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Results of the standard dynamical theory of x-ray diffraction by Bragg planes parallel to a crystal surface are
reproduced using Abelés’s 2 X 2 matrix method for finding reflection and transmission by layered isotropic
structures. In addition to giving a somewhat different insight into the problem this technique can be used to
compute reflection and transmission in crystals with varying lattice spacing such as might be formed by
thermal or impurity gradients between the surfaces. The method is also used to obtain reflection in point-to-
point focusing x-ray monochromators made with ideal elastically curved perfect crystals.

INTRODUCTION

Abelés' describeda 2 X 2 matrix method to com-
pute reflection and transmission of light by plane
layered media in which the refractive index is
isotropic and varies only in the direction normal
to the layers. The method can be used to find
solutions for the dynamical theory of x-ray diffrac-
tion if variation of x-ray refractive index normal
to any sets of Bragg planes of interest is known.
This variation can be obtained from the complex
x-ray structure factor, the real part of which is
largely a measure of a Fourier component of elec-
tron density in a direction normal to the Bragg
planes. The imaginary part is a measure of local
average linear absorption coefficient. If local
optical anisotropy were appreciable it would be
possible to use the 4 X 4 matrix generalization of
the Abelés method,?® but this is unlikely to be
necessary for x rays.

Since the refractive index for x rays within a
crystal varies by a very small amount, a highly
accurate closed-form solution for the matrix re-
lating the electromagnetic field vectors on opposite
sides of one cycle of the periodic structure can be
obtained from a Fourier analysis of the complex
refractive index or the structure factors. This
greatly speeds numerical solution of the problem
and makes it quite practical to consider the prob-
lem of millions of layers with slowly varying
periodicity, as in a crystal with a thermal gradient
or an impurity gradient.

The technique as described is not suited to the
problem of x-ray diffraction by Bragg planes that
are not parallel to the crystal surface. However,
for small tilt angles, the solutions are known to be
very nearly the same as for zero tilt. By a simple
transformation, the results can also be applied to
the problem of reflection and transmission by thin
crystal wafers used in ideal elastically curved
point focusing x-ray monochromators.*?

RESUME OF THE ABELES METHOD

If variation of optical parameters of a layered
medium in the x and y directions can be neglected,
field components of plane waves that are incident
in the x-z plane must be of the form

fi= lpj(z) exp[i(er - wt)]- (1)

If, in addition, the complex refractive index » at
frequency w is everywhere isotropic, and if the

magnetic susceptibility is negligible, Maxwell’s

equations reduce to the form
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where E; and H; are electric and magnetic field
components. Note that k.c/w is cosé,, where 6, is
the angle between the wave normal in vacuum and
the layer surfaces. Both equations can be written
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If n varies with z, then D will be a function of z.
If n is independent of z, then the integral of Eq.
(8) for a finite slab of thickness % is®

1 - cosgh  i(a/b)singh\ /¥,
o) e \i(b/a)singh  cosqh b, z’

where g=abw/c, or

Uz + k)= Mn, ) (2). (5)
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It is useful to note that g is the same for 7-, as
for o-polarized radiation.

To find the matrix M across a medium of varying
refractive index, matrices for short intervals
across which the variation is negligible may be
multiplied together.

M= ﬁ M(n;, hy). (6)

Similarly, if the matrix across one cycle of a
periodic medium is M,, then the matrix across
N such cycles is the Nth power of M,.

