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Using the recently developed method of Edwards and Anderson we obtain the free energy for a system of
spins interacting with an exchange potential having a distribution in the form of the sum of two Gaussians
centered about ~ Jo with widths J. When J+0, the system undergoes a spin-glass transition only, with the
ferromagnetic or antiferromagnetic phases absent. When J = 0 the system shows no transition in the molecular-
field approximation used even though Jo is finite. For very low temperatures and for J/Jo ~

~ the method

gives a negative specific heat and magnetic susceptibility. These unphysical results also arose in connection
with the negative entropy obtained previously for spin glasses.

In a recent paper Edwards and Anderson' have
developed a new method to evaluate the free en-
ergy for a set of spins which interact with a Gaus-
sian random exchange potential. Sherrington and
Kirkpatrick' (SK) used the method of Edwards and
Anderson to obtain the free energy for a system
of spins interacting via a random Gaussian ex-
change potential J,, centered about J„where J,
is ferromagnetic. They showed that depending
on the parameters entering the Gaussian the sys-
tems may undergo a ferromagnetic or spin-glass
transition. In the spin-glass phase the magnetiza-
tion for the system is zero, however, the mean-
square local. magnetic moment averaged over the
spatial coordinates of the system is nonzero.

The purpose of this paper is to examine the be-
havior of a system having a distribution of ex-
change potentials in which J, is ferromagnetic and
antiferromagnetic with equal probability. For this
purpose we choose a distribution function P(j,, )
of the exchange interaction J,, as the sum of two
Gaussians, one centered about+ Jp tending to give
a ferromagnetic ordering like the model discussed
by SK, the other centered about —J„ tending to
give antiferromagnetic ordering. For simplicity
we use here a distribution in which each Gaussian
has the same strength and the same width J. Our
work not only demonstrates the influence of the
choice of the distribution on the nature of the trans-
ition, but also represents an interesting analogy
to the Ruderman-Kittel-Kasuya- Yosida potential. '
It can be shown that the latter can be approximated
by a completely symmetric distribution about. J,
=0. That the details of the distribution strongly
influence the thermodynamic properties of the sys-
tem was recently demonstrated by Riess and Klein'
using the self-consistent molecular-field theory
of Klein. '

We find that for Jc 0 the system undergoes a
spin-glass transition only. The magnetic sus-

ceptibility and the specific heat are both contin-
uous at T= T„where T, is the spin-glass transi-
tion temperature. However, both of these quan-
tities have discontinuous derivatives at T„ thus
we have a "third-order phase transition. " Further-
more, the maximum in the specific heat and mag-
netic susceptibility both occur below the transi-
tion temperature. For J =0, we have the sum of
two 5 functions and for this case there is no phase
transition.

It is interesting to compare this result with the
case considered by Mattis' in which the "sites"
(and not the potentials, or "bonds" ) are random
variables. For his case Mattis obtains a phase
transition.

A serious difficulty arises in our theory when
T «T, and the ratio of J,/J' ~ 2. For these low
temperatures the specific heat and magnetic sus-
ceptibility both become negative, giving rise to
unphysical results. Such unphysical results were
also noted by SK who found that the entropy is
negative for T -0. SK suggested that a possible
reason for this behavior is that the interchange of
the limN -~ and n -0 may not be valid in the n
expansion. Another possible reason for our dif-
ficulty is given later in the paper. In any
case, these anomalous results indicate that caution
has to be exercised in applying the n expansion to
real physical systems for low temperatures.

Consider an Ising Hamiltonian of the form

H = ——Q zqqs&s),
1

(l)
$~2

where J,, is a random exchange potential, each
J,,- is assumed to have a symmetric probability
distribution of the form

1 — 1 J. JP(J„)= exp
2Jv 2~
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Since the positions of the spins are "frozen-in"
we have to average the free energy, i.e., the loga-
rithm of the partition function S, over all coordin-
ates, rather than Z itself. For this purpose we use
the n expansion" based on the relation

lnZ = lim (1/n)(Z" —1) .
n»Q

1F = -T l —g p(Z„)~„
n-0

n

x Tr„exp
2 Sf Sf —1

a=1

(4)

Using Eq. (3) enables us to average Z" over all
coordinates, and then take the limit as n —0. Thus
the free energy is (ks is taken to be unity)

where Tr„ is the trace evaluated for a replica of
n systems. Substituting Eq. (2) into Eq. (4) and in-
tegrating gives

n n J2F= -Tlim —QTr„—exp —'g S,'S~ +exp ——' QS, S~™ exp, g S, S& S, S;
0 'g fgf 2

