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Ground-state energy of the adsorbed Bose liquid*
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The ground state of the quasi-two-dimensional Bose liquid in a periodic one-body potential is examined. The
energy shift and density variation due to the periodic potential are calculated with a procedure which

combines the paired-phonon analysis and canonical transformations. The results of this calculation are
compared to the recent calculation of these effects which employed a correlated wave function and a cumulant

expansion. The results are the same to lowest order. The advantages and disadvantages of each technique are
explored.

I. INTRODUCTION

A recent paper' (hereafter referred to as NC)
on the ground-state properties of the two-dimen-
sional Bose liquid examined the effects of a one-
body periodic potential on the adsorbed liquid.
These effects were investigated with a variational
technique which used a correlated wave function
and a cumulant expansion of various matrix ele-
ments. ' The correlated wave function contained
both one- and two-body terms. A Fourier expan-
sion was used for both the periodic potential and
the one-body term in the wave function. The
"smallness" of these Fourier coefficients justified
the truncation of the expansion at a low order.

The wave function used in NC was separable in
the coordinate normal to the surface plane. The
problem was thereby transformed into a two-di-
mensional calculation with, of course, both the
new one- and two-body interactions involving an
average of the original interactions over the mo-
tion in the direction of the surface normal. As-
suming that this projection into two dimensions
has been carried out in accordance with the pro-
cedure in NC, the rest of this paper shall con-
sider only the two-dimensional aspects of the
problem. The two-dimensional wave function
is

g

42D = e ' 4o(r

The g, term describes a class of correlations
found in the uniform Bose liquid while the pre-
factor describes the periodic variation in g»
generated by the one-body potential.

The work reported here is a reexamination of
the physics of this problem using a calculational
approach which differs from that used in NC. It
is shown that the lowest-order term generated by
the cumulant expansion can be generated with a
much simpler technique, this technique being

based upon the paired-phonon analysis of the Bose
liquid. ' Using the formalism of Ref. 3 (hereafter
referred to as CF) coupled with the use of canoni-
cal transformations, these lowest-order terms
are generated in a way which makes the physics
of the calculation more transparent then the di-
rect use of the cumulant expansion. Furthermore,
this second approach provides an alternate path
to calculation of the higher-order terms.

II. MODEL HAMILTONIAN

The calculation begins with the Hamiltonian of a,

Bose liquid in two dimensions written in the
paired-phonon space. Using the Boson quasipar-
ticle creation and destruction operators {at,a/.
defined by the two-dimensional version of Eq. (26)
in CF, the Hamiltonian for the system without the
external field is

H = P (e~+ u~)at«a«+ —Qto~(at at«+ a«a «), (2)

where the sum over p extends over all p in the
plane. The quantities e~ and (d~ are given by

e =h'p'/2ms, (p),

~, = S,'(p)/S, (p)+ (K'p'/4m)[l - l/S, (p)], (3b)

where So(p) is the structure factor calculated for
the original Jastrow wave function and S,'(p) is the
derivative of the generalized structure factor as
defined in Sec. III of CF.

The inclusion of an external crystalline field
means the addition of a term H, to Ho, where

H, =g Uo Pe=+ Do[AS, (G)]'~'(ap+ a 6), (4)
C C

where the Ug are the Fourier coefficients of the
external field, pG is the density fluctuation opera-
tor, and the g] are the reciprocal-lattice vectors
for the external field. In the second form for H„
the p~ have been rewritten in terms of the quasi-
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par'ticle operators. The quantity H is the total
number of Bose particles in the system. The H,
term causes {a6)m the exact ground state to be
nonzero, that is there exists a Bose condensate
in all states formed by a~ acting on the vacuum
state. A simple technique to deal with such situa-
tions is the displacement transformationdefinedby4

(H)1 j2gg+ +$

a&~=a&t for p4G. (6b)

Since gp is a c number, the transformation is uni-
tary, thus conserving the Bose commutation rela-
tions. The transformed Hamiltonian is then

H= H, +H, =g (e~+ ~~)o e&+ g—u&;(n&a'&+ n;n;)+p Uo[», (G)]"~'(nto+ a 6)
c

+g (s,+ ~,)id' + -g-~,(gl'*, +1'dl 6)+g (e, + ~,)(g~s+l, ~', )
c

(6)

r.p = k*6 = -Us[SO(G)]' "/(eg+ 2~o)

Vfriting pG in terms of h p and h~

(o6) = (&)'"[s.(G)]' "[(H}'"&$+(&)'"& 61

2U6So(G)
ec+ 2(dc

(8)

This equation is equivalent to Eqs. (34) and (36) in
NC.

