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We show that the kinetic-energy increase associated with magnetic ordering is responsible for the anomalously
large lattice constants and small bulk moduli of the magnetic members of the 3d transition series. The effect
follows from the itinerant model of magnetism and does not involve spin-orbit coupling. For Fe and Ni, this
effect is demonstrated directly using self-consistent spin-polarized energy-band calculations. A simple,
approximate expression for the magnetic pressure is obtained from the Stoner model. This expression gives
results for Fe and Ni which are in good agreement with the detailed calculations and is used to obtain

estimates of the size of the effect in Cr, Mn, and Co.

I. INTRODUCTION

Changes in the mechanical properties of mag-
netic metals due to their magnetization are well
known.! In contrast to those magnetoelastic ef-
fects usually attributed to spin-orbit coupling,?
we consider here the mechanical implication of
the kinetic-energy increase due to magnetization®
and show that it is responsible for the anomalies
in the atomic density and bulk modulus of Cr, Mn,
Fe, Co, and Ni.* These properties are anomalous
in the sense that they differ markedly from their
4d and 5d counterparts and from the trend in the
remainder of the 3d series. This trend and the
very similar 4d behavior are accurately described
by the results of our earlier nonmagnetic self-
consistent energy-band calculations.® An interest-
ing aspect of the effect is its magnitude: enormous
magnetically derived internal pressures are re-
quired to account for the observed atomic volumes
of these materials. The mechanism depends on the
size of the moment, but probably not crucially on
its spatial dependence, and could well be respon-
sible for the polymorphism of Mn.®

We were led to this investigation by the results
of our systematic application of the nonmagnetic
local-density treatment of exchange and correla-
tion to the binding properties of 26 metals in the
third and fourth rows of the Periodic Table.? The
Wigner-Seitz radii” and bulk moduli were in ex-
cellent agreement with experiment except for the
magnetic metals Cr, Mn, Fe, Co, and Ni (see
Fig. 1).

Figure 1 shows that, except for these five
metals, the measured and calculated Wigner-
Seitz radii and bulk moduli exhibit nearly identi-
cal parabolic trends with atomic number in both
the 3d and 4d series. The deviation of the Wigner-
Seitz radius from this trend for Cr, Mn, Fe, Co,
and Ni suggests that some repulsive interaction,
present in the real metals, has been left out of

the calculations for Cr, Mn, Fe, Co, and Ni.
Furthermore, such a repulsive interaction will
not only cause the lattice to expand; it will also
cause a significant decrease in the bulk modulus
B, because dB/da is negative and large in the
transition metals (the theoretical bulk modulus
is evaluated at the calculated equilibrium volume).
The fact that these five metals are the only mag-
netic elements of the 26 considered in Fig. 1 im-
mediately suggests that this repulsive force is a
consequence of magnetic ordering.

The forces required to account for the discrep-
ancies in volume are, however, very large (the
required internal pressure is estimated to be
~ 460 kbar in Mn, for example)—much too large
to be ascribed to spin-orbit effects, which typical-
ly involve pressures less than 1 kbar. We have
found by direct calculation (self-consistent spin-
polarized energy-band calculations) that forces of
the required magnitude are, in fact, a consequence
of magnetic ordering for Fe and Ni. Because of
the more complicated magnetic ordering of Cr and
Mn, it would be difficult for us to perform similar
calculations for these metals. Nevertheless, a
qualitative argument suggests that large magnetic
forces are a general consequence of the itinerant
model of magnetism, and thus also occur in Cr
and Mn. The remainder of this paper is organized
as follows: (i) We first show that large magnetic
pressures are a general implication of the itiner-
ant model. (ii) We estimate the contribution of
this effect to the lattice constant and bulk modulus
using the Stoner model. Because of the approxima-
tions in the latter, the actual values obtained for
the magnetic pressure possess only qualitative sig-
nificance. Quantitative justification of this parti-
cular use of the Stoner model is provided by the
fact that the pressures obtained for Fe and Ni are
rather close to those obtained from self-consis-
tent energy-band calculations. (iii) Finally, we
present some detailed results of our self-consis-
tent calculations for Fe and Ni.
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FIG. 1. Equilibrium prop-
erties vs atomic number.
Top row—equilibrium nu-
clear separation in terms
of Wigner-Seitz radius.
Bottom row—bulk modulus
in kbar. The atomic num-
ber increases in steps of
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one from 19 to 31 in the
left-hand column and from
37 to 49 in the right-hand
column. Measured values
(low temperature where
available) are indicated by
crosses (Refs. 4 and 8-15).

