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Results of the standard dynamical theory of x-ray diffraction by Bragg planes parallel to a crystal surface are

reproduced using Abeles's 2)& 2 matrix method for finding reflection and transmission by layered isotropic

structures. In addition to giving a somewhat different insight into the problem this technique can be used to

compute reflection and transmission in crystals with varying lattice spacing such as might be formed by

thermal or impurity gradients between the surfaces. The method is also used to obtain reflection in point-to-

point focusing x-ray monochromators made with ideal elastically curved perfect crystals.

INTRODUCTION RESUME OF THE ABELES METHOD

Abeles'describeda 2 && 2 matrix method to com-
pute reflection and transmission of light by plane
layered media in which the refractive index is
isotropic and varies only in the direction normal
to the layers. The method can be used to find
solutions for the dynamical theory of x-ray diffrac-
tion if variation of x-ray refractive index normal
to any sets of Bragg planes of interest is known.
This variation can be obtained from the complex
x-ray structure factor, the real part of which is
largely a measure of a Fourier component of elec-
tron density in a direction normal to the Bragg
planes. The imaginary part is a measure of local
average linear absorption coefficient. If local
optical anisotropy were appreciable it would be
possible to use the 4 && 4 matrix generalization of
the Abeles method, "but this is unlikely to be
necessary for x rays.

Since the refractive index for x rays within a
crystal varies by a very small amount, a highly
accurate closed-form solution for the matrix re-
lating the electromagnetic field vectors on opposite
sides of one cycle of the periodic structure can be
obtained from a Fourier analysis of the complex
refractive index or the structure factors. This
greatly speeds numerical solution of the problem
and makes it quite practical to consider the prob-
lem of millions of layers with slowly varying
periodicity, as in a crystal with a thermal gradient
or an impurity gradient.

The technique as described is not suited to the
problem of x-ray diffraction by Bragg planes that
are not parallel to the crystal surface. However,
for small tilt angles, the solutions are known to be
very nearly the same as for zero tilt. By a simple
transformation, the results can also be applied to
the problem of reflection and transmission by thin
crystal wafers used in ideal elastically curved
point focusing x-ray monochromators. "'
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where E& and Il& are electric and magnetic field
components. Note that k„c/&u is cos8„where 8, is
the angle between the wave normal in vacuum and
the layer surfaces. Both equations can be written

or (4)

If n varies with z, then D will be a function of z.
If n is independent of z, then the integral of Eq.

(3) for a finite slab of thickness h is'
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where q= aber/c, or

P(z+ h) = M(n, h)g(z).

If variation of optical parameters of a layered
medium in the x and y directions can be neglected,
field components of plane waves that are incident
in the x-z plane must be of the form

f,= 4,(z) exp[i(k~ —(ui)].

If, in addition, the complex refractive index n at
frequency co is everywhere isotropic, and if the
magnetic susceptibility is negligible, Maxwell's
equations reduce to the form
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It is useful to note that q is the same for g-, as
for 0-polarized radiation.

To find the matrix M across a medium of varying
refractive index, matrices for short intervals
across which the variation is negligible may be
multiplied together.

M= M n~, kg .

i&,

(Pr

«")'
and the transmitted ray by

(9)
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Similarly, if the matrix across one cycle of a
periodic medium is M„ then the matrix across
N such cycles is the Nth power of M, .

NMN=~M.

COMPUTATION OF REFLECTANCE AND TRANSMITTANCE

Regardless of what media are adjacent to the
layers for which M is computed, the reflectance
can be defined as the ratio of the mean value of
the component of Poyntings vector normal to the
surface for the reflected ray to that for the inci-
dent ray. Similarly, transmittance is the ratio of
the mean normal component of Poynting's vector
exiting from the opposite side to that for the inci-
dent ray. By our definition of P [Eq. (4)], Poyn-
ting's vector along z is just the product P,P, .
Using the subscripts I, R, and T to designate in-
cident, reflected, and transmitted waves, Eq. (5)
may be written

wherein, for v-polarized radiation

p~ = (ng —cos 8)

and for g-polarized radiation,

pg,
= ng(ng, —cos es)

Thus, Eq. (8) becomes

i'I)
/=M I I+r ~ (14)

k- pi
These two simultaneous linear equations may be
solved for the two unknown constants r and t. The
transmittance is given by the expression

7 =
i
f

i
'Re(pr)/Re(p, ),

where Re denotes the real part of a possibly com-
plex number, and reflectance is

A,l (0,)
+

(4,). (8)

rt= iri'.

