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Calculation of bounds for some average bulk properties of composite materials
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The problem of calculating the effective bulk dielectric constant z, {or magnetic permeability or conductivity)
of a macroscopically homogeneous composite material is shown to require the evaluation of a single

characteristic function which includes all the relevant information about the microscopic geometry of the

composite. This function is found to have some remarkable convexity properties that allow the construction of
various new and improved bounds on z, for two-phase as well as for multiphase systems by incorporating
information on other similar effective bulk properties of the same system.

1. INTRODUCTION

Calculations of the magnetic permeability or of
the dielectric constant or of the thermal or elec-
trical conductivity of a composite material (i.e. ,
a material made by mixing two or more phases
which remain distinct and segregated into mutally
exclusive regions) from the known properties of
the pure phases are all similar problems. Mathe-
metically they all reduce to a boundary-value
problem in a straight cylinder along the x axis
involving a second-order partial differential equa-
tion for the potential 4 or for the temperature:

v ~ («vc)=0,

C(r) =4„, at @=0

C (r) = e, + L,Z„at x = f.

8@
= 0 at the other boundaries.

eel

Here «(y) denotes the local dielectric constant,
which has a different value in each phase, Eo is
a constant imposed electric field along the cylinder
axis, and f. is the length of the cylinder (see Fig.
1). The effective dielectric constant «, of the com-
posite material, which can be used to describe
phenomena on a length scale over which ihe materi-
al can be considered as homogeneous, is given by

using the available information on volume frac-
tions and the macroscopic isotropy of the mixture.
This has been done by Hashin and Shtrikman. '
One can also assume a simplified model for the
statistical properties of the mixture, as was done
by Weissberg. ' Following these early efforts,
various articles have appeared in which improved
bounds on z, were sought by incorporating addition-
al statistical information about the mixture in the
construction of trial functions for use with a varia-
tional principle. Many of these calculations are
described, together with the appropriate refer-
ences, in the chapter on heterogeneous materials
in Beran's book. ' A more recent discussion of
such bounds ean be found in the articles by Miller'
and Hori. ' Finally, one ean utilize measurements
of one property in a certain material to set bounds
on other properties of the same material, as was
done by Prager' for the case of two-phase sys-
tems. The l.atter approach is especially appealing,
since it affords us almost the only way of incor-
porating some measured statistical information in
our evaluations. Moreover, we do not need to
worry about getting a. detailed statistical descrip-
tion —the measurements effectively extract only
that information which is relevant for determining
bulk properties. One ean thus use measurements
of bulk thermal conduction to get information about

«P', =- — «(x)(&4 )' dr . o Do

The problem of solving (1) and calculating «, is
usually a formidable one even when the micro-
scopic geometry of the composite is fairly regular.
But when the multiphase mixture is random, this
problem becomes totally intractable because «(r)
is then a very complicated function of position.
Indeed, Brown' has shown explicitly that it is not
enough merely to know the volume fractions of the
various phases that comprise the random mixture„
and that one must have detailed statistical infor-
mation about the geometry of the mixture in order
to evaluate e,. Since that information is usually
not available, one can try to set bounds on &, by

FIG. l. Schematic drawing of a two-phase system on
which the boundary value problem (1) is defined.
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the bulk dielectric constant, and one can even use
a measurement of e, at one temperature or fre-
quency to get information about t., at a different
temperature or frequency.

The main contribution of this paper is to point
out that while the detailed calculation of &, is quite
impossible, one can readily obtain a great deal
of qualitative information about the function e,(»„
c„.. . ), where», . are the dielectric constants of
the various pure phases. This information is in
the form of rigorous statements about the sign
of &, and all its differentials, and results in a
whole set of convexity properties for», (», ). From
a practical point of view, these properties allow
us to generate bounds on z, for two-phase systems
in a simple and intuitively obvious manner from
a single measured bulk property plus information
about volume fractions and isotropy. These bounds
offer somewhat greater flexibility than the ones
derived earlier by Prager': They are easy to ob-
tain and can easily be extended to include informa-
tion from any number of measured values. They
are also sometimes better than Prager's bounds.
More importantly, however, these convexity prop-
erties allow us for the first time to generate bounds
on &, from measured values when the composite
is made of more than two phases.