My=M. )
COMPUTATION OF REFLECTANCE AND TRANSMITTANCE

Regardless of what media are adjacent to the
layers for which M is computed, the reflectance
can be defined as the ratio of the mean value of
the component of Poyntings vector normal to the
surface for the reflected ray to that for the inci-
dent ray. Similarly, transmittance is the ratio of
the mean normal component of Poynting’s vector
exiting from the opposite side to that for the inci-
dent ray. By our definition of ¢ [Eq. (4)], Poyn-
ting’s vector along z is just the product ¥,9,.
Using the subscripts I, R, and T to designate in-
cident, reflected, and transmitted waves, Eq. (5)
may be written

k)G

If the refractive index of the medium on the side of
the incident and reflected ray is n; and on the other
side is n,, and if 6, is the angle between the plane
of the surface and the incident ray when it is in
vacuum (assuming no prisms in the system), then
we may represent the incident and reflected rays
by the vectors

h L
M, =M"(ﬁ, f)+ > (- M (ﬁ 9—__—6”’(””‘/”
i=1

173
As L approaches infinity, we get

Mlzy_m,hwfoh In(e) =) g, o) 5 2)

It is easy to show from Eq. (5) that

3°M(n, 2)

) 1

-6}
) 1

<¢2>R=r<_ pl>, (10)

and the transmitted ray by

dll 1
Yo /r -t PT> ’ (1)

wherein, for o-polarized radiation
Py = (n2 — cos?6)1 /2, (12)
and for ¢ -polarized radiation,
P;z:":(ntza_coszga)-l/z- (13)

Thus, Eq. (8) becomes

)G Gl

These two simultaneous linear equations may be
solved for the two unknown constants » and {. The
transmittance is given by the expression

T=|t|2Re(ps)/Re(p,), (15)

where Re denotes the real part of a possibly com-
plex number, and reflectance is

R=|r|2 (16)

M, WHEN n VARIES SLIGHTLY

Suppose we write

M, = ﬁ[ﬂ(h‘,fh>+(ﬁ—n,)%<n,%> ‘J, (1)

i=1

where 7 is some approximate average value of
refractive index, and M is defined by Eq. (5). The
first two terms in the binomial expansion for M,
are

.if= R
RS <"f)

_ M@, h-z2)dz. (18)
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_ = :_Z< z(a/ >+q<(8a/an)baba(ab/an)) < 0 z(a/b)) Ef*g"’.;.f.g-. (19)
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Furthermore, Q‘ commutes with M, while Q -
does not. Hence the integral

5= [ nte) -7IMG7, 2 )" @M - 2) e

h
=Q'M(#, h)f*f [n(z) -7)dz (20)

is just a correction to be added to M(7, ) in case
the value chosen for # is not exactly the mean re-
fractive index. It is the term

57" [ Inte) M@, 2 XM -2) e (2)

that leads to Bragg reflection and other phenomena
that result from the variation of .
Direct matrix multiplication shows that

QM@ 1= < - singh i(a/b)COth> (22)
i(b/a)cosqh - singh
and
M(#,2)Q M,k - z)
sing(2z - h) i(a/b) cosq(2z - h)
= <—i(b/a) cosq(2z - h) - sing(2z - 1) >
(23)
If we make the Fourier expansion
n@) -n=cy+ Zc,cos—+s smijﬂz, (24)

(where all constants are generally complex num-
bers), and insert this and (23) into (21) and inte-
grate, we get

S-=f'qhsinqh -A —i(a/b)B
= 2 i(b/a)B A ’
where
- 1 1 >
A= —_— 25
=1s’(ﬁr—qh+ﬁr+qh (25)
and

B=

™.

¢ <__1_ _1_>
= \jm—qh jr+ah)
The factor singh prevents divergence of the ma-

trix S” when gh=+jr. Bragg reflection occurs in
the neighborhood of these values of gk.

REFRACTIVE INDEX n FOR X RAYS

The refractive index z for x rays is a complex
number whose imaginary part »; is small and posi-
tive and whose real part »n, usually differs from
unity by a small negative amount. At x-ray wave-
lengths shorter than and not too near the character-
istic absorption wavelengths of atoms in the medi-
um, the average value of the real part of n is’

Nor B,/ (26)

where 7,=e?/m,c? is the classical electron radius
and p, is the average number of electrons per unit
volume in the medium. If the electron density is
Fourier analyzed in a direction normal to the sur-
faces, then

n(z)=1 —%— {F +2; <Fc,cos 2];:2

+Fsin 2];: ﬂ , (27)