WHEN n VARIES SLIGHTLY

(18)

If the refractive index of the medium on the side of
the incident and reflected ray is n~ and on the other
side is n~, and if 8, is the angle between the plane
of the surface and the incident ray when it is in
vacuum (assuming no prisms in the system), then
we may represent the incident and reflected rays
by the vectors

Suppose we write

M, = II M n, +(n-n, },——n, —,(17)
GM h

J=1

where n is some approximate average value of
refractive index, and M is defined by Eq. (5). The
first two terms in the binomial expansion for M,
are

b ~( ) ~, b BM(n, k/L) ~~ b

As L approaches infinity, we get

h &'M x
M, =M(n, b)+ [n(s) n] M(n, z-) M(n, h -s) dz.

nsO
(18)

It is easy to show from Eg. (5) that

(19)
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Furthermore, Q' commutes with M, while Q
does not. Hence the integral

h
8'= [n(z) —n]M(n, z)f 'Q'M(n, h -z) dz

0

=Q'M(n, h)f' [n(z) n—] dz
0

(20)

is just a correction to be added to M(n, h) in case
the value chosen for n is not exactly the mean re-
fractive index. It is the term

h

8 =f [n(z) —n]M(n, z)Q M(n, h-z)dz
0

(21)

that leads to Bragg reflection and other phenomena
that result from the variation of n.

Direct matrix multiplication shows that

Q'M n, h =!t/
—sinqh i(a/b)cosqh }

(i(b/a) cosqh —sinqh

n„= 1 —A.'r, p, /2s, (26)

where r, = e'/m, c' is the classical electron radius
and p, is the average number of electrons per unit
volume in the medium. If the electron density is
Fourier analyzed in a direction normal to the sur-
faces, then

n(z)=1 — ' F,+2 F,&
cos

d=l

+ F,Jsin, (27)
~ 2jrz

where V is the volume of a unit cell and F0 is the
number of electrons in a unit cell. E,&

and E,z are
cosine and sine components of the structure factor
of the crystal planes parallel to the surfaces for
Bragg reflection in jth order, when the Bragg spac-
ing of first order is h. The structure factor for a
set of Bragg planes with Miller indices jh, jk, and

jl is usually defined as
and (F2 + F2 )1/2cj sg (28)
M(n, z)Q M(n, h —z)

sinq (2z —h)

I —i(b/a) cosq(2z —h)

i(a/b) cosq(2z —h))

—sinq(2z —h) j '

(23)

If we make the Fourier expansion

n(z) n= c,-+ Z c~ cos + s~ sin2j7rz . 2j7rz

d=l
(24)

(where all constants are generally complex num-
bers), and insert this and (23) into (21) and inte-
grate, we get n, = g,&/4n, (29)

Comparison of Eqs. (27), (28), and (24) shows the
relation between structure factors and the Fourier
components of refractive index. The 2 before the
sum in Eq. (27) but not in Eq. (23) is a matter of
convention.

Since much of the x-ray absorption in a crystal
occurs near atomic nuclei, the imaginary part of

n also has Fourier components. These can be in-
corporated into the structure factor components by
making F„.and F,~ complex. The average value of
the imaginary part of n is

where

f(a/b)B'}
qh sinqh!

2 (i (b/a)B A

1 1A= s) . +.
jz -qh jz+qh

and
1 1B= c& jz -qk j&+qh

(25)

where p., is the linear absorption coefficient of the
medium in directions where there is no Bragg re-
flection or anomalous transmission. This part can
easily be incorporated into a negative imaginary
component of F0.