The outline of the rest of this paper is as follows:
In Sec. II we discuss the general features of q, for
a, multiphase system in terms of two geometric
functions which are characteristic of the material
under discussion. In Sec. III we discuss the prin-
ciples which enable us to generate bounds on &, of
a two-phase system based on one other measure-
ment. As an example, we obtain improved bounds
for a hypothetical ease of a two-phase system. We
indicate how these results may be extended to in-
corporate results from additional measurements.
In Sec. IV we extend the discussion to indicate
how bounds on e, which include information from
other measurements can sometimes be generated
for systems consisting of more than two phases.
As an example, we obtain such improved bounds
for a three-phase system where the value of one
average bulk property has been measured and is
assumed to be known precisely. In the Appendix
we give a detailed mathematical derivation of the
properties of the geometric functions introduced
in Sec. II.

where 8, (r) is 1 or 0 when r is, respectively, in-
side or outside the phase i. We obviously have

Z, 8, = 1. We now recast the boundary-value pro-
blem (1) into the following more convenient form

V ~ [(1 —8„)V()]= 0,
q(r}=0, at. x=0

$(r}=L, at x=L

8$—=0, at the other boundaries
en

(4)

where

u, ~ 1, 8„(r)~ 1.
The effective (or average) dielectric constant,
defined by (2), satisfies

1 — ' " '' ' ' =1 ——f (1 —8„)(V(l'dy=f( )

(6}

u=-(u„. . . , u ), (7)

where we have now defined the characteristic geo-
metric function f(u). This function, which depends
only on the m —1 variables Q„.. . , Q „depends
in general on the detailed geometry of the com-
posite, but is independent of the specific physical
property we are considering. Once it is known
for a particular material or configuration, it can
be used to obtain the effective magnetic permea-
bility or thermal conductivity from their values
for the pure phases by using a formula similar
to (7).

While it is usually impossible to calculate f(u)
with any accuracy, we can readily determine some
of its remarkable qualitative features. For that
purpose, we consider the first differential of g
with respect to u:

u, —= 1 —c,/e, i=1, . . . , m —1

Q =0,

() (r}=-[C (r) —4,)/E, .
Clearly, Q; and H„satisfy the following inequalities:

II. CHARACTERISTIC GEOMETRIC FUNCTION

FOR A COMPOSITE SYSTEM

Consider a composite material made by mixing
m homogeneous phases whose dielectric constants
are e, ~ ~ & . The local dielectric constant ap-
pearing in (1) can be written as

(8)

This expression, which defines the 5 operator, is
to be understood as a linear form in the indepen-
dent variables du, , the coefficients Sg/Su, being
functions of Q and r.' By similarly differentiating
(4) and (7), we find that 6it) satisfies the following



4306 D. J. BERGMAN 14

boundary value problem

V [(1 —B„)V5(]= V (58 VP),

5/=0, at x=0 and x=L,
aug

= 0, at the other boundaries
an

where
m-1

58„=Q du, 8, (r),

(9)

(10)

In the Appendix these calculations are extended
to obtain differentials of arbitrary order 5"f(u).
The conclusion is that the even-order differentials
are always positive, like 0'f, while the odd-order
differentials are, like 5f, positive if all the du;
are positive.

For u, = 0, the bounds. ry-value problem of (4) is
solved by (t)(r, 0) = x, and hence we find

f(0) =0.

From (7) we may also conclude
while the differential of f(u) satisfies

m-g
f(u) —1 . (17)

1 2 2
58„(V[t))'dr —— (1 —8„)V(() V5(dr.

Using integration by parts, the second integral
transforms into

V '[lid(( —d„)VV(d —J dII II [(I —I„)'V'd)d

Finally, if one of the u,. tends to -~, then it can
be shown that f(u) is asymptotically linear, tending
either to —~ or to a finite negative constant (the ex-
act result depends on a percolation property of the
medium and is discussed in the Appendix).