Using Eq. (8), one finds that all the linear terms
disappear in Eq. (6). The remaining terms in Eq.
(6) can be put into diagonal form' via a Bogoliubov
transf ormation

(10a)

(10b)

The function D~ can also be determined via the
condition QPt&) = 0. This condition diagonalizes
the Hamiltonian because of the simple bilinear
form of H, . The constant terms in Eq. (6) are not
affected by the Bogoliubov transformation, nor do
they affect the value of D~. In this sense, the
crystalline field does not dA ectly affect the opti-
mization of the Jastrow wave function. Neverthe-

where the sum over p is again over all p. The
value of Kd can be found by setting (ad) =0. Be-
cause of the simple nature of 8„ this condition
also eliminates all linear terms in the transformed
Hamiltonian. Requiring that (ao) =0 for all time
means ([ns, H])~0 where the commutator is the
equal time commutator. Using this equation to-
gether with Eqs. (4) and (5) produces the equation
for fc.

(eo+ too)ls+ mo)*6=-U6[S (G)]' '. (7)

Using the complex conjugate of Eq. (7) together
with the real, symmetric nature of e~ and e~, gp
is found to be given by

III. WEAK-PAIR-INTERACTION LIMIT

Equation (11)does not reduce to the exact sin-
gle-particle result in the limit that the pair inter-
action goes to zero [S,(Q) = 1]. The S,(Q) = 1 limit
of Eq. (11) is the single-particle result only to
second-order in perturbation theory. However,
if the displacement txansformation is used direct-
ly on the exact single-particle Hamiltonian:

H= P (e —p)b~b;+g U6b~&, ob
5 $, 5

(where a~ is the free particle kinetic energy and

p is the chemical potential), and the condition
(a&) =0 is used to determine i;6, one finds

(13)

(14)+c~d+g UP o f5 = P, )5
c 1 j.

1

which is the exact free-particle result. ' Because

less, there is a subtle feedback effect since the
5E produced by these constant terms is given by

g UdSO(G)

c~o ec+2(dc

and this term does depend upon the original Jas-
trow wave function. Equation (11), which is a re-
sult of inserting Eq. (8) into Eq. (6) is precisely
Eq. (38) in NC. Furthermore, the determination
of D~ via (pp~;)=0 reproduces Eq. (29) in CF,
namely

Dp = —(dp/[ep+ (dp+ (ep+ 2ep(dp} ].
To go beyond the analysis outlined above, it is

necessary to introduce quasiparticle interactions
into H, .' It would then be possible to recalculate
&6 and D~ using (8fo)=0 and {PI&Pt;)=0. These qua-
siparticle interactions must be included in order
to generate the kind of terms generated by higher-
order cumulants.
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the bt and b; are particle creation and destruction
operators, there is a normalization constraint on
the $6, namely Zo tdr6=1. The lowest value of
p. gives the T= 0 chemical potential.

If we set 6E= p (p=0 for Uo=0) then second-
order per turbation theor y give s

by the transformation

PP=Z &d (P)~g o~ (16)

with p now restricted to the first Brillouin zone.
It is straightforward to demonstrate that the (G
which diagonalize H are given by

which is the So(Q) =1 limit of Eq. (11). Thus the
transformation to the paired-phonon space (with
its concomitant replacement of the density fluctua-
tion operator by a pair of Bose operators) pro-
duces an approximate treatment of the effects of
the single-particle potential. The paired-phonon
analysis requires that almost all Bose particles
be in the zero-momentum state when the pair in-
teraction is turned off. This can be seen from the
equation which gives pg in terms of the Bose oper-
ator s. However, when the UG are "large, " the
exact ground state requires a significant mixing
of the zero-momentum state with the plane-wave
states associated with (G}. If the Uo are "small, "
then most particles will be in the zero-momentum
state, the p„can be replaced by a sum of two Bose
operators, and simultaneously the second-order
perturbation correction will be sufficient.

The exact excited states of (13) are generated

with 0 given by

(18)

Extensions of this approach to the case with in-
teractions between adatoms means the inclusion
of the usual two-body terms into H. The treatment
of these terms then means using the transforma-
tion in Eq. (16) (essentially a transformation to a
Bloch bases set) along with the displacement and
Bogoliubov transformations used in the treatment
of the Bose liquid. This approach would be use-
ful in those cases where the adatom-substrate in-
teractions dominate over the adatom-adatom in-
teractions. However, in those cases (like He
on bare graphite) where the adatom-adatom in-
teractions dominate over the adatom-substrate
interactions, the model Hamiltonian of Eq. (6)
is a better starting point.
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