When x-ray photon energy is near an absorption
band in the crystal, a more rigorous treatment of
the relation between n(z) and the atomic structure
of the crystal is necessary. '

COMPUTATIONAL SHORTCUTS
The factor siI1qk prevents divergence of the ma-

trix S when qh = +jz. Bragg reflection occurs in
the neighborhood of these values of qh.

REFRACTIVE INDEX n FOR X RAYS

The refractive index n for x rays is a complex
number whose imaginary part n; is small and posi-
tive and whose real part n„usually differs from
unity by a small negative amount. At x-ray wave-
lengths shorter than and not too near the character-
istic absorption wavelengths of atoms in the medi-
um, the average value of the real part of n is'

The computation of M" can be done with a mini-
mum number of matrix multiplications by repeated
squaring of the matrix in the following way. Sup-
pose there were 23 layers. Note that

=M xM && (M ) &&([(M')']']2 (30)

By squaring M, squaring the square, and squaring
that twice more, followed by three more multi-
plications, we obtain M" in seven rather than 22
multiplications. The saving is much more impres-
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1). The effect on Bragg reflection for monochro-
matic rays diverging fxom the source is equivalent
to the effect of a flat crystal with linearly varying
Bx'Rgg spRclng oQ monochromatic plane wRves.
The equlvRlent lineRr variatlon ln Bragg spRclng
with depth for a flat crystal can be found by differ-
entiating Bragg's law'

jX= 2k sin8~,

CRYSTAL

and inserting the variation of Bragg angle with

depth in the curved cxystal, as follows.
To obtain equivalent variation by the changing

either h alone or 8, alone on the right side of
Bragg's law, we must have

5h sine~= h cos8~58~ .
If z is measured from the first surface into the

crystal, and if the source is at distance B from
the fixst surface of the curved crystal on the Row-
land circle of foci, then the change in angle 8, with

depth in the crystal is

5 8~ = co8~s6 /zD (33)

FIG. 1. Focusing curved crystal monochromator show-

ing symbols used in formulas.

sive when several million identical layers are i.n-
volved Rs ls usuRl in cx'ystal dlffx'RctloQ problems.

If the Bragg spacing changes slowly, results can
be made practically the same whether M, for each
cycle is made different or whether the crystal is
divided into several zones, each zone being ap-
proximated by some number m of identical cycles.
A suitRble criterion fox' chooslQg rN. fox' one zone
is to require that no Bragg plane within the zone
diffexs in position from the correct position by
more than one or two percent of one Bragg spRcing
h. By averaging the spacing in one zone to be ap-
pxoximated, the outermost layers of a perfectly
periodic approximate zone can be set exactly in
register with those of the approximated zone. It
usually saves computation time if m is made equal
to the largest integer power of two that is larger
than the minimum value of m. , even though this
may require up to twice the number of zones re-
quix'ed by a pax'ticular phase error limitation.

(see Fig. 1). Setting 6z = h and combining Eqs. (32)
and (33), we get

6h/0= 0 cos'8, /(D sin8, ). (34)
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Figure 2, using the abscissa scale at the bottom,
shows the computed Darwin reflection band at
fixed angle as a function of wavelength for plane
waves around the middle of the Cu Ke, line inci-
dent on a thick flat quartz crystal with the (502)
planes parallel to the surface. The larger band is

A crystalline wafer that is elastically bent to the
pxoper curvature may reflect x rays in one plane
from one point to another point. In a symmetrical
system the curved Bragg planes near the center
of the wafer axe parallel to the sux face. e~, the
complement of the angle of incidence upon the
Bragg planes neax the top surface is slightly
smaller than that deeper into the crystal (see Fig.

1.54048 3.54050
WAVELENGTH (A) AT eh=75. 599$O

FIG. 2. Darwin reflection band of ideal thick, un-
strained quartz from (502) planes in the neighborhood
of the Cu En& line, as a function of wavelength at fixed
angle, and as a function of angle at fixed wavelength.
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