ﬁ‘r:l_

where V is the volume of a unit cell and F is the
number of electrons in a unit cell. F ; and F; are
cosine and sine components of the structure factor
of the crystal planes parallel to the surfaces for
Bragg reflection in jth order, when the Bragg spac-
ing of first order is 2. The structure factor for a
set of Bragg planes with Miller indices ji, jk, and
jl is usually defined as

F=(F%+F2)1/2 (28)

Comparison of Egs. (27), (28), and (24) shows the
relation between structure factors and the Fourier
components of refractive index. The 2 before the
sum in Eq. (27) but not in Eq. (23) is a matter of
convention.

Since much of the x-ray absorption in a crystal
occurs near atomic nuclei, the imaginary part of
n also has Fourier components. These can be in-
corporated into the structure factor components by
making F; and F; complex. The average value of
the imaginary part of » is

;l-,' = ﬂex/‘i’ﬂ' ’ (29)

where p, is the linear absorption coefficient of the
medium in directions where there is no Bragg re-
flection or anomalous transmission. This part can
easily be incorporated into a negative imaginary
component of F.

When x-ray photon energy is near an absorption
band in the crystal, a more rigorous treatment of
the relation between n(z) and the atomic structure
of the crystal is necessary.”

COMPUTATIONAL SHORTCUTS

The computation of M" can be done with a mini-
mum number of matrix multiplications by repeated
squaring of the matrix in the following way. Sup-
pose there were 23 layers. Note that

M23___M xMZ ><1\422 )(1‘/1241
=M x M2 x (M?)? < {[(M?}]*}* . (30)
By squaring M, squaring the square, and squaring
that twice more, followed by three more multi-

plications, we obtain M?® in seven rather than 22
multiplications. The saving is much more impres-
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FIG. 1. Focusing curved crystal monochromator show-
ing symbols used in formulas.

sive when several million identical layers are in-
volved, as is usual in crystal diffraction problems.
If the Bragg spacing changes slowly, results can
be made practically the same whether M, for each
cycle is made different or whether the crystal is
divided into several zones, each zone being ap-
proximated by some number m of identical cycles.
A suitable criterion for choosing m for one zone
is to require that no Bragg plane within the zone
differs in position from the correct position by
more than one or two percent of one Bragg spacing
h. By averaging the spacing in one zone to be ap-
proximated, the outermost layers of a perfectly
periodic approximate zone can be set exactly in
register with those of the approximated zone. It
usually saves computation time if m is made equal
to the largest integer power of two that is larger
than the minimum value of m, even though this
may require up to twice the number of zones re-
quired by a particular phase error limitation.

APPLICATION TO CURVED CRYSTAL MONOCHROMATORS

A crystalline wafer that is elastically bent to the
proper curvature may reflect x rays in one plane
from one point to another point. In a symmetrical
system the curved Bragg planes near the center
of the wafer are parallel to the surface. 6,, the
complement of the angle of incidence upon the
Bragg planes near the top surface is slightly
smaller than that deeper into the crystal (see Fig.

1). The effect on Bragg reflection for monochro-
matic rays diverging from the source is equivalent
to the effect of a flat crystal with linearly varying
Bragg spacing on monochromatic plane waves.

The equivalent linear variation in Bragg spacing
with depth for a flat crystal can be found by differ-
entiating Bragg’s law

jA= 2R siné, , (31)

and inserting the variation of Bragg angle with
depth in the curved crystal, as follows.

