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Starting with an application of the mean-field approximation to a general classical compound-lattice model

which is built up by an arbitrary number of sublattices, state equations are derived. A further improvement of
this model achieved in such a way that an increasing number of sublattices are considered leads to models

which become more and more picture true to nature. Finally the transition to a certain continuum mode/ is

performed, yielding a coupled set of nonlinear integral equatio'ns for the one-particle density distribution

functions of a three-dimensional system consisting of continuously movable classical particles of X difFerent

species which interact by very general two-body interactions. The thermal expansion of a possible crystalline

structure of the continuum model is described by an additional transcendental state equation.

I. INTRODUCTION

Mean-field approximations have been applied to
order- disorder phenomena for the first time by
Weiss' and Bragg and Williams. ' Weiss used
such apploxlmatlons fol his faIIlous Welss TIlo-

del'* of ferromagnetism. Bragg and Williams con-
sidered them in connection with their theory of
order-disorder transitions of binary alloys. Since
Lee and Yang' discovered the formal connection
between the Ising model of ferromagnetism and the
lattice-gas model of fluid systems, the mean-field
approximation became a basic first-order ap-
proximation in the statistical-thermodynamical
theory of fluids. A general discussion of these
topics can be found in the books of Brout and
Munster. '

Recently, mean- field approximations have been
applied to refined cell models of crystal-liquid
systems, ' and compound-lattice models of certain
allotropes. ' In these cases, ' the phenomenon of
the maximum of the melting curve in the pressure-
temperature phase diagram could be cleared up.
Realistic structural solid- solid phase transitions
have been found' with pressure- temperature phase
diagrams similar to that of Cs. Some hard-core
lattice models with arbitrary soft interaction tails
have been treated with a combined mean-field and
cluster- variation approximation. Realistic inert-
gas-like phase-transition curves of a gas-liquid-
solid system and also solid- solid structural transi-
tions of an allotropic gas-liquid-solid-solid system
could be proved there. Cell models which are re-
lated in some way to the lattice models have been
treated by similar methods delivering also sim-
ilar results. " " Finally, the spinoidal iso-
therms, critical lines, and double plait points of
a lattice model of a binary fluid mixture have been
calculated in mean-field approximation. '" A
great deal of characteristic phenomena such as
azeotropy, gas- gas and liquid-1. iquid immisci-

bility are well understood and described in com-
paratively good agreement with experimental re-
sults. "

A critical consideration of all the above-men-
ts.oned results obtained in mean-field approximation
suggests that the mean-field approximation suc-
ceeds in outlining the main features of the equilib-
rium and phase-transition behavior of simple and
more complex thermodynamical systems. It
further appears to be a good first-order approxi-
mation and an appropriate starting point for more
exact quantit ative calculations.

Encouraged by these results, it seems reason-
able to use an application of the mean- field ap-
proximation to general and realistic lattice or
continuum models of real multiphase and multi-
component systems.

II. MODELS

In this paper one comPound-lattice &model' and
one continuum model are considered, which may
be described in the following:

We suggest classical particles of N different
species without any internal degrees of freedom
moving in a three- (or two- ) dimensional space.
These particles may interact by arbitrary two-
body particle interactions composed of very
small hard core and added soft interaction tails.
The shape of the hard- core cell can be variable,
but it should be equivalent with that of the unit
cell of an arbitra, ry Bravais lattice ("variable
hard core"). The soft interaction tails may be
represented by integrable potential functions
—v*,, with existent Fourier transform. The func-
ti.ons —v,*, may be zero for pairs of particles with-
in the hard-core cell and may coincide otherwise
with arbitrary integrable potential functions
—v;,. (~ r, , ~) with existent Fonrier transforms which
depend only on the distance ~r, .

~
between the two

particles of species i and j and have steady dif-
ferential derivatives in the whole coordinate space
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and become positive infinite at the origin. The
origin is assumed to lie in the midst of the hard-
core cell. Although the shape of the hard core is
somewhat arbitrary in the sense mentioned above,
the volume of all considered hard-core cells
should be equal to unit volume v. The volume v

of the hard-core cells should be so small that
p*,.

&
at the edges of the cells assumes very large

positive values that particle number densities on
lattice sites can be replaced in a reasonable way

by real particle volume densities, and that the
variation of vf~y within the ra ge of a hard-core
diameter is extremely small.