A function closely related to f(u) is obta. ined by
considering an alternative definition of &,. Instead
of imposing F., as in (1), we impose a. boundary
value D, for the normal component of the elec-
tric displacement vector D=- &E. Since divD=0,
we may define

(12) & =-
~
DQ

~

curh4, (18)

1
5f(u) = — 58„(V(i))' dr . (13)

Both of these terms vanish —the second by the dif-
ferential equation of (4), and the first by trans-
forming to a surface integral and using the boun-
dary conditions of (4) and (9). We thus get curl((1/&) cur14) = 0,

(curlA)„=1, at x=0 and x=L (19)

and get the following boundary-value problem in-
stead of (1):

By (10) this is positive if all the du, are positive.
The second differential of f(u), which is a quad-

ratic form in du, and is denoted by 5'f(u), is ob-
tained by applying the 5 operator to this last equa-
tion. ' Noting that 58„ is independent of n, and in-
tegrating by parts over x, we get the following ex-
pression for 5'f:

6 J( )=—f dd„v'd vlldd

(curlA)„= 0, at the other boundaries.

The effective dielectric constant satisfies

Do 1 1
D'(r) dr.

V e(r)

Denoting reciprocal &'s by

e = 1/e,

we write

(20)

(21)

2
V .(5(58„V(())dr

5zt)V (56)„&g)dx.2
(14) z

=—0.
(22)

Again, the first of these integrals transforms to
a surface integral which vanishes. The second in-
tegral is transformed by the differential equation
of (9), a partial integration, and subsequent use
of the boundary conditions of (9) to make the re-
sulting surface integral vanish. We thus get'

y'( )=
Vdf (I —d.)(vdd)'d .

The differential equation of (19) then takes the form

curl[(1 —8„)curlA] = 0, (23)

and we can define a new characteristic geometric
function

&p(z., ) -=1 ——' = 1 —— (1 —8„)(curlA)'- dr. (24)
1

To calculate the differential 5y(z ), we again first
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write the boundary-value problem for 5A:

curl[(l —8„)cur15A] = curl(58„curlA),

(cur15A)„= 0, at all boundaries.

The expression for 5y(v) is

5(p(i!) = — 58„(curlA) dh
1

(25a)

(25b)

properties of 5"p, since these properties do not
follow merely from (33) and (34).

Further properties of f(u) and y(v) are found
from various, previously established, bounds on

Ne first consider the well-known and univer-
sally valid inequalities (i.e., macroscopic isotropy
is not required for them to hold)

2
(1 —8 )curlA ~ curl5A dr .

y tP

(e& '«, &(e&, (35)

The second integral can be transformed by noting
that because of (23), we can write (1 —8„)curlA as
the gradient of a scalar z. Therefore that integral
becomes

Vo, ~ curl5A dr = V' (ocurl5A) dr.

(.) =- gf;e, ,
1

(36)

and p, is the volume fraction of the phase i. From
this we get

(u) &f(u) & = —(&v&+&v&'+ ").(v)
v) —1

This vanishes by transforming to a surface integral
and using (25b). We thus get

5p(v) = — 58„(curlA)' dr .

Differentiating this once again we get

Expanding v,. in powers of u, we get.

&v& = -(&u)+ (u'&+ )

and thus

(u) &f(u) &(u)+ ((u') -(u)')+ O(u') .

(38)

(39)

5 p(a) = — 58 curlA ~ curl5A dr.=2
y

(29)
These inequalities provide us with quantitative in-
formation about the differentials of f(u) at u=0:

We now use (25a) to define another gradient of a
scalar Q

$~1

5f(0) =QP;du,
1

58„curlA = (1 —8„)curl5A+ Vn .
Using this in (29) we find

(30)
m-1 m-1 2

0 & ~ 5'f(0) (.g P &
du'; —g P,.du,

1 1

25'p = — (1 —8„)(curl5A)' dr

2
+ — Vn ~ curl M sf''.

t/'

The second integral vanishes just as in (27), and
we finally get

25'p(v) = — (1 — 8)( crul A5)' rd.
1

(31)

P(0) =0 p(u) —1. (32)

From their definitions, it is clear that f(u) and

p(v), as well as u and v, are closely related:

v, = u, /(u, 1)

&(v) = f (u)/[ f (u) —1].
This connection, however, does not obviate the
need for a separate demonstration of the positivity

In the Appendix we extend these calculations to
differentials of arbitrary order 5"y, and we find
that t;hey have the same qualitative behavior re-
garding their sign as do the differentials 6 f. Like-
wise, we find that

f((u) &f(u) &f,(u),

v, ( )&vv (~ ) & v!&(~ ),
(41)

where f& a,nd y& can be obtained explicitly from the
results of Ref. 2. Expanding these functions in
powers of u and e we find

f((u) = (u&+ 3((u -(u))')

+ —,[((u -(u))'&+((u -(u))')((u&p 2u()]

+ O(u'), (43)

9((v) = &v&+ -'&(v -(v&)-'&

+ (-')'[&(v —(!))')+((v—&v))'&(&v&+ 2v()]

+ O(v'),

The same relationships continue to hold if we re-
place f and u by y and v.

