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Essential singularities in dilute magnets

M. M. Bakri~ and D. Staufkr
Institute of Theoreticat Physics, University, 66 Saarbriicken 11, West Germany

(Received 1 December 1975)

Harris argued in favor of an essential singularity at zero magnetic field in the equation of state for randomly
dilute low-temperature ferromagnets. His assumptions and conclusions are reexamined and criticized with the
help of earlier Monte Carlo data on the number W„of clusters with n spins each. These data suggest for large
clusters log W„~ —n on the paramagnetic side, whereas log W„~ —n on the ferromagnetic side. More
Monte Carlo work is suggested, if n-100, for square site percolation near p = 0.40 or square bond
percolation neal p = 0.35.

Griffiths' showed that the magnetic equation of
state M(p, H, T) cannot be analytic in H for a ran-
domly dilute quenched ferromagnet where only a
fraction p of lattice sites are occupied by magnetic
atoms. Instead, R nonanalytlcity has to occur at
magnetic field H = 0 for Tc(p) (T & Tc(p = I), where
Tc(p) is the Curie temperature of the dilute mag-
net and Tc(p= I), the "pure" Curie temperature
For very low temperatures, the M(p, H, T) prob-
lem reduces to the percolation problem, ' and we
restrict ourselves to this limit. Harris' argued
that (in this limit) this nonanalyticity is an "essen-
tial" singularity where all derivatives of M with
respect to II are finite but where the radius of con-
vergence R of the Taylor series

M= aH'

vanishes. But, Harris' proved this result for the
Bethe lattice (Cayley tree) only, "'which is some
sort of mean-field approximation. 4 For real lat-
tices' "he made an assumption about the average
number S'„of clusters of size n which was too
simple, as we will discuss below. In the present
paper we arrive, on the basis of earlier Monte
Carlo simulations, ' at a different behavior of these
cluster numbers and look at the resulting essen-
tlRl- singularity Rnswers.

Such essential singularities (more precisely,
Taylor expansions with finite derivatives but zero
radii of convergence) have been discussed be-
fore"' for pure Ising magnets (or fluids) on the
coexistence curve. Our Fig. 1 shows the three
cases discussed so far: the pure Ising model
("Fisher" ), the dilute low-temperature limit
( this work Rnd Harris ) Rnd the genelRl d1lute
pal'aIIlagllei ( Gl'lffltlls ). It ls evldellt fl'0111

Binder's discussion' that the arguments for the
Fisher singularity do not apply to the paramag-
netic region (Qriffiths). Similarly, the Qriffiths
results for finite tempexatures are not neces-
sarily valid in the T-0 low-temperature limit

(this work and Harris). Thus, since a rigorous
relation seems lacking at present between these
three singularities, one has to deal with each case
separately. But, the mathematical methods and
physical scaling assumptions of this work are very
similar to the earlier discussions of the pure Ising
model.

In a random quenched ferromagnet with nearest-
neighbor interactions (for simplicity we take the
spin- —, Ising model), the spins form clusters con-
nected by nearest-neighbor interactions. %e de-
note by W„ the average number of clusters (per
spin) containing n spine ea.ch. For very low tern
peratures, as assumed here, all n spins within
one cluster are parallel, whereas the orientations
of different clusters are uncorrelated. In a mag-
netic field H (in suitable units), the dimensionless
magnetization density M due to these clusters is

For p larger that the percolation threshold P„one
infinite percolating network' appears and adds the
spontaneous magnetization, independent of H, to

FIG. 1. Schematic phase diagram, with the position.
of various (essential) singularities, as discussed in
Refs. 8 and 9 (Fisher), Ref. 1 (Griffiths), and Ref. 3
(this work and Harris).
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the M of Eq. (2). Then a,.~e0 without other
changes, and thus Eq. (2) alone determines the
convergence of the expansion (1). Another quan-
tity of intex'est is the generating function'

(Sa)

which is similar to the Mayer cluster expansion
for liquid-gas systems.

Taylor expansions of Eqs. (2) and (Sa) give

a',. = (- 1)"'(or)-'(i!)-' V, ,

where

(4b)

(4c)

Asymptotically, '

tanh x „,- —it

for odd i whereas the derivatives vanish for even
The radii of convergence 8 and A' fox' the ex-

pansions (1) and (3b), respectively, are given by

(5b)

Thus, for large i,

—~ limi
kT (8b)

For the higher moments V,„„in Eq. (4c) only the
large n are relevant. If the large cluster sizes
behave asymptotically as

W„exp(- const x n~), 0 & g & ~

apart from preexponential fa.ctors [or more gen
erally, if 1 (Wn)/n~- cto&ns0 for large n], then
for large i the V,. vary as gamma functions
I'(const+i/g) and

sential singularities evexywhere for both M and M'.
In real lattices, such essential singularities occur
in I independent of the actual cluster-size distri-
bution 8'„, whereas M' remains analytic xn H, 8
W„decays asymptotically at least as quick as
exp( constxn), i.e. , if g~ l. In the droplet
model of three-dimensional "pure" liquid-gas or
Ising-magnet phase transitions, "' Binder argued
that f = —', on the "ferromagnetic side" [now cor-
responding to T & T~ since P = 1 is no longer a
variable then; Eq. (2) is inadequate']; and the
same arguments apply to dilute ferromagnets at
finite temperatures: essential singularity in
M'(T&Tc). Kretschmer ef al. ' argue for )=1 on

the pure paramagnetic side: no essential singu-
larity in M' above Tc(l). Reatto" suggested the
same value g = 1/(P+y) for ferromagnetic and

paramagnetic pure behavior, leading to essential
singularities in M' everywhere.