By utilizing principles of integral calculus it
seems to be reasonable then to assume that the
evaluation of the configurational part of the grand
canonical partition function is comparatively in-
dependent of the specially chosen hard-core cell
and coordinate net in the domain of integration
provided that the lattice constants of such nets
axe small enough. The lower-bound of the lattice
constants is thereby given by the magnitude of the
hard-core cell. It is therefore useful to choose
simple regular periodical point lattices with equal
numbers of lattice sites (that is equal to volume o

per lattice site, where v is the volume of the hard-
core cell) as coordinate nets in the domain of
integration. In the three- dimensional space the
only possible types of such lattices are the 14
Bravais lattices. The advantage of these lattices
is that not only the configurational integral in the
gxand canonical partition function can be replaced
by a sum over all configurations on these lattices,
but also that all possible homogeneous fluid and

all possible periodical crystalline particle density
structures can be described in a sufficient way.

While o homogeneous fluid structure is simply
rePresented by a homogeneous number density dis-
tribution on the lattice, the number of particles per
lattice site remains a description of a crystalline
stxucture somewhat more complicated. If a crys-
talline structure with the periodicity of a special
Bravais lattice is to be described, one has to first
construct the corresponding compound lattice:

For this reason one chooses a Bravais lattice
of the same type, but with a much smaller unit
cell (the hard-core cell) as a basic lattice. After-
wards, a greater number of unit cells of the basic
lattice will be joined to a real unit cell of the given
periodical structure of the same Bravais type.
(This is possible when the ratios of the edge
lengths of the unit cells of the real periodical
structure and the basic lattice are integers. ) The
lattice sites in the real unit cell can then be con-
sidered as coordinate points of a coordinate system
with an origin in the xnidst of the x eal cell, and
coordinate axes parallel to the three vectors which

span up the real unit cell. As coordinates of a
point in the real unit cell, the gneiss indices can
then be used. It is always possible in the case of
the Bravais lattices to find simple rectangular- or
oblique-angled coordinate systems of this kind
even in the case of the hexagonal lattice. " In a
somewhat different interpretation, the basic
lattice can be considered a composition of a great
number of shifted equivalent sublattices with the
real unit cell of the given periodic structure as the
unit cell in such a way that each lattice point in
the real unit cell belongs to a different sublattice.
Of course, lattice sites on opposite faces of the
real unit cell are only counted once. The com-
posed lattice, described in a general way above,
may be denoted compound lattice. An example is
illustrated in Fig. 1.

In Fig. 1, a section of a plane squaxe compound
lattice composed of four equivalent sublattices is
shown. One representative real unit cell of the
periodi. cal structure is drawn with heavy solid
lines. In the midst of this unit cell, the origin of the
coordinate System is drawn as an unfilled circle.
The filled circles are equivalent coordinate points
belonging to the different sublattices.

Aftex' having defined the compound lattice of a
given Bravais type it is now possible to describe
every corresponding periodical particle density
distribution: Considering an ensemble of com-
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FIG. 1. Section of a plane square compound lattice
composed of four equival. ent sublattices: solid line re-
presents the sublattice with Weiss index coordinates
(-2, 2); broken line represents the sublattice with Weiss
index coordinates (-1, 1); dotted line represents the sub-
lattice with Weiss index coordinates (0,-5; and line com-
posed of alternate dots and dashes represents the sub-
lattice with Weiss index coordinates {1,0).
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pound lattices, one needs only distribute the par-
ticles with homogeneous number densities on the
sublattices, whexeby the homogeneous sublattice
densities vary from sublattice to sublattice. If the
ratios of the sublattice densities of the various
particle species are constant for all sublattices,
the Periodical density distribution of a comPletely
disordered crystalline mixture is described. If
these density ratios vary from sublattice to sub
lattice in a uay that on some different sublattices
the densities of different Particle sPecies become
maximum, the periodical densI'ty distribution of an
ordered crystalline mixture (suPer structure) is
reproduced.

The so- called compound-lattice model which will
be considered in this papex consists now of the
system of classical particles with pair interaction
IIs defined above which moves on all (Bravais-type)
possible compound lattices.

