
tivity. However, comparing (86) and (5'I} one notes
that for F~ «~, it looks as if the resistivity on the
low-temperature side and around the maximum is
approximately a function only of T/T . When Tx is
very small there may be a region of 4, = T, & T
«T, where (57) is a fair approximation. This
approximate universality, that will cease to hold
when T»T, may account for the observations
of universal behavior 6t -$(T/T„)at different con-
centrations in AgMn, "which does have a very
small T~&1 mK.

Finally one must check the various conditions for
the validity of these results. Formally, the rela-
tion xo(d) holds for d&0, i.e., for o.,&Tx Qualita-.
tively the result that T -0 as ~, —T~ seems rea-
sonable. However, the parquet approximation re-
quires T» T~ for the expression to be strictly
valid. This is satisfied when 4, » T~. Simul-
taneously one achieves ]cf. (86)] T»O. , = T, (cf.
Sec. II) getting away from the spin-glass freezing.
Using (58), at T =T' the Kondo fluctuations are of
the magnitude

ln (A, /Tx)

hence insignificant when 6, ~& T~.

When will &~ become of the same order of mag-
nitude as 4, ~ According to Sec. VI this will hap-
pen for temperatures

T~ T„-6,ln'(A, /T~)-T ln(4, /Tx)»T

and the relative magnitude of both corrections to
noise-free parquet resistivity at these tempera-
tures will then be less than

6, /T„-I/In'(o, /Tx) «1,
and thus insignificant anyway.

Consequently the mathematical criterion for the
validity of the x, (d) relation for T is

ln(a, /Tx}»1 (sharp),

&, /5»» 1 (soft),

where the soft criterion is sufficient to satisfy the
parquet approximation, which is perhaps the most
important, while the sharp criterion is needed to
get clear of T, and effectively eliminate correc-
tions to the parquet approximation compared to
noise corrections around T .

These criteria do not directly point out the &u-
me~ical' conditions for the validity of the theory,
which can in practice only be assessed by com-
parison with a more sophisticated theory and by
application to the experiments. One can expect
all the alloys AuMn, AgMn, CuMn, A. uCr, and
AuFe for concentrations of the order 0.1 at. % to
be at least on the right side of the criteria, all
of them satisfying the soft criterion on the 10%
level or better, while especially AuFe with the
highest T~ may have some difficulty satisfying
the sharp criterion fully. Thus it is particularly
in A.uFe that one may expect to see spin-glass
freezing effects rather close below the maximum
effects that the present theory may not account
for "
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