For dilute low-temperature ferromagnets on
real lattices (i.e. , not on trees), Harris assumes
& = 1, apparently for both p &p, and p& p„since a
factor p"(1 —p}' enters W„, where s is the cluster
perimetex. ' Erroneously Harris takes s o-n'~' as
for the aeter surface of a droplet, thus giving

g = 1 from the now dominating p" factor. But, ac-
cording to Domb, "one needs s/n- const for large
n in order to find the desixed p, &1. Even then the
factor p"(1 —p)' does not necessarily lead to
W„- exp( —const x n} as discussed in Ref. 12.
In fact, a simple analysis" of older Monte Carlo
data' gave g =0.36 in two dimensions for the fer-
romagnetic side. The present paper, after this
simple review, analyzes the asymptotic decay of
the Monte Carlo' W„ for the paramagnetic side in
order perhaps to clarify the essential-singularity
question there.

The analysis for P &P, i.s more difficult than the
one for p& p, since the "scaled" cluster numbers
W„(p)/W„(p, ) first increase, then decrease with n.
This maximum" leaves only the largest clusters
as candidates for the asymptotic behavior where
data are few and inaccurate. For n&10, Dean
and Bird' only give sums like Z„"',O, W„. Reference
13 simply identified this sum with (1000 —100)W„
evaluated at the geometric mean n = (1000 x 101)'~',
etc. This simple but crude approximation works
well for p very close to p, but is inaccurate farther
away from the phase transition. Thus, instead,
we work here with the partial sums

Therefore the Taylor expansion (1) for M always
has zero radius of convergence [if Eq. (6) is cor-
rect], whereas in expansion (Sb) for M' the radius
of convergence vanishes only for «1.

For the Bethe lattice' one has f = 1 for both P &P,
(paramagnet) and p& p, (ferromagnet), giving es-

S.(p)=g W.(p) p W.(p.),

thus avoiding such "geometric-mean" plots. If
W„asymptotically decays exponentially in n, as
assumed in Eq. (6), then

(9)
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S„(p)-W„(p} (n- ) (10)

apart from preexponential factors.
Figure 2 shows a selection of data for the para-

magnetic region. The two-dimensional triangular
site and the (very similar) square bond percola, -
tion W„are suited best since there p, = & exactly. '
We see that for sufficiently large clusters the S„
seem to decay as exp( —const && n), i.e. ,

ln(S„) ~ n(-n ~-, p(p, ), (1la)

whereas in the ferromagnetic region Stauffer"
gave

ln(S„) ~ n'36-(n ~, -p&p, ) (11b)

Ass„

for the critical region, p near p, . [With the scal-
ing assumption" for the critical region,
W„~n ' 't'f((P —P,)n't~') and P6=P+y, Eqs. (11)
mean lnf(x) cc —x for the ferromagnetic side, x& 0,
and lnf(x) ~ —( —x)~' for the paramagnetic side,
x (0, for n- ~ in both cases. However, the fer-
romagnetic result (11b) is valid approximately"
for all values of the scaling variable x
=(p —p, )n't~', whereas we get the paramagnetic
result (lla) for large arguments x only. ] This

asymmetry between Eqs. (lla) and (lib) is the
main result of our paper and agrees with the
above-mentioned phenomenological arguments'
for usual phase transitions.

The asymptotic straight lines in our logarithmic
plot all go through the same fixed point

S„(n=n }=S„,
where n~ and S~ are independent of p. This prop-
erty facilitates a determination of the asymptotic
behavior for inaccurate data. The intercepts n,.„
where S„(n= n„) = 1, vary with the concentration as

n, ,=n, [(p, p)/p, ]'t, (13}

where 0= 0.40 fits these intercepts for 0.1(p(p, .
Similar behavior with different fixed points is
found (not shown) for other two- and three-dimen-
sional lattices; the resulting fit parameters are
given in Table I.

If our data were close to the critical point p- p„
n-~ (which is not the case) then scaling argu-
ments"' would require the exponent 1/o in Eq.
(12) to equal P+y [usual notation: susceptibility
~(p —p, ) ", spontaneous magnetization ~(p —p, )~].
For two dimensions, P+y = 1/0. 39 according to
Ref. 7, whereas P+ y = 1/0. 46 in three dimensions
according to Kirkpatrick. ' Qur "effective" expo-
nents 0 in Table I are reasonably consistent with
these predictions, since they were taken from p
rather far away from p, . Note the systematic
increase of cr with p, in two dimensions.