It is obvious that this compound-lattice model
becomes an increasingly realistic picture of real
multiphase and multicomponent systems if the num-
ber of lattice sites of the possible basic lattices
is increased while the total volume of the system
is simultaneously kept fixed. When the volume v

of the unit cell of the basic lattice that is the vol-
ume of the hard-core cell becomes small enough
so that summations can be replaced by integrations
and the number densities (particles per lattice
site) can be replaced by ordinary densities (parti-
cles per volume unit), then one approaches the con-
tinuum model where the particles in contrast to

the lattice model can be shifted continuously
through the space. This model will be also con-
sidered in the paper. It may be supplemented
that thermal expansion of a crystal is described
by both models.

III. MEAN-FIELD STATE EQUATIONS
A, Compound-lattice model

According to the general description of our mo-
dels in Sec. II, an arbitrary compound lattice may
be globally denoted by an index BT indicating the
Bravais type of basic lattice, the unit cell vol-
ume v of the basic lattice, and the volume Vz

T

of the real unit cell of the compound lattice. The
complete notation is achieved by denoting the sub-
lattices by integer triples n„n„n, (the Weiss
index coordinates of the sublattice points in a unit
cell of the compound lattice) which may be repre-
sented by a vector n. They are restricted to the
semiopen domains [-a„,a,), [- a„a,), [-a„a,),
where o.„n„n, depend on V~~7. The n triplet
may also be represented by a vector denoted 0..
The homogeneous sublattice densities of particles
of species i on the sublattice n which character-
ize a periodical particle distribution on the com-
pound lattice may be denoted p,.(n). They are the
fundamental macroscopic variables of our model.

The evaluation of the grand canonica1 partition
function = of the compound-lattice model in mean-
field approximation now means in our picture that
:- is approximated by three steps.

In the first steP, =is replaced by

Pz g ~ ~ ~ Q w,.„,()',")exp(-())'($()' ))]exp )))' P(P ((I)p(5))v, ;
~g (pg(~) ) [pg(&) ) ill n

where Z is the number of all possible compound
lattices for fixed v, V is the total number of lattice
sites on the basic lattice, g(n) is the sublattice
site distribution function that is the ratio of the
number of lattice sites on the sublattice n to V,
N is the number of different species of particles,
p, ,- is the chemical potentia1. of the particle species
i, p is the reciprocal of kT with k the Boltzmann
constant and T the absolute temperature,
W 0~I( Vs ) is tile number of all coIlflguI'atlo118 wltll

fixed sublattice densities p;(n) and ($(Vs ))is the
mean configurational energy of the eompound-
lattiee model on the compound lattice with
indices BT, Vssr. The sum symbols QI, .&,-&I in
the = expression above are abbreviations for the
multiple sums

Z Z
p &(K&)=0 pi(52)=o p;(Rp)=0

where n„.. . , n„are all sublattice indices.
ln the second step, ($(Vs )) is approximated

by a quadratic function of the sublattice densities
which is, apart from sign, identical with that
term standing in the first bracket of Eq. (l). This
means that any pair correlation and higher cor-
relations are neglected.

Finally, in the third step the approximated parti-
tion sum above is replaced by its maximum term.
Inserting this approximated:" in the fundamental
statistical formula

P = (l/ti) (i/V)»=-

yields the pressure-density function (l) (where P is
the pressure), because Z is proportional to V and
cancels in the thermodynamic limit:
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u(vzzr) Z(&zz

p = — F V' v(in)m, (inn:V )p( )p,.(n) P Q p(m)p(m) n,. + (n[lV„„(V )].
2

i ~ j=l n i=1

elal e2-1 e 3-l

Z
fftl--el m2=-e2 m3=-e3

where n,. are given by the Bravais type BT and
VBT

The terms u, ,(m, n; Vzsr) in (1) are the inter
action sums

e(F@BT) „The sum symbols Z@ z in (1) and throughout
the paper are abbreviations for the multiple sums

The number of all configurations with fixed sub-
lattice densities W„„(Vzsr) on the compound lat-
tice which is denoted by BT and V~B is a com-
paratively simple combinatorial expression:

e (F@BT) N

w...,(v")= U 4( )vi' II';( )~( )vi'
Sk i=1

E
x 1 — P p((m) g(m)

i=1

(m if)

m, ,(m, n; Vzzr) = Q v;, (~y-x~), (2) Ee(FBT) (3)

The production symbol+" in (3) is an ab
breviation for the multiple product

where —v;~(~y —x~) is theparticle interaction po-
tential between two particles of species i and j at
space points y and x, respectively. In the sum (2),
y is the space vector of a fixed arbitrary site on
sublattice rn, while x is the space vector of a
running site which covers all sites on sublattice n
which are not identical with y. From (2) it follows
directly that the function M);,.(m;n; Vzzr) is sym-
metric in the indices i and j and in the indices rn

and n. In the case m=n, the function becomes in-
dependent of the m.

ii ii
fftl=~el 512= e2

where the e,. are again given by the Bravais type
BT and V~ .