II. REPULSION IN THE ITINERANT MODEL

In the itinerant model of magnetism,’® spin po-
larization causes a splitting of the bands and an
increase in kinetic energy (for small magnetic
moments, this kinetic energy increase can be
related to the density of states at the Fermi level
by the Stoner model'”). The system orders mag-
netically when the kinetic energy cost is more
than offset by the gain in exchange energy. The
repulsive force arises simply because the system
can reduce the kinetic energy cost of magnetic
ordering by undergoing a lattice expansion.!®

The detailed mechanism is as follows: the char-
acter of the d states changes continuously from
low kinetic energy (bonding) at the bottom of the
d band to high kinetic energy (antibonding) at the
top of the band. When the energy of the majority -
spin band is lowered and electrons are transferred
into it from the minority -spin band, the result is
always a transfer of electrons to higher-kinetic-
energy (less bonding) orbitals and thus a net re-
pulsion.

Although this argument is based on ferromagnetic
ordering, it also applies to cases where the order-
ing varies spatially, as for simple antiferromag-
nets or spin-density waves. As long as it is legiti-
mate to think in terms of a local density of states,'®
the magnetic ordering will still lead to a repulsion,
because the effect is independent of which band has

its energy lowered. We conclude that, in the itin-
erant model, magnetic ordering is accompanied by
a repulsive force for all values of the magnetic
moment, even if the ordering varies spatially.

It remains to establish the magnitude of the re-
pulsion. We have accomplished this for ferro-
magnetic Fe and Ni by using self-consistent en-
ergy-band calculations to find the equation of state.
However, these are elaborate computer calcula-
tions. In order to obtain estimates of the repul-
sion for Cr and Mn, where the complicated mag-
netic ordering makes our self-consistent approach
prohibitively expensive at present, we need a
simple model which gives results similar to those
obtained by direct calculation for Fe and Ni, and
which can be easily extrapolated to antiferromag-
netic materials. For this purpose, we use the
Stoner model,"” and estimate the repulsion in
terms of the pressure obtained from the volume
derivative of the lowest term in the expansion of
the kinetic-energy increase in powers of the mag-
netic moment. For simplicity, we neglect the
volume dependence of the exchange term,'® as well
as that of all higher terms, even though neither is
necessarily small. It should be pointed out that
this particular implementation of the above ideas
is necessarily much more approximate than the
results of self-consistent energy-band calculations.
However, the good agreement between magnetic
pressures for Fe and Ni obtained from the self-
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TABLE I. Parameters for, and results of, the Stoner extrapolation. First column: calcu-
lated equilibrium nonmagnetic atomic volume (Ref. 5). Second column: calculated nonmagne-
tic density of states at the Fermi level (Ref. 5). Third column: measured Bohr magneton

number (Ref. 6). Fourth column: Stoner kinetic energy K from Eq. (1).

Fifth column: pres-

sure Py from Eq. (2). Self-consistent spin-polarized calculations give 185 and 8 kbar for P,

in Fe and Ni, respectively.

Q (a.u.) N(ep) (Ry™DH M(pg) K=M?%/2N (Ry) P, (kbar)
Cr 74.46 10 0.45 0.010 33
Mn 69.78 22 2.4 0.131 460
Fe 68.11 41 2.2 0.059 212
Co 67.13 29 1.7 0.050 182
Ni 70.35 60 0.6 0.003 10

consistent calculations and those obtained in this
approximate way suggests that these approxima-
tions should be adequate for other materials as
well.

The parameters necessary for the Stoner model
and the results for Cr, Mn, Fe, Co, and Ni are
given in Table I. The paramagnetic densities of
states N(e€y) are those obtained from our nonmag-
netic calculations,® the magnetic moments M (in
Bohr magnetons per atom) are measured values,®
and the kinetic energy increase K is

K=M2/2N. 1)

We also give in Table I the values of the magnetic
pressure

O [8K\ _ .,,08 1 2K
PM"(asz){"aM N Q

obtained assuming A=31nN/81nQ = £, and the
values of the calculated nonmagnetic equilibrium
atomic volumes® § needed in Eq. (2). The values
of P, for Fe and Ni obtained from Eq. (2) (212 and
10 kbar) are remarkably close to those which are
found from our full self-consistent spin-polarized
energy-band calculations (185 and 8 kbar,?* re-
spectively); this correspondence lends credence
to the Stoner-theory estimates of P, for the re-
maining elements in Table I. In Fig. 2, we com-
pare the estimated Wigner-Seitz radius and bulk
modulus for the magnetic phases of the five met-
als?® with our nonmagnetic calculations® and with
experiment. The magnetic ordering substantially
improves the agreement with experiment.** Be-
cause of the approximations discussed above, the
results of Fig. 2 should not be taken as quantita-
tive. Nevertheless, they certainly indicate the
importance of the mechanical effects produced by
spin ordering in magnetic materials.

These large changes in atomic volume and bulk
modulus cannot be measured directly, because
the nonmagnetic phase cannot be prepared at 0 K.
However, extrapolations of lattice constants for

@)

various magnetic and nonmagnetic alloys to the
pure materials®' % imply atomic volume changes
upon magnetization which are very similar to those
shown in Fig. 2 (it follows that these alloys should
also show large changes in their elastic moduli as
functions of composition). Another indication that
repulsive forces exist in antiferromagnets is the
negative thermal expansion found in Cr and a-Mn
at low temperatures.?’