More stringent bounds were obtained for &, by
Hashin and Shtrikrnan' under the assumption that
the composite system is macroscopically isotropic
as well as homogeneous. Those bounds lead to
inequalities for f and p
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where u& is the smallest (largest) among u;, and

similarly for v&. In this case we find that both the
first and the second differentials of f and y at the
origin are determined uniquely, and there are
bounds on the third-order differential. Note that
the only difference between f& and y& is in the fac-
tor 3, which gets replaced by -', everywhere in the
expression for y&.

For a two-phase system, f and p depend on only
one variable each

u = 1 —e, /Ezz f(u) = 1 —E&/&2,

v = I —e,/e» p(v) = 1 —i,/e, .
(45)

We can therefore write the expansions of f and y
as follows for the case of an isotropic system

f(u) =p,u+ ~pp, u'+ ,' (p,p,'+ —a)u'+O(u'),

zp(v) = p, v+ 3p,p, v'+ ,'(p Jz,'+ a—)v'+O(v'),

where

0 & a & 2P J), .

(46)

(47)

For further information about the values of f(u)
and 9z(v) one needs either additional information
about the statistics of the composite, or else some
measurements of bulk properties whose values are
related to f and p as e, is by (7) and (24). In Sec.
III we will show how such experimental informa-
tion about one or more values of f or y can lead
to improved bounds on these functions, and con-
sequently on E„over whole ranges of u and v.

1 2 3 4 5fl fo+ g pJ 2u + a,u + b,u

f, =f, + —,'p, p, (p,, +2)u'+a, u'+ b,z&',

f, =f, + ,'p, p, (p, +2)u'+—a,u',
1 2 3o+ 9PP2u +a4u

3f, =f„+a5u + b,u',

f6 fo+ a6u

vrhere

(48)

III. IMPROVED BOUNDS ON e FROM MEASUREMENTS:

TWO-PHASE SYSTEMS

The bounds we shall describe in this section are
not optimum bounds, nor do they exhaust the pos-
sibilities for constructing bounds from similar
information. " They should rather be viewed as
illustrations of some of the principles that can be
used to derive such bounds.

We start with the simplest case —an isotropic
two-phase system where one value of f(u = u, ) [and
consequently also the value of p(v = v, ), where
z~, =u, /(u, —I)] is known, say, from a measurement
of another bulk property. Consider the following
polynomial approximations to f(u)

fo(u):pzu+ 3pzp2u (49)

The unknown parameters a,. and b, on which these
functions depend are determined by requiring that
the functions satisfy

f, (u, ) =f(u, ), for i =1, . . . , 6

f, (1)=1, for i=1, 2, 4.

(»)
(51)

We note that each of these functions can intersect
with f(u} only a limited number of times. For ex-
arnple, since

d'f,
d

d'f
du

(52)

the difference f(u) -f, (u) can have at most six
zeros. Three of those occur at the origin, which
is clearly a zero of third order, while two more
are accounted for by (50) and (51) [since 1 is an
absolute upper bound for the physically meaning-
ful values of u as well as for f(1), we can always
imagine that right at u = 1 f(u) jumps up to the val-
ue 1, withallof its derivatives jumping to+~].
Some further consideration shows that there is one
more spurious intersection at u„and that the
qualitative relationship of f, and f is as shown in
Fig. 2(a) when u, & 0 and in Fig. 2(b} when u. & 0.
While the exact location of u, is not known, it must
occur in the region shown in Fig. 2 (one of the
regions marked I, II, III). In the other regions of
u, f, (u) thus provides absolute bounds on the val-
ues of f(u). Similar considerations applied to the
other f, lead to the r. esult that all of them provide
useful upper or lower bounds for some or all
values of u. These results are summarized in
Tables I(a) and I(b) which list the functions that
lead to absolute bounds on f in each of the three
regions shown in Figs. 2(a) and 2(b) for u, &0 and