Taking the thermodynamic limit V-~, the log-
arithm of W„„(Vszr) can be easily evaluated with
the aid of Stirling's formula. The result can be
inserted in (1), giving the following complete mean-
field pressure density relation of a given Bravais-
type periodical structure BT, V~BY:

e(FBT) g e(FBT)
Pv= gm — n, jrn, n;V~B~ p,. rn p, n + p,, m p,

i ~ j=l i=1

p,. rn ln 1 — pirn + pimlnpim
i=l i"-l l

The sublattice densities p, (m) in (4) must be chosen in the way that p becomes a maximum, that is, p
must be differentiated with respect to them. This delivers the following set of coupledtranscendentalmean-
field state equations for a given Bravais structure BT, V~BY:

Pf e(F@ )

p( ) (( — Qp, .($) =nnp P Q;~(m, ll;'V )p(ll) ~ p), i= , (Pc(V,
j"-l j-l

together with the thermodynamic relation

~p @(FE )

gm p ~ m =p ~

m

where p,. is the mean density of the particle species

B. Continuum model

%hen the lattice constants of the basic lattices
of the various Bravais types and therefore the
hard-core cell volume v is chosen small enough,
the discontinuous Weiss index coordinates m in

theunit cell can be replaced by continuous Carte-
sian coordinates x or more appropriately by
oblique-angled coordinate systems corres-
ponding to the Bravais type of the lattice. " The
sums Z-( z 'over the unit cell Vz can then be
replaced by integrations (1/v) J ver dr in Carte-
sian coordinates x, or more appropriately in
oblique- angled coordinates x'. Using the new co-
ordinates lying in the semiopen intervals —ne,
~X1 & Qel, —Qfe2 —X2 & CVe2, —Qe3 —X3 Q8~, Where
[-e„e,), [-e„e,), t- e„e,) are the semiopen
domains of the unit cell V~BT with unit volume; then
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the integration j„sT dr is an abbreviation of
.E(0)

threefold integration

ae& nee ae3 [&(X~)

(~v) dxidxedxe v

CE8j %82 083 9 x

where 8(x)/8(x') is the functional determinant of
the transformation x~ x . This abbrevlatlon shall
be considered in the following formula of the con-
tlIlu(1111 Illoclel, especlRlly ln (7) Rlld (8). Tile I'6R1 pos-
itive number n is a true measure of the magnitude
of the unit cell, because its volume Vssr(cl) is
simply a owing to the definition of n. If one
carries out the summation in (2) for continuous
coordinates, one has to be certain that v, &

is re-
placed by v;, Terms due to space points pairs

lying in the same hard-core cell axe then not
counted, as demanded. If one considers that g(m)
= I)/Vssr and further replaces the number densities
by real (particles per volume) densities [whereby
the connections V' "&(n) = I) V("&(n),

K((n) I!N (Il) ()v&
Pi ( ) V(&(&(n) V(e)(n) Pi

l&etweell I!v the volume V (n), the number +.(n) (&f

particles of species i, the number of lattice sites
V'"'(n), the number density pP&(n) of species i,
and the volume density p(. '(n) of species i all
belonging to sublattice n must be considered], then
the pressure density relation (4) of the compound-
lattice model changes into that of the continuum
model:

eve;,(I-:,v", (e))lve;(vH[~)&( )))+ g [»(i))e,

) —P [~q(I)))» ;)—Q I' )t;(I))) ~ I; lve;(&)))e[ e;(v)I j.i-1 f,-j,

In (7), apart from the explicit macroscopic variables p, {x), the additional implicit macroscopic variable
a as a thermal expansion parameter occurs. Again, these variables must be chosen in such a way that
the pressure function (7) of the continuum model becomes maximum. This leads to the following coupled
set of nonlinear integral equations:

f

» e;(V) )-g ve;(I) eg ) f =ee (e e*: , 'v( V))l eaHve+ -), e
vier(n&

i=1, . . . , i)&!; y(:V ((I) (8)