Although the changes in bulk modulus or lattice
constant shown in Fig. 2 cannot be measured at
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FIG. 2. Wigner-Seitz radius and bulk modulus calcu-
lated for nonmagnetic phase (Ref. 5) (circles), and esti-
mated for magnetic phases (triangles) compared to ex-
periment (crosses) (Refs. 4 and 8-15). The scale for
the Wigner-Seitz radius is magnified in comparison to
Fig. 1.
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TABLE II. Calculated cohesive energy, lattice constant, bulk modulus, magnetic moment,
and pressure derivative of magnetic moment of nonmagnetic and ferromagnetic becc Fe com-

pared to experiment,

Econ (RY) a (a.u.) B (Mbar) M(1g) 31nM/8P (kbar™})
Nonmagnetic 0.442 5.15 3.15 te tee
Ferromagnetic 0.461 5.27 2.17 2.15 —4.9%x1074 .
Experiment 0.3162 5.40° 1.73¢ 2.22¢ —3.2x107¢

? Reference 4.
b Reference 9.
¢ Reference 12.
4 Reference 6.
¢ Reference 38.

absolute zero, they are still quite large compared
to the anomalies usually observed at the transi-
tion temperature.!'®!*!* One explanation of the
difference lies in the possibility of spin fluctua-
tions with long time constants above the ordering
temperature, or in persistent local moments.?®
According to the argument given above, either
would lead to repulsive forces above the ordering
temperature, and the calculated nonmagnetic lat-
tice constant or bulk modulus would still be irrele-
vant to the actual material.

III. DETAILED CALCULATIONS

Our self -consistent spin-polarized energy -band
calculations are similar to our nonmagnetic cal -
culations®; we use the muffin-tin approximation,
but replace the nonmagnetic exchange-correla-
tion functional of Hedin and Lundqvist® by the
spin-polarized exchange-correlation functional
constructed by von Barth and Hedin.**"%2 There
are no adjustable parameters; two energy-band cal-
culations, one for each spin, are performed for each
self-consistency iteration, and the magnetic moment
per atom is obtained from the difference in the
integrated densities of states at the Fermi energy.
While there have been several®-3¢ gelf-consistent
spin-polarized energy-band calculations for the

magnetic 3d elements, none were concerned with
the mechanical effects we consider here.%”

Our results for the cohesive energy, lattice
constant, bulk modulus, magnetic moment, and
pressure derivative of the magnetic moment for
ferromagnetic Fe (bcc) and Ni (fcc) are compared
to our nonmagnetic results and to experiment in
Tables II and III, respectively. Other results of
the calculation, such as the spin-polarized density
of states, are similar to those found by Callaway
and co-workers,* 3 and will not be discussed here.

The experimental moments given in Tables II
and III contain a small orbital part (the g factor is
not quite 2), while the calculated results include
only the spin moments. If the orbital moment is
removed from the experimental values, using the
measured g factors,® the calculated spin moments
are then only 1% too large for Fe, and 5% too
large for Ni. The calculated moments are simi-
lar to those found by Callaway and co-workers,33-3¢
who used the spin-polarized X« method with «
=%, This is an interesting correspondence, given
the differences in the approximations used for ex-
change and correlation.®®* The relatively poor
agreement of the calculated pressure derivative
of the moment with experiment might be due to
the pressure dependence of the orbital part of the

TABLE III. Calculated cohesive energy, lattice constant, bulk modulus, magnetic moment,
and pressure derivative of magnetic moment of nonmagnetic and ferromagnetic fcc Ni com-

pared to experiment.

Eeon (RY) a (a.u.) B (Mbar) M(pg) 01nM/9P (kbar™!)
Nonmagnetic 0.411 6.55 2.20 . te
Ferromagnetic 0.419 6.56 2.27 0.59 -2.1x107%
Experiment 0.326° 6.65° 1.87°¢ 0.61¢ —3.0x1074°¢

4 Reference 4.
b Reference 9.
¢ Reference 14.
4 Reference 6.
¢ Reference 38.
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moment (which is not included in the calculations).
As mentioned earlier, the changes in the calcu-
lated nuclear separations correspond to magnetic
pressures of 185 for Fe and 8 kbar for Ni. In ad-
dition to the decrease in the nonmagnetic part of
the bulk modulus caused by the resulting lattice
expansion, there are small positive contributions*®

(6B =60+ 30 kbar for Fe, and 60 + 50 kbar for Ni)
caused by changes in the equation of state due to
the magnetism (i.e., the magnetic pressure is
intrinsically volume dependent). This small in-
crease is consistent with the effect of spin polar-
ization on the bulk modulus of the homogeneous
electron gas.*!
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