u, &0, respectively. Note that whereas in f —f,
the spurious zero u, could be identified as occur-
ring in region I for u, &0 and in region III for u, &0,
and therefore f, fails to provide a bound only in
those regions, a more complicated situation can
occur with other functions. For example, f -f„
which has the same first five zeros as f —f„has
a sixth spurious zero that can occur in either re-
gion II or III for u, &0, and in either region I or II
for u, &0. Therefore f, only provides a bound in
one region for each sign of u, . From Tables I(a)
and l(b) it is clear thataltogether we get two upper and
two lower bounds in each region of u. This leads to
a similar number of bounds for &,. We can get
another similar number of bounds on e, by looking
for bounds on y(~, ). The discussion and results are
qualitatively the same as for the bounds on f(u),
including Figs. 2(a) and 2(b), and Tables I(a) and
I(b). Even Eqs. (48) —(52) remain almost unrhanged
except for the factors 3 and —,

' which are replaced
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I

by —', and —,', as explained in the comments follow-
ing (44).

The bounds on z, obtained from these bounds on
cp(v) are in general different from the bounds ob-
tained by use of f(u). Furthermore, we can re-
define the variabLes u, v and the functions f, p
by permuting the two phases, i.e., we replace
(45) by

u -=l —e,/a„ f(u) -=l —e,/e, ,

v:—l —c~/ti~ p(v) —= l —t~/ ei.

This leads to a whole nem set of bounds on &,. Al-
together we get eight upper and eight lower bounds
in this way. In the absence of a criterion that
definitely favors one pair of these over all the
others we must evaluate them all and choose the
best bounds in each case separately.

As an illustration, we apply this procedure to
an example studied by Prager'

1 l + 1 + 3
Pl P2 29 el 41 0 e2 5s e2 3P eg 5 i (54)

where the symbols &» a', stand for the pure-phase
values of some other property whose bulk average
value for the same system is known and repre-
sented by q', . Qur best bounds for this case are

TABLE I. A list of polynomial approximations that
give absolute upper or lower bounds on f (u) in the var-
ious regions defined in Fig. 2: (a} for u+ & 0; (b) for u+
&0. The numbers in the table refer to the index i from

f& of (48). The same table applies also to rp~(v) for ~+~&0,

respectively.

(a): u+ &0
Region of u [Fig. 2(a)]
I II III

upper bound

lower bound
4, 5

2, 6
3, 6

1, 5
1,5

3, 6

(b): u+ &0
Region of u [Fig. 2(b)l
I II III

upper bound
lower bound

3, 5
1, 6

1, 6
3, 5

2, 5
4, 6

FIG. 2. Schematic graphs of f(u) (full line) and the
approximating polynomial f&(u) (dashed line) vs u. Note
that, according to results from the Appendix, f(u) is
asymptotically linear as u ——~. Note also that f&

is
made to pass through the upper right-hand corner of the
positive unit square, and to intersect f at u+. It is also
made to intersect f at the origin and to have first and
second derivatives that coincide with those of f at that;

point. The point u, is a spurious intersection point
whose region of occurrence can be determined as I, II,
or III but whose exact location is unknown. (a) For u+
&0 f &

bounds f in regions II and III. (b) For u+ &Of
&

bounds f in regions I and II. These graphs also describe
the function y(v) and its approximating polynoInial p &(&).

0.4658 & q, & 0.4923 .

For comparison, we reproduce Prager's bounds
for this example, which, like our bounds, also
make use of the information on E', as well as the
assumed macroscopic isotropy:

0.4676 & q, &0.4980.

%e see that while our upper bound is slightly bet-
ter, our lower bound is slightly worse.