which are the continuum analogs of (5). For sim-
plicity, the volume density (o,'. '(x) in (7) and (8) is
denoted by p,.(x). Concerning the range of validity
of the Eqs. (7) Rnd (8), it can be stated that they
are only reasonable for small but finite hard-core
volume I). If I) becomes smaller and smaller (7)
and (8) approach closer to the corresponding state
equations (4) and (5) of the compound-lattice
model. In the limit I)-0, however, (7) and (8)
become irrelevant, because the volume density
p(~ Qn 18 tllell deflIlecl 111 fills llnll't oil R polllt 86't
w'ith zero measure, which is inappropriate for a
real volume density. The number density &&,'"&(n),
for the same reason, cannot approach a real
volume density w'hich would be the appropriate
probability distribution function 1Q this limit.
Therefore, (4) and (5) also become irrelevant for
lim v = O. In order to construct a real volume den-
sity in the limit v-O, it is necessary to take for
finite v the mean value of the volume densities
p(v&(x) of all such sublattice points x lying in a
small volume 4V, whereby v tends to zero aftex'-
war'ds:

hV
p(""&(xi,v) =lim —— Q I)p&('&(x)„x~,(:ZV,

This "real density, " however, corresponds ex-
actly to that volume density p(v&(x) belonging to
the decomposition v = +V. It ls therefore cleax"
that in the case of the continuum model (as weil
as in the case of the compound-lattice model), a
finite hard-core volume v must, be considered.
The calculated results will be dependent on v for
both models on account of (7), (8) and (4), (5),
respectively. But while v in the case of the com-
pound-lattice model can be chosen arbitrary in
the case of the continuum model, v must be chosen
so small (corresponding to the assumptions made
in Sec. II) that the volume densities and interaction
functions practically do not vary in v, so that all
suxns can be replaced by integrations independent
of the shape of v.

The thermal expansion parameter e can be de-
termined by a total variation of p in dependence
on n. For this reason the solutions p;(x; a) of (8)
whlcll Rl'6 o( clepelldellt I&lust be 111861'ted 1I1 (7),
giving, due to Vs (cI) = cI' a function p = (I/n')
&I f ((x, I)) for the pressure dp/d(&( = .0 gives then the
transcendental equation

di (I), n)
8~( ) (8)

dQ



for the determination of a which characterizes the
thermal expansion in thermodynamical equilibrium.

Equations (V)-(9) represent the complete set of
mean-field state equations of the continuum model.
For the coupled set of integral equations (8), a
representation in the k space of the reciprocal
lattice is possible. Defining the function

which ls of the same pex'locbclty as the density
p;(x) Rnd the interaction sum m;J(y- x; v, Vs (n)),
one obtains by a Fourier transform, considering
the folding theorem, the following set of linear
algebraic equations;

jI (k) ——iI; 5(k) = Vssr(a) g sv,.I(kjup&(k),

i =I, . . . ,N (10)

for the Fourier Components f&(k}, p,.(k), and se, &(k),
whereby 5(k) is the Kronecker symbol.

Consider now that in the case of the hard- core
continuum model in the interaction, sum v, , must
be used. As an ordinary Fourier transform 7*;I(p)
of p,-& exists in the k space of the reciprocal lat;
tice; the following simple relation is valid:

zu, j(k) = [(2w)'/Velar] V,*I(k) . (11)

For very small v, P,*z(k) in (11) can be replaced by
tile Folll 16X' tl'Rllsfo1111 VIg(k) Of file SOft illtel'RCt1011

V~g.

IV. DISCUSQON

Initially, a general description of the method of
construction phase diagrams by use of the state
equations (4), (5), and (7)-(9), respectively, may
be given. In the ease of the continuum model,
Eq. (8) must first be solved. Afterwards, by in-
sertion of the p,.(x; n) functions in (9), u is de-
termined. Inserting n and p, (x; o) into ('I) for a
given set of values of the chemical potentials p, ,
the pressure can be uniquely calculated for every
type of a Hravais crystalline structure and, of
course, for the fluid structures with homogeneous
densltles. As there ls only a finite number of
Bravais lattices that structure with the maximum
pressure which corresponds to a stable phase can
be easily selected. In this way a group of pres-
sure faces of maximum pressure with the tem-
perature 1/kP as group parameter can be unique-
iy constructed in the (%+1}-dimensional
(iI„.. . , iI„;p} space. Each point of these faces
cox'1espQnds uniquely, fQx' a given temperature,
to a definite type of Bravais crystalline struetux'e
with a definite magnitude of the unit cell (charac-