To obtain equivalent variation by the changing
either & alone or 6, alone on the right side of
Bragg’s law, we must have

dhsinb,=hcosb,06, . (32)

If z is measured from the first surface into the
crystal, and if the source is at distance D from
the first surface of the curved crystal on the Row-
land circle of foci, then the change in angle 6, with
depth in the crystal is

66,=cos6,6z /D (33)

(see Fig. 1). Setting 6z =h and combining Egs. (32)
and (33), we get

5h/h=h cos?8,/(D sinb,). (34)

Figure 2, using the abscissa scale at the bottom,
shows the computed Darwin reflection band at
fixed angle as a function of wavelength for plane
waves around the middle of the Cu Ka, line inci-
dent on a thick flat quartz crystal with the (502)
planes parallel to the surface. The larger band is
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FIG. 2. Darwin reflection band of ideal thick, un-
strained quartz from (502) planes in the neighborhood
of the Cu Ko, line, as a function of wavelength at fixed
angle, and as a function of angle at fixed wavelength.
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FIG. 3. Darwin band of a quartz wafer as in Fig. 2,

bent to an arm length D of 1 m.

for o-polarized and the smaller for y-polarized
radiation. We set the incident (Bragg) angle in
vacuum 6, at 71.5991°. The terms in Eq. (24) were
n=1-10" (84.4-1.1X7) and ¢, =107 (17.0-1.0 X ¢).
All other values of ¢ and s were set equal to zero.
Only ¢, would affect the results appreciably anyway.
The full width at half-maximum intensity of the
Cu Ka, line is about 0.000 47 A ® which is about
nine times the whole width of the plot in Fig. 2.
The scale at the top shows the reflection of mono-
chromatic radiation of wavelength 1.5405 Aasa
function of angle. The Bragg spacing 4 is 0.811
754 A. These curves agree with the results of the
standard dynamical theory.” The wafer is about
4x10° layers thick. This is a sufficiently large
number that reflectance does not change appre-
ciably with that number or with backing material.
Figure 3, which was computed by the new method,
shows the reflection band for a similar crystal
wherein the Bragg spacing increases by a factor
of 8.852x 10™?% in each successive layer. Accord-
ing to Eq. (34), this is equivalent to the effect of
curving the crystal planes to a radius of 105.6 cm
and using point-to-point focusing with a monochro-
mator arm length D=100 cm. These Bragg planes
of quartz and dimensions were used in the actual
construction of a doubly curved crystal-point focus-
ing monochromator for Cu Ka, radiation.*?

The highest peak on the reflection band is almost
as high and narrow as the Darwin band for a flat
crystal in this case. It becomes lower and broader
if the arm D is shorter, so that insufficient planes
reflect coherently to yield nearly complete extinc-
tion. The decaying oscillating curves on the right
are Bragg reflection from planes that are properly
oriented below the surface, but the beam is atten-
uated by absorption. About half the beam is di-
rected back and half transmitted in the interaction
inside the crystal for values of strain as small,
or D as large as this, as was postulated in an
earlier investigation.® The oscillations are a com-
plicated interference effect that depends on the
amount of strain and the Darwin bandwidth. They
were not anticipated and are too narrow for easy
direct observation. They are not an artifact of the
computational method, however, as we have
shown by varying the number m of identical cycles
in the computations without altering the outcome.
The area under the reflection curve yields a value
for reflected intensity that is consistent with rough
experimental measurements,* but no attempt has
been made to observe the curves directly.

If strain increases further, the peak reflectance
falls but the exponential tail grows broader so that
total reflection remains roughly the same. It isin-
teresting to note that when the arm D is short enough
that reflection is nowhere larger than about 50%, pri-
mary extinction is small enough that the theory for
mosaic crystals gives a good estimate of reflected in-
tensity. Crystalplaneswithsmaller structure fac-
tors have narrower Darwin bands, and the effects of
strain on reflection appear with less bending or
variation in spacing of planes. Conversely, planes
with large structure factors, such as the (011)
planes of quartz, show almost unaltered main
peaks and much shorter tails under similar de-
grees of strain at the same x-ray wavelength.
When linear absorption is large, as with Al Ka
radiation with the (100) planes in quartz, the beam
never gets deep enough into the crystal to sample
the variations due to strain. The reflection band
remains an unaltered Gaussian at very large strain
levels.

We plan to submit for publication elsewhere, the
results of computations for a number of different
point focusing monochromator designs that will il-
lustrate these effects in more detail.
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