Qur method for obtaining bounds on g, can be
extended in two directions: (a) lf more than one
measured value &,

' exists for the system, the ad-
ditional information can easily be incorporated in
the calculation of bounds: %e merely add more
terms of successively higher order in u to each
of the approximating polynomials f, of (48), and
require that f; pass through all the additional de-
termined points. Consideration of the possible
intersections of f and f, leads, as before, to a
number of absolute upper and lower bounds for f.
A similar incorporation of additional bits of ex-
perimental information is also possible using Pra-
ger's method, but it requires a tedious algebraic
calculation rather than the simple curve fitting
that suffices in our approach. (b) The procedures
that; we have used until. nom to get bounds for two-
phase systems can sometimes be extended to get
improved bounds even when the number of phases
is greater than two, as we mill now show.
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IV. IMPROVED BOUNDS ON e~ FROM MEASUREMENTS:

MULTIPHASE SYSTEMS

The main step in extending the discussion of Sec.
III to composites consisting of more than two pha-
ses is to choose an appropriate trajectory in the

space of u. In order to take advantage of the spe-
cial properties of f, we must restrict our choice
to trajectories u(t) that pass through the origin
and all of whose derivatives d"u,. (t)/dt" are non-
negative at least over the regions of interest. This
mill ensure that along the trajectory, all the deriv-
atives of the function f(u(t)) will be positive, as
was the case with f(u) in the two-phase system. In
order to be useful, the trajectory should also pass
through the points at which we have information on

f(u), as well as through the point at which we need

to know the bounds on f. We can then define ap-
proximating polynomials f, (t), as in (48), which

have the correct behavior at the origin [i.e.,
f(u(t)) f,(t) mus—t h. ave a zero of order three at t
=0] and also satisfy the analogs of (50) and (51),
i.e.,

f, (t,) =f(u(t, )) for t = 1, . . . , 6,

(t,)=1 for. t=1, 2, 4.
(57}

(58}

Here u(t, } is a value of u for which f is known, while

t, is the point where u(t) leaves the positive unit
cube and the largest u, becomes greater than 1,
l.e. )

bulk property in cases where we could find a simple
parabola u, (u, ) that satisfied all the requirements
for being an acceptable trajectory. For the speci-
fic example defined by [we use the same notation
as in (54)]

&'=1 &'=6 q =9 q =4 5

= ly Q2= 11.5y g3= 18

we found the following best bounds

6.694 & &, &8.014.

(60)

(61)

Comparing these with the Hashin-Shtrikman bounds

for this example

5.314 & e, &10.026,

we find a considerable improvement. This should
not come as a surprise since the bounds of (62) do

not incorporate the information on z', but only the
information on the volume fractions and the mac-
roscopic isotropy.
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Max;u, (t, ) =1. (59)

However, whereas in the tmo-phase system our
procedure always led to bounds on f(u) whatever
the values of u and u„ this is no longer true here:
First of all, it may not be possible to find a traj ectory
that passes through the origin as well as through

u, and u and has the required non-negative deri-
vatives at least over the region of interest. Sec-
ondly, even if that is possible, it may be that one
is forced to use a high-order polynomial for u(t),
in which case the approximating polynomials mill
also be of a correspondingly high order and we
may not be able to identify any one of them as being
an absolute upper or lomer bound. Despite these
qualifications, we can still sometimes obtain use-
ful bounds in this way, as we will demonstrate in
the specific example treated below. When attemp-
ting to find bounds on. &, one should, as in Sec.
III, attempt to permute the phases in the definition
of u„since different permutations lead in general
to different bounds (though sometimes to none at
all). Also, since all of the above discussion ap-
plies equally well to v(t) and y(v(t)), one can get
a whol. e new set of bounds on &, by considering y.

We have carried out the above procedure for a
three-phase system with one known value for a

V ~ [(1 —9„)&6"g]= n& (66„&6" 'g),

g"y=0, at x=0 and x=r

Q QB$
= 0, at the other boundaries.

~n

(Al)

This is easily proved by induction, starting from
(9). Using these equations and the techniques de-
scribed in Sec. II, it is straightforward to shorn

that

1 —e„V5"g ' A = — 58„&5"g ' A

—2 6"fV ~ [(1 —8 )&6""g]dh

(A2}

In order to derive explicit expressions for all
the differentials of f(u), we first write a boundary-

value problem that the nth differential of g(r, u)
with respect to u satisfies:
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58 )&'6"$ dX= -2 5"' & ' 58„~5"$ dh

2
(1 8„—)(V&5"'q)'dr (.A3)

Using these results together with (13) and (15), it
is easy to show by induction that the differentials
of f(u) are given by

u; —= 1 —6(/f„, i=1).. . ~m(n)
(All)

always positive while the odd ones are positive if
all the dz); are positive.