(Again we may try the scaling a.ssumption" men-
tioned already after Eq. (11). Plotting S„as a
function of the "scaled cluster size" n, ~ (p, p)~'"n-
= ix i~~, we find roughly one curve for all p in the
square bond percolation case. And if, following
universality ideas, the proportionality factor in
Eq. (13) is fit appropriately, then all two-dimen-

TABLE I. Parameters fitted on the Monte Carlo data,
Eqs. (11) and (12). NN denotes site percolation in the
square lattice with nearest- and next-nearest-neighbor
interactions; SB means bond percolation in the same
lattice with nearest neighbors only. The other cases
refer to nearest-neighbor site percolation in two and
three dimensions: triangular, square, honeycomb;
simple cubic and face-centered cubic.

0

2P 40 60 8p 10p
~h

FIG. 2. Logarithmic plot of S„, Eq. (9), versus cluster
size n for two-dimensional square bond percolation. The
numbers on the curves give the concentration p of spins
in percent. Asymptotic decay along straight lines, as
suggested by this figure, gives ( =1 in Eq. (6). The Mon-
te Carlo error is a few percent for large S„and about a
factor 2 for the smallest S„shown. The crosses denote
a ferromagnetic example, p = 0.55.

NN

SB
tr
sq
hc

sc
fcc

0.41
0.50
0.50
0.59
0.70

0.32
0.21

2.4
2.2
2.4
2.2
2.4

1.2
2.4

2.0
3.0
2.2
2.6
2.4

2.8
3.9

Pl p

2.9 0.35
3.8 0.40
2.7 0.42
3.0 0.46
3.0 0.49

1.9 0.42
3.5 0.42
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sional cases of Table I are described roughly by
the same curve for —,p, Sp &p, (not shown). Con-
sistent with our more direct plot in Fig. 1, these
"scaling-universality" points agree somewhat
better with a straight line (ln(S„) vs n] than with a.

parabola: The asymptotic decay is described bet-
ter by an exp(- const && n) law than by an

exp( —const x n'} law. Thus for the paramagnetic
region the somewhat incomplete data available to
us seem to favor a simple exp( —const&&n) decay
for W„„, i.e. , ) =1.j

For the ferromagnetic region, data differ clearly
from the paramagnetic behavior. Our analysis is
consistent with the results of Ref. 13 and suggests
ln(S„) CC no "for two dimensions. Also, right at

p, we find the same result, Z" „W„~n' ' or
W„~n, with v=2+Pl(P+y) =2.0 for n& 10 in two

dimensions. (Note that in a scaling plot S, vs n,
the fixed point n~ is negligible if p- p, and n- ~;
thus n~ gives a correction to scaling. )

Thus present data seem to favor a strong asym-
metry" about p, : Perhaps f =1 for the paramag-
netic side and g = 1/(P+y) = 0.4 for the ferromag-
netic side. If this result is true we find, concern-
ing the essential-singularity question, .he answers
given in Table II.

Of course, even more accurate Monte Carlo
data never can prove some asymptotic behaviors,
in particular, if complicated crossover effects
are possible. ' Nevertheless they would help in
establishing more reliably our present tentative
numerical conclusions. The square-lattice site
percolation problem presumably is the easiest
choice for computer simulations, and its size
effects have been studied. " If n-10', we suggest

p~pc p ~pc

M, Eq. (2)
M', Eq. (3a)

yes
no

yes
yes

more Monte Carlo work here near p= 0.4, where-
as p =0.5 is less helpful. " For the square bond or
triangular-site problem, where p, = 2 exactly,
more data near p=0.35 would be helpful in de-
termining more accurately whether )=1. For suf-
ficiently large samples, plots of the W„directly
instead of various sums only would be possible.

In conclusion, to the extent made possible by
the old Monte Carlo data of Ref. 6, our Table II
clarified the question of essential singularities at
zero magnetic field in randomly dilute low-tem-
perature Ising ferromagnets. We criticized the
assumptions of Harris' and found the region most
profitable for future Monte Carlo studies of the
same problem. Present results suggest a strong
asymmetry in the asymptotic decay of the cluster-
size distribution.

One of us (M.M.B.} thanks the Humboldt founda-
tion for a grani, the University of the Saar State
for its hospitality, and K. Binder for discussions.

TABLE II. Does there exist an essential singularity
(Taylor series with zero radius of convergence) in dilute
magnets? Our answers for M' are based on the tentative
Monte Carlo conclusion f(p &p~) &1 and &(p &p~) =1 for the
ferromagnetic and paramagnetic side, respectively, with
f defined in Eq. (6). Harris, Ref. 3, also gives yes for
M but would get no for M' even in the ferromagnetic case
where we have yes.
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