Similarly to SK we define the order parameters m and q by the relation

q =&s, s)„, o vp

and in the mean-field approximation we obtain for z neighbors

(5)

(6a)

(6b)

PS S, =zm P(2S; m ),
fAf i

(7a)

g S;S,S',S,' = zq~ g (2S;S', q") . - (7b)
f

We note that instead of the term /exp(X)+ exp(-X)] arising in our Eq. (5) SK have only e, where X= (J,/
T)Z" )s, s&a. For this reason only terms of the form (X')» appear in our Eq. (5), where

J' 2

(X»)» 0 g Sasasls» (8)T aug

All the terms containing Z S, s& to odd powers cancel, and the order parameter m given by Eq. (6a)
does not even appear in the free energy. This indicates that the system will have neither a ferromagnetic
nor anitferromagnetic transition but rather a spin-glass transition (if any) connected with the order param-
eter q.

Terms with k & 2 in Eq. (8) give contributions to the free energy involving at least four spins on the same
site i. The n average of these kinds of terms requires, in addition to q and m, new order parameters of
the form (S, »s™» ~ ~ Sf»)„where k&1. The consideration of such order parameters are beyond the scope
of our paper, however, they may have to be considered for T «T,.

Expanding the cosh[(J, /T)Z". ..S;S&] and in accordance with our argument in the previous paragraph
keeping only the terms k = 1 in Eq. (8), gives

a a 8F= Tlim —
~

T-r„ 1+ '» —exp u S~s&SP& (9)

where u = P/2T)'.
We next substitute Eq. (7b) into Eq. (9), then transform the remaining pairs of spin operators using the

relation

g g zq" (S., S',)= zqg g S™, -n,
a, 8 f - a

where we assumed that the q
~ are the same for each ~ and P.

Using the relation
2 1 OC)

eep -2* 2 +2;. = „, eea 2(*e )'"» +2)d»2v "'
gives for the final expression for the free energy

(10)
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(2J' +Jo') (1 —9)' 1
87'2 (2v)~ I 2

J J2 Z2
e " 'ln 2cosh —q' 'z & —0—+

wher«=« "~ J.=Jo~'" ~

The order parameter q is obtained by minimizing the free energy with respect to q. We obtain

2J2
u'+ J-=1— (12)

Equation (12) gives, q =0 for T ~ T„and qc 0
for T &T„where the spin glass phase transition
T is

(13)

Comparing our Eq. (13) with T, arising from the
SK distribution' shows that whereas our T, in-
creases monotonically with J, from T, =Jwhen J,
= 0, to T,-&27, when J,—~, for the SKdistribution
T, =j independently of J,. Equation (13) also shows
that T, increases monotonically with the width of
the distribution function J and there is no phase
transition when J= 0.

Expanding Eq. (12) for T slightly below T,(T
= T,) gives

and is U = -(2J' J+,')N(1 —q')/4T The. specific heat

C„ is proportional to T ' for T & T„ is continuous
at T = T, with a discontinuous derivative dC„/dT
at T = T,. It is interesting to note that the sign of
dC„/dT as well as dy/dT continue to be negative
for T &T„showing that the maxima in C„and y

are at some temperature lower than T,.
We next consider the low-temperature behavior.

For low T we obtain that

where y =J,/J. The low-temperature susceptibil-
ity and specific heat are

y = (2/w)'i'(N/j)(1 ——,'y')+ 0(T),
C„=N(T/j)(2w)' '[(4 -y )/12 —(2/v)'(2+y') '].

thus the "order parameter" q' ' is proportional
to (T, —T)'~' near T„ in accordance with the stan-
dard mean-field theory.

The magnetization and the magentic susceptibil-
ity are obtained from the free energy Eq. (11) by
adding the term H/T into the argument of the hy-
perbolic cosine and letting the magnetic field
H-0. We obtain that the magnetic susceptibility
X exhibits a discontinuous derivative at T= T„
with dy/dT = N/T' for T ~ T-', and

where T', is the temperature just above (below) T,.
The energy U is readily obtained from Eq. (11)

In the limit as J, -O all our equations are identical
with SK formulas in the same limit. We observe
that when J~ —,'J, the susceptibility and the specific
heat become negative provided T «T,. The un-
physical behavior of X and C„has its possible ori-
gin in the interchange of the limits N-~ and n-0.
This same reason is used by SK as the casue of
their negative entropy for low temperatures.
Another possible reason for this anomaly may be
that the existence of order parameters (other than
m and q) defined by Eq. (8) for k &1 may effect the
low-temperature results, however, these are un-
important near T,. Clearly these suggestions can
only be termed as speculations.
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