In order to derive the asymptotic properties of

f(u) as one or more of the u; tend to -~, we note
first that one can in fact define rn different func-
tions f„(u,'"') by givmg each of the &„ in turn the
role of e„ in (5) and in (7):

&

5'"f(u) = — (1 —8„)(&5"()))'dr,

(2n+1)! V
5' 'f(u) = — 58„(&5"()))'dr.

(A4)

(A5)

f„(u!"')=- 1 —&,/&„,

where

fl 1'
y ~ s 0 j

Clearly, the even differentials are always positive
while the odd differentials are positive if all the
dN] ale posltlve.

A similax procedure is followed to derive ex-
plicit expressions for the differentials of &()(()).

We first show by induction, starting from (25),
that the nth differential of A(r, u) with respect
to u satisfies the following boundary-value problem

curl[(1 —8„)curl5"A] = n curl(58„curl5" )A),

curl5"A = 0 at all boundaries.

%'e then show that

() -g„)(cur)nw)* ~d= f))9„(c-)nA)'a

+ 2(n+ 1) 5(8ucr! A5)~ dr

= (2n+ 1) 58„(curl, 5"A)' dr,

(A7)

58 (c 15"A}'dr= (1 —8„)(curl5 'A)'dr
n+1

())) ( (r) (r))/(1 u(r))
tl -+n

f (u'"') =[f (u'"') -u'"']/fl -u'"] (A13)

Suppose now that some u„'"'- -~. Using (A13) to
express f,(u'") in terms of u'"' and f„(u'"') we find

f„(u&"'}= u„'"'l, l f„(u'"')]+f„(u&"'). (A14}

ff no othe. Iu', "'I increases faster th~ lu„'"'I, then
all the u,'"' remain bounded. Thus f„(u'"') will tend
linearly to -~ unless f„(u'"') tends to 1, in which
case f„will tend to a finite negative value. We note
that f„=1 can occur only when at least one of the

u,'"' is also equal to 1. In that case, the region of
space occupied by the union of the phases i such
that u,'"' &1 is nonpercolating {i.e., it does not
stretch continuously from end to end of the system).
For a two-phase system, it is precisely the phase n
that must be nonpercolating. If only u„" diverges
while the other u~"'remain finite we find the result

and obviously

u&"'=0, u&"'=1 for f~n, f„(u'"') 1. (A»)

All of the functions f„and sets of variables u'"' are
connected to each other by

From these results together with (28) and (31) it is
again easy to show by induction that

f,(u'"') = u„'"[1-f„(1)]+f„(l)

+ g )) (u()') 1)+O(1/u(r))
&)f (1)

ian
(A15)

,
5'"&()(())= — (1 —8„)(curl5"A)' dr,2n! (A9)

n!)'
(2n+1)! V

5'""(&)(&))= — 58„(cur!5"A)'dr. (A10)

Thus the differentials of y have the same propex'-
ties as the differentials of f: The even ones are

In the case of a two-phase system there are only
two functions f, and f„each of them depending
on only one variable. E&luation (A15) then reduces
to

f, (u}= u[1 —f, (l)]+f,{1)+O(l/u). (A15}

Obviously, all of these results hold also for &()(&)).

*On leave of absence from Tel-Aviv University, Tel-
Aviv, Israel.
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In other words, o$ is just the first-order term in the
Taylor expansion of $(r, u') around $(r, u) in powers of
du; =u'; —u; . The entire expansion can, of course, be
written as a sum of terms of the form 6"g

1
2

1
g(r, u') —g(r, u) =hg+ —,6 g+ —,53/+"

In other words

8 f(u)6 f(u) = du]du~ .
Bu~&u~

I, I

Consequently, Eqs. (14) and (15) could also be written more
explicitly as expressions for the second derivatives off(u) .
In particular, in the case of a macroscopically iso-
tropic two-phase system with one known value of a bulk
average property, it is possible to generate much
better bounds on e, than either those presented here
or in Ref. 4. These new and improved bounds, which
apparently cannot be extended to multiphase systems,
are described in D. J. Bergman, Phys. Rev. B (to be
published) .