terized l1y u) ) R11d R def1111'te corx'Bspolld111g peI'1od-
ical density distribution or, simply, to a fluid
structure with definite homogeneous density. At
the phase-transition points the faces of maximum
pressure intersect for each temperature in (A'- 1)-
dllY161181onal 11ype1'fRces of (pI, ~ ~ ~, iI~) spRCB. In
this way, all phase transition pressures and the
corresponding phase- transition points in the (N 1)--
dimensional hyperface of the (iI„.. . , iI„) space
ean be determined fox' each temperature. Due to
(8), two corresponding (N- 1)-dimensional hyper
fRess of coexlstIIlg deIIslt168 111 tile (p„. . . y pg)
density space for each space point x are then
simultaneously determined. In the case of the
compound- lattice model, corresponding phase
diagrams can be constructed in a completely anal-
ogous way with the only striking difference being
the thermal expansion parameter a of a given
Bravais-type unit cell cannot be calculated simply
by an equation like (9). The magnitude of a unit
cell of the compound lattice can be only determined
by selecting among the whole set of possible in-
teger triples ( „on,„n,) used in (1), (4), and (5)
that triple where the pressure P in (4} becomes
maximum. The mathematical treatment of the
thermal expansion in the case of the compound-
lattiee model is therefore much more cumber-
some than in the ease of the continuum model.

%hat are now the main advantages and dis-
advantages of the models' At first it must be
stated that the continuum model with finite v, as
well as the compound-lattice model, is not a
picture completely true to natuxe. The somewhat
artificial "variable hard core" of this model can-
not be suggested as a perfect alternative of real
extended continuously shiftable hard cores with
the shape of a sphere, or other shapes. The hard-
core coxrelation of the continuum model is at
most globally taken into account in the pure-mean-
field approximation in the sense that at infinite
pressures a collapse of the particles is prohibited,
and a finite volume, namely, the proper volume
of the particles is assumed. The influence of this
lack on the mean-field results, however, vanishes
more and more if the hard-core cell volume v be-
comes smaller and the interaction tends mox e and
more to the soft core potential interaction —v, ,
defined at the beginning of See. II. On the other
hand, the neglect of pair and higher correlations
due to the soft-interaction tail can also entail that
packing effects together with a corresponding
variety of phases and phase diagrams are not de-
scribed pl ecisely enough. A more systematic
consideration of the hard-core correlation is com-
paratively cumbersome, even in the case of simple
hard- core lattice models. e Concerning the cal-
culation of the equilibrium density distributions of
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a very refined compound lattice model, it can be
stated that it is probably much more cumbersome
than calculating the corresponding data of the con-
tinuum model. In the case of the compound-lattice
model a set of a very large number of coupled
transcendental equations (5) always must be solved.
In the case of the continuum model, often only a
set of a, few coupled integral equations (8) must
be solved. %hen allotropes are considered for
each crystalline structure only one integral equa-
tion and (9) need to be solved, whereby the thermal
expansion is automatically included. The evalua-
tion of the pressure functions seems to be easier
in the case of the continuum model (4) than in the
case of the compound-lattice model (7). Unfortun-
ately, it was not possible to develop a procedure
of solving the system of integral equations (8).
On the other hand, if the density distributions of
al1. crystalline, and fluid structures of a real
system are knout from experiment in such a way
that Fourier components can be calculated on ac-

count of (10) and (11), some statements can be
given concerning the Fourier components of the
soft-interaction tails —v~& and the complete in-
teractions —v,.&. A reconstruction of the true in-
teraction —v, , is perhaps then possible in some
cases. As long as a solution of (8) cannot be given,
it seems to be appropriate to calculate simple com-
pound-lattice models consisting only of a few sub-
lattices. Such models exhibit many of the charac-
teristic thermodynamical features of real sys-
tems. ' Especially if a symmetric density dis-
tribution in the unit cell is assumed, the number
of coupled transcendental equations of the system
(5) will severely be reduced. A numerical com-
puter calculation then appears feasible, An entire
judgment about the quality of the approximated
models seems to be possible only by a treatment
of a great number of various examples. In this
sense, numerical calculations of (4), (5) and
(7)-(9) for many different models may be tried